竹炭固相萃取剂的制备及分离富集典型环境污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境介质比较复杂或待测污染物浓度很低,通常环境样品需要经过前处理,即分离富集后再进入分析仪器进行准确地测定。固相萃取技术由于富集效率高、有机溶剂用量少、易于自动化等优点被广泛应用于样品前处理领域。固相萃取剂是影响固相萃取富集效率最重要的因素之一。竹炭具有较大的比表面积、发达的孔隙结构和良好的吸附性能,对废水中的一些污染物质有一定的吸附作用。本文制备了一系列竹炭吸附剂,将其作为固相萃取剂建立了环境样品中典型污染物的分析方法,并应用于实际环境样品分析。主要进行了以下几个方面的研究:
     1.以竹炭作为固定相制作了固相萃取小柱,用来分离富集水中的溴代阻燃剂六溴环十二烷,优化了萃取条件,建立了环境样品中六溴环十二烷的检测方法,该方法基于竹炭固相萃取和快速分辨液相色谱-电喷雾串联质谱。在最优条件下,方法在0.1-10μg·L-1范围内呈现良好的线性关系,方法的检出限和精密度分别为0.005-0.015μg·L-1和4.59-7.47%。该方法被成功应用于实际环境水样中痕量六溴环十二烷的检测,实际样品加标回收率为88.5-98.3%。
     2.选用竹炭作为固相萃取剂,并将此固相萃取体系与高效液相色谱紫外检测器联用,建立了环境水样中三种人工合成的雌激素物质的分析检测方法。实验详细考察了洗脱液种类和体积、样品流速、样品pH和体积等几个因素对竹炭固相萃取体系分离富集性能的影响,结果表明,当洗脱液为8mL丙酮,样品流速为4mL·min-1,样品pH和体积分别为2和500mL时,分离富集效率最好。在此条件下测定了方法的的分析特性参数,根据实验结果可知,该方法的线性范围为1-100μg·L-1,检出限和精密度分别为0.03-0.06μg·L-1和4.46-8.65%。该方法被成功应用于三种实际环境水样的分析,实际样品加标回收率为85.0-97.0%。
     3.通过控制毛竹的炭化温度(500、700、900℃)制备出了三个竹炭样品。运用扫描电子显微镜(SEM)、元素分析、比表面积及孔径分布测试等手段对竹炭样品进行表征。结果发现竹炭样品表面有大量的微孔的介孔存在,使其有很高的比表面积。炭化温度对竹炭的微观结构和组成有很大影响,随着炭化温度的升高,比表面积和孔体积显著增大,含碳量也明显提高。将所制得的竹炭样品用于水中Cr(Ⅵ)的吸附研究,结果表明,竹炭对水中Cr(Ⅵ)有很好的吸附效果,吸附在120min左右达到平衡。Langmuir等温模型和准二级动力学方程可以很好的描述整个吸附过程,其Cr(Ⅵ)最大吸附量为38.91mg·g-1。热动力学研究表明吸附过程是一个自发和吸热的物理吸附过程。竹炭由于其独特的孔结构和较高的比表面积,对于去除废水中的Cr(Ⅵ)污染物是很有效的吸附材料。
Due to the complexity of environmental sample matrix and the low concentration of analytes, pretreatment of samples and preconcentration of analytes are usually involved prior to instrument analysis for accurate measurement. The solid-phase extraction (SPE) is widely used in sample pretreatment field owing to the high enrichment efficiency, low dosage of organic solvent and easy automation. The choice of adsorbent is one of most important influence factors. Bamboo charcoal is a new environmental protection material with large specific surface area, advanced pore structure and excellent adsorption property to the pollutants in wastewater. Hense, bamboo charcoal is selected as the research object and the thesis focused on its application potential in SPE technique. A series of bamboo charcoals with different performance were prepared. Using bamboo charcoal as SPE adsorbent, the analysis methods of typical pollutants in environmental samples were developed. The main results are as follows:
     The SPE cartridges using bamboo charcoal as stationary phase were prepared to separation and enrichment of brominated flame retardants hexabromocyclododecane diastereomers (HBCDs). The conditions affecting the extraction efficiencies were investigated and optimized in detail, and the method for simultaneous preconcentration and sensitive determination of HBCDs in environmental water samples has been developed. It was based on SPE and rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-ESI-MS/MS). Under the optimum conditions, experimental data exhibited excellent linear relationships between peak area and concentrations over the range of0.1-10μg·L-1. The limits of detection and precision were in the range of0.005-0.015μg·L-1and4.59-7.47%, respectively. The proposed method has been successfully applied for the trace analysis of HBCDs in real-world environmental water samples, the recoveries of standard addition obtained were in the range of88.5-98.3%.
     Bamboo charcoal was used as SPE adsorbent in this work as well as the analytical method based on SPE combined with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) was established for simultaneous preconcentration and sensitive determination of estrogens hexestrol, diethylstilbestrol and dienestrol in environmental water samples. Important parameters affecting extraction efficiencies, including eluant and its volume, flow rate, sample pH and volume were investigated and optimized in detail. It indicated that the highest enrichment efficiency was obtained when8mL acetone was selected as eluent, the sample flow rate, pH and volume were4mL-min-1,3and500mL, respectively. Under the optimum conditions, analytical performance parameters of the proposed method were determined. Experimental results showed that the linear ranges were1-100μg·L-1, the limits of detection and precision were in the range of0.03-0.06μg·L-1and4.46-8.65%, respectively. The proposed method has been successfully applied for the trace analysis of these estrogens in real-world environmental water samples with satisfactory results, the the recoveries of standard addition were85.0-97.0%.
     Three bamboo charcoal samples were prepared by carbonization of Moso bamboo at different temperatures (500,700,900℃). The as-prepared samples were characterized by scanning electron microscopy, nitrogen adsorption-desorption and element analysis. It is found that a large number of micro-/mesoporous in bamboo charcoal surface as well as high surface area. The carbonization temperature has a significant impact on micro structure and composition of bamboo charcoal:with the carbonization temperature increases, BET specific surface areas and pore volume increased significantly as well as the carbon content. Adsorption of Cr(VI) onto the as-prepared bamboo charcoal sample from aqueous was investigated and discussed. The bamboo charcoal samples exhibit excellent adsorption property towards Cr(VI) ions in aqueous solutions and about120min to reach adsorption equilibrium. The adsorption data can better described by Langmuir model and pseudo-second-order equation with maximum monolayer adsorption capacity of38.91mg·g-1. The bamboo charcoal samples are found to be effective adsorbents for the removal of Cr(VI) pollutant from wastewater as a result of its unique porous structure and high specific surface areas. Bamboo charcoal materials are expected to be useful in adsorption and separation areas for removal of pollutants from the wastewater.
引文
[1]张兰英,饶竹,刘娜.环境样品前处理技术[M].北京:清华大学出版社,2008:170-182.
    [2]黄骏雄.环境样品前处理技术及其进展(一)[J].环境化学,1994,13(001):95-104
    [3]Majors R. An overview of sample preparation[J]. LC-GC, 1991,9(1):16-20.
    [4]Onge LMS, Dolar E, Anglim MA, et al. Improved determination of phenobarbital, primidone, and phenytoin by use of a preparative instrument for extraction, followed by gas chromatography[J]. Clinical Chemistry,1979,25(8):1373-1376.
    [5]苏继新,聂玉伦,王仲鹏,等.固相萃取技术及其在环境上的应用[J].山东化工,2005,34(001):13-15.
    [6]Thurman EM, Mills MS. Solid-phase extraction: principles and practice[M]. New York: Wiley-Interscience,1998:1-20.
    [7]Font G, Manes J, Molto J, et al. Solid-phase extraction in multi-residue pesticide analysis of water[J]. Journal of Chromatography A, 1993,642(1):135-161.
    [8]董学畅,张莉,普继兰.固相萃取技术及其应用新进展[J].云南化工,2005,31(6):26-30.
    [9]马娜,陈玲.固相萃取技术及其研究进展[J].上海环境科学,2002,21(3):181-184.
    [10]刘俊亭,王文彬.固相萃取法命名的由来与发展[J].色谱,1994,12(5):388-399.
    [11]张海霞,朱彭龄.固相萃取[J].分析化学,2000,28(009):1172-1180.
    [12]Tippins B. Selective sample preparation of endogenous biological compounds using solid-phase extraction [J]. American Biotechnology Laboratory,1987,5:25-31.
    [13]田晶,翟滨,于玲.固相萃取法固定相的选择原则[J].大连轻工业学院学报,1996,15(4):41-44.
    [14]Snyder L. Classification of the solvent properties of common liquids[J]. Journal of Chromatographic Science,1978,16(6):223-234.
    [15]Lindsey ME, Meyer M, Thurman E. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry[J]. Analytical Chemistry,2001, 73(19):4640-4646.
    [16]贾瑞宝.水中痕量多环芳烃(PAHs)类环境污染物检测方法的研究[J].中国环境监测,1999,15(1):40-42.
    [17]谢孟峡,刘媛,蒋敏.固相萃取-气相色谱-质谱分析肉样中盐酸克伦特罗的残留量[J].分析化学,2002,30(011):1308-1311
    [18]林海丹,谢守新,吴映璇.固相萃取高效液相色谱法测定乳粉中苯并咪唑类药物残留[J].分析试验室,2005,24(001):27-29.
    [19]Raggi M, Bugamelli F, Mandrioli R, et al. Development and validation of an HPLC method for the simultaneous determination of clozapine and desmethylclozapine in plasma of schizophrenic patients[J]. Chromatographia,1999,49(1):75-80.
    [20]Zendelovska D, Stafilov T. Development of an HPLC method for the determination of ranitidine and cimetidine in human plasma following SPE[J]. Journal of Pharmaceutical and Biomedical Analysis,2003,33(2):165-173.
    [21]Anastassiades M, Lehotay SJ, Stajnbaher D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce[J]. Journal of AOAC International, 2003,86(2):412-431.
    [22]倪蓉,杨龙彪,刘兰侠.固相萃取-高效液相色谱法测定饮料中8种色素[J].中国卫生检验杂志,2010,(5):991-992.
    [23]郑志锋,袁洋春,蒋剑春,等.竹炭制备工艺的比较[J].生物质化学工程,2010,44(002):5-8.
    [24]刘焕荣,江泽慧,任海青,等.竹炭吸附性能及其利用研究进展[J].竹子研究汇刊,2009,28(2):1-4.
    [25]邵千钧,徐群芳,范志伟,等.竹炭导电率及高导电率竹炭制备工艺研究[J].林产化学与工业,2002,22(2):54-56.
    [26]胡永煌.竹炭,竹醋液生产技术及应用开发研究进展[J].林产化学与工业,2002,22(3):79-83.
    [27]林瑞茹.竹炭吸附性能的应用[J].科技信息,2009,(036):96-97.
    [28]张文标,陈文照.竹炭生产和应用[J].竹子研究汇刊,2001,20(002):49-54.
    [29]张东升,王戈,张新萍.竹炭利用综合评述[J].世界竹藤通讯,2004,2(001):1-3.
    [30]张齐生.重视竹材化学利用,开发竹炭应用技术[J].竹子研究汇刊,2001,20(003):34-35.
    [31]徐亦钢,石利利.竹炭对2,4-二氯苯酚的吸附特性及影响因素研究[J].农村生态环境,2002,18(1):35-37.
    [32]张启伟,王桂仙.竹炭对饮用水中氟离子的吸附条件研究[J].广东微量元素科学,2005,12(003):63-66.
    [33]Asada T, Ishihara S, Yamane T, et al. Science of bamboo charcoal:study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases[J]. Journal of Health Science,2002,48(6):473-479.
    [34]杨磊,陈清松,赖寿莲,等.竹炭对甲醛的吸附性能研究[J].林产化学与工业,2005,25(1):77-80.
    [35]王伟龙,张文标,钟泰林,等.竹炭对草本花卉生长的影响[J].世界竹藤通讯,2005,3(001):24-26.
    [36]马印,李青山,徐明双,等.竹炭研究新进展[J].针织工业,2011,(4):25-29.
    [37]陈明丽,沈丽明,王建华.竹炭分离富集铋及氢化物发生原子荧光和等离子体质谱法测定[J].光谱学与光谱分析,2011,31(001):238-243.
    [38]Zhao Rusong, Wang Xia, Yuan Jinpeng, et al. Investigation of feasibility of bamboo charcoal as solid-phase extraction adsorbent for the enrichment and determination of four phthalate esters in environmental water samples[J]. Journal of Chromatography A, 2008,1183(1-2):15-20.
    [39]马强,白桦,王超,等.同位素稀释-超高效液相色谱-串联质谱法测定纺织品中的六溴环十二烷[J].高等学校化学学报,2010,(003):473-478.
    [40]李永东,云霞,那广水,等.环境中六溴环十二烷的研究进展[J].环境与健康杂志,2010,10:933-936
    [41]Law K, Palace V, Halldorson T, et al. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) I:Bioaccumulation parameters and evidence of bioisomerization[J]. Environmental Toxicology and Chemistry,2006,25(7):1757-1761.
    [42]Law R, Bersuder P, Allchin C, et al. Levels of the flame retardants hexabromocyclododecane and tetrabromobisphenol A in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the UK, with evidence for an increase in HBCD concentrations in recent years[J]. Environmental Science & Technology, 2006, 40(7):2177-2183.
    [43]Lindberg P, Sellstr m U, H ggberg L, et al. Higher brominated diphenyl ethers and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden[J]. Environmental Science & Technology,2004,38(1):93-96.
    [44]Reistad T, Fonnum F, Mariussen E. Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro[J]. Archives of Toxicology,2006,80(11):785-796.
    [45]Sormo E, Salmer M, Jenssen B, et al. Biomagnification of polybrominated diphenyl ether and hexabromocyclododecane flame retardants in the polar bear food chain in Svalbard, Norway[J]. Environmental Toxicology and Chemistry,2006,25(9): 2502-2511
    [46]Sellstrom U, Kierkegaard A, Wit C, et al. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish river[J]. Environmental Toxicology and Chemistry,1998,17(6):1065-1072.
    [47]Ueno D, Alaee M, Marvin C, et al. Distribution and transportability of hexabromocyclododecane (HBCD) in the Asia-Pacific region using skipjack tuna as a bioindicator[J]. Environmental Pollution,2006,144(1):238-247.
    [48]Becher G. The stereochemistry of 1, 2, 5, 6, 9, 10-hexabromocyclododecane and its graphic representation[J]. Chemosphere,2005,58(7):989-991.
    [49]Budakowski W, Tomy G. Congener-specific analysis of hexabromocyclododecane by high-performance liquid chromatography/electrospray tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2003,17(13):1399-1404.
    [50]Dodder N, Peck A, Kucklick J, et al. Analysis of hexabromocyclododecane diastereomers and enantiomers by liquid chromatography/tandem mass spectrometry: Chromatographic selectivity and ionization matrix effects[J]. Journal of Chromatography A, 2006,1135(1):36-42.
    [51]施致雄,封锦芳,李敬光,等.超高效液相色谱-电喷雾质谱法结合同位素稀释技术检测动物源性食品中的六溴环十二烷异构体[J].色谱,2008,26(1):1-5.
    [52]Eljarrat E, Cal A, Raldua D, et al. Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain)[J]. Environmental Science & Technology, 2004, 38(9):2603-2608.
    [53]Shi Zhixiong, Feng Jinfang, Li Jingguang, et al. Analysis of hexabromocyclododecane diastereoisomers in foods of animal origin using ultra-performance liquid chromatography-mass spectrometry and isotope dilution[J]. Chinese Journal of Chromatography,2008,26(1):1-5.
    [54]Garcia-Valcarcel Al, Tadeo JL. Determination of hexabromocyclododecane isomers in sewage sludge by LC-MS/MS[J]. Journal of Separation Science,2009,32(22): 3890-3897.
    [55]Han Chao, Chen Xiaomei, Xie Wen, et al. Determination of hexabromocyclododecane diastereoisomers in Sargassum fusiforme and comparison of the extraction efficiency of ultrasonication, microwave-assisted extraction, Soxhlet extraction and pressurised liquid extraction[J]. Journal of Separation Science,2010,33(21):3319-3325.
    [56]Suzuki S, Hasegawa A. Determination of hexabromocyclododecane diastereoisomers and tetrabromobisphenol A in water and sediment by liquid chromatography/mass spectrometry[J]. Analytical Sciences,2006,22(3):469-474.
    [57]Zhao Rusong, Wang Xia, Yuan Jinpeng, et al. Trace determination of hexabromocyclododecane diastereomers in water samples with temperature controlled ionic liquid dispersive liquid phase microextraction [J]. Chinese Chemical Letters,2011, 22(1):97-100.
    [58]Guerra P, Eljarrat E, Barcelo D. Simultaneous determination of hexabromocyclododecane, tetrabromobisphenol A, and related compounds in sewage sludge and sediment samples from Ebro River basin (Spain)[J]. Analytical and Bioanalytical Chemistry, 2010,397(7):2817-2824.
    [59]O'Brien J, Crump D, Mundy L, et al. Pipping success and liver mRNA expression in chicken embryos exposed in ovo to C8 and C11 perfluorinated carboxylic acids and C10 perfluorinated sulfonate[J]. Toxicology Letters,2009,190(2):134-139.
    [60]Zhao Rusong, Wang Xia, Yuan Jinpeng. Highly sensitive determination of tetrabromobisphenol A and bisphenol A in environmental water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Separation Science,2010,33(11):1652-1657.
    [61]肖荣辉,马继平,鹿文慧,等.竹炭固相萃取/气相色谱-质谱联用对环境水样中16种多环芳烃的测定[J].分析测试学报,2009,28(009):1022-1026.
    [62]Zhao Rusong, Wang Xia, Yuan Jinpeng, et al. Sensitive determination of phenols in environmental water samples with SPE packed with bamboo carbon prior to HPLC[J]. Journal of Separation Science,2009,32(4):630-636.
    [63]王霞,张莉莉,刁春鹏,等.竹炭为高效吸附剂的固相萃取分析环境水样中的痕量三氯生[J].分析试验室,2009,28(008):72-74.
    [64]Zhao Rusong, Hu Cong, Zhou Jiabin, et al. Preconcentration and sensitive determination of hexabromocyclododecane diastereomers in environmental water samples using solid phase extraction with bamboo charcoal cartridge prior to rapid resolution liquid chromatography-electrospray tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2011,400(4):1189-1195.
    [65]Ma Jiping, Xiao Ronghui, Li Jinhua, et al. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(34):5462-5469.
    [66]Cai Yaqi, Jiang Guibin, Liu Jingfu, et al. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography[J]. Analytica Chimica Acta, 2003,494(1-2):149-156.
    [67]Zhao Rusong, Wang Xia, Zhang Lili, et al. Ionic liquid/ionic liquid dispersive liquid-liquid microextraction, a new sample enrichment procedure for the determination of hexabromocyclododecane diastereomers in environmental water samples [J]. Analytical Methods,2011,3(4):831-836.
    [68]Richardson ML, Bowron JM. The fate of pharmaceutical chemicals in the aquatic environment[J]. Journal of Pharmacy and Pharmacology,1985,37(1):1-12.
    [69]Pedrouzo M, Borrull F, Pocurull E, et al. Estrogens and their conjugates:Determination in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Talanta,2009,78(4-5):1327-1331.
    [70]Lope MJ, Barcelo D. Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and progestogens in sediment and water[J]. Journal of Chromatography A, 2001,938(1):145-153.
    [71]Bagnati R, Castelli MG, Airoldi L, et al. Analysis of diethylstilbestrol, dienestrol and hexestrol in biological samples by immunoaffinity extraction and gas chromatography-negative-ion chemical ionization mass spectrometry[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1990,527:267-278.
    [72]Koh Y, Chiu T, Boobis A, et al. Determination of steroid estrogens in wastewater by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2007,1173(1-2):81-87.
    [73]Fine DD, Breidenbach GP, Price TL, et al. Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography-negative ion chemical ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2003,1017(1-2):167-185.
    [74]Katayama M, Taniguchi H. Determination of estrogens in plasma by high-performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5, 6-dimethylbenzimidazole[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1993,616(2):317-322.
    [75]Lagana A, Bacaloni A, Fago G, et al. Trace analysis of estrogenic chemicals in sewage effluent using liquid chromatography combined with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2000,14(6):401-407.
    [76]Ternes TA, Andersen H, Gilberg D, et al. Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS[J]. Analytical Chemistry,2002,74(14): 3498-3504.
    [77]Wang Ling, Cai Yaqi, He Bin, et al. Determination of estrogens in water by HPLC-UV using cloud point extraction[J]. Talanta,2006,70(1):47-51.
    [78]Beck J, Totsche KU, Kogel-Knabner I. A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography-mass spectrometry[J]. Chemosphere,2008,71(5):954-960.
    [79]Rodriguez-Mozaz S, Lopez MJ, Barcelo D. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2004,1045(1):85-92.
    [80]Heikkinen R, Fotsis T, Adlercreutz H. Reversed-phase C18 cartridge for extraction of estrogens from urine and plasma[J]. Clinical Chemistry,1981,27(7):1186-1189.
    [81]Isobe T, Shiraishi H, Yasuda M, et al. Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry[J], Journal of Chromatography A,2003,984(2):195-202.
    [82]Ferguson PL, Iden CR, McElroy AE, et al. Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-electrospray-MS[J]. Analytical Chemistry,2001,73(16):3890-3895.
    [83]Kozlik P, Bosakova Z, Tesarova E, et al. Development of a solid-phase extraction with capillary liquid chromatography tandem mass spectrometry for analysis of estrogens in environmental water samples[J]. Journal of Chromatography A,2011,1218(15): 2127-2132.
    [84]Tso J, Aga DS. A systematic investigation to optimize simultaneous extraction and liquid chromatography tandem mass spectrometry analysis of estrogens and their conjugated metabolites in milk[J], Journal of Chromatography A,2010,1217(29):4784-4795.
    [85]Chuang CS, Wang MK, Ko CH, et al. Removal of benzene and toluene by carbonized bamboo materials modified with TiO2 [J]. Bioresource Technology,2008,99(5): 954-958
    [86]Mui ELK, Cheung W, Valix M, et al. Dye adsorption onto char from bamboo[J]. Journal of Hazardous Materials,2010,177(1-3):1001-1005.
    [87]Choy KKH, Barford JP, McKay G. Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis[J]. Chemical Engineering Journal,2005,109(1-3):147-165.
    [88]Li Mo, Ma Jiping, Zhu Shiwen, et al. Determination of PAHs in river water using bamboo charcoal as a solid-phase extraction adsorbent by high performance liquid chromatography [J]. Chinese Journal of Analysis Laboratory,2010,29(6):89-92.
    [89]Ma Jianwei, Wang Fayuan, Huang Zhenghong, et al. Simultaneous removal of 2, 4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal[J]. Journal of Hazardous Materials,2010,176(1-3):715-720.
    [90]刘美华,邱彬,陈国南,等.超声辅助离子液体分散液相微萃取-高效液相色谱法测定废水中雌激素的研究[J].分析测试技术与仪器,2009,15(003):151-157.
    [91]El-Sikaily A, Nemr AE, Khaled A, et al. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon[J]. Journal of Hazardous Materials,2007,148(1-2):216-228.
    [92]Espinoza-Quinones FR, Modenes AN, Camera AS, et al. Application of high resolution X-ray emission spectroscopy on the study of Cr ion adsorption by activated carbon[J]. Applied Radiation and Isotopes,2010,68(12):2208-2213.
    [93]Mor S, Ravindra K, Bishnoi N. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal[J]. Bioresource Technology,2007,98(4): 954-957.
    [94]Rodrigues LA, Maschio LJ, da Silva RE, et al. Adsorption of Cr (Ⅵ) from aqueous solution by hydrous zirconium oxide[J]. Journal of Hazardous Materials,2010,173(1-3): 630-636.
    [95]Monser L, Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater[J]. Separation and Purification Technology, 2002,26(2-3):137-146.
    [96]Lima LS, Araujo MDM, Quinaia SP, et al. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design[J]. Chemical Engineering Journal,2011,166(3):881-889.
    [97]Argun ME, Dursun S, Ozdemir C, et al. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics[J]. Journal of Hazardous Materials,2007, 141(1):77-85.
    [98]Li Qin, Sun Li, Zhang Ya, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg (Ⅱ) and Cr (Ⅵ) by polyaniline/humic acid composite[J]. Desalination, 2011,266(1):188-194.
    [99]Choi HD, Cho JM, Baek K, et al. Influence of cationic surfactant on adsorption of Cr (Ⅵ) onto activated carbon[J]. Journal of Hazardous Materials,2009,161(2-3): 1565-1568.
    [100]Zhao Naiqin, Wei Na, Li Jiajun, et al. Surface properties of chemically modified activated carbons for adsorption rate of Cr (Ⅵ)[J]. Chemical Engineering Journal,2005, 115(1-2):133-138.
    [101]Gottipati R, Mishra S. Process optimization of adsorption of Cr (Ⅵ) on activated carbons prepared from plant precursors by a two-level full factorial design[J]. Chemical Engineering Journal,2010,160(1):99-107.
    [102]Shin FG, Xian Xingjuan, Zheng WP, et al. Analyses of the mechanical properties and microstructure of bamboo-epoxy composites[J]. Journal of Materials Science,1989, 24(10):3483-3490.
    [103]Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology,2004,95(3):255-257.
    [104]Hameed B, Din ATM, Ahmad A. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2007,141(3):819-825.
    [105]Warhurst A, Fowler G, McConnachie G, et al. Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa oleifera[J]. Carbon,1997,35(8): 1039-1045.
    [106]Ip A, Barford J, McKay G Production and comparison of high surface area bamboo derived active carbons[J]. Bioresource Technology,2008,99(18):8909-8916.
    [107]Gong Guozhuo, Xie Qiang, Zheng Yanfeng, et al. Regulation of pore size distribution in coal-based activated carbon[J]. New Carbon Materials,2009,24(2):141-146.
    [108]Chiang YC, Chiang PC, Huang CP. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001,39(4):523-534.
    [109]Wu FC, Tseng RL, Juang RS. Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon[J]. Journal of Chemical Technology and Biotechnology,2002,77(11):1269-1279.
    [110]江茂生,黄彪,高尚愚.杉木间伐材炭化物特性及其对挥发性有机污染物吸附性能的研究[J].福州大学学报(自然科学版),2005,33(3):409-413.
    [111]Wang Jinhua, Zhang Xiang, Zhang Bing, et al. Rapid adsorption of Cr (VI) on modified halloysite nanotubes[J]. Desalination,2010,259(1-3):22-28.
    [112]Wang Fayuan, Wang Hui, Ma Jianwei. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal[J]. Journal of Hazardous Materials,2010,177(1-3):300-306.
    [113]Wu Rongcheng, Qu Jiuhui, Chen Yongsheng. Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water[J]. Water Research, 2005,39(4):630-638.
    [114]Lagergren S. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar,1898,24(4):1-39.
    [115]Ho Y, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34(5):451-465.
    [116]Weber W, Morris J. Kinetics of adsorption on carbon from solution[J]. Journal Sanitary Enneering Division American Society of Civil Engineers,1963,89(17):31-60.
    [117]Chen Suhong, Yue Qinyan, Gao Baoyu, et al. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr (Ⅵ) using modified wheat residue[J]. Journal of Colloid and Interface Science,2010,349(1):256-264.
    [118]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [119]Freundlich H. Over the adsorption in solution[J]. The Journal of Physical Chemistry, 1906,57:385-470.
    [120]Xiao Lili, Ma Wei, Han Mei, et al. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (Ⅵ) from aqueous solution[J]. Journal of Hazardous Materials,2011,186(1):690-698.
    [121]Chatterjee S, Lee DS, Lee MW, et al. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide[J]. Bioresource Technology,2009,100(11):2803-2809.
    [122]Ozdemir E, Duranoglu D, Beker U, et al. Process optimization for Cr (Ⅵ) adsorption onto activated carbons by experimental design[J]. Chemical Engineering Journal,2011, 172(1):207-218.
    [123]Gupta V, Shrivastava A, Jain N. Biosorption of chromium (Ⅵ) from aqueous solutions by green algae Spirogyra species[J]. Water Research,2001,35(17):4079-4085
    [124]Zhu Lili, Liu Yinghui, Chen Ji. Synthesis of N-methylimidazolium functionalized strongly basic anion exchange resins for adsorption of Cr (Ⅵ)[J]. Industrial & Engineering Chemistry Research,2009,48(7):3261-3267.
    [125]Weng CH, Sharma Y, Chu SH. Adsorption of Cr (Ⅵ) from aqueous solutions by spent activated clay[J]. Journal of Hazardous Materials,2008,155(1):65-75.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.