科学仪器远程操控技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学仪器远程操控系统的建设可以实现科学仪器更高效的共享,有效地整合科学仪器设备资源,支持多人异地实时操作仪器实验,提升仪器使用方式的多样性。本文针对系统构建过程中涉及到的系统模型与实现方法、仪器设备网络通信、操控软件远程访问、操控网络安全等一系列共性关键技术问题进行了深入研究,提出面向信息流的科学仪器远程操控模型,并以此模型为基础,从五种不同的操控信息获取途径,开展远程操控系统实现技术及应用研究。主要研究内容包括:提出了一种面向信息流的科学仪器远程操控模型,从八个通信层级上给出了此模型的实现方法,为构建仪器远程操控系统提供了技术参考;研制出基于嵌入式系统的网络适配器,解决了只具备本地通信能力的科学仪器的远程通信问题,实现了多款台式和便携式分析测试仪器的网络接入;为扩展网络通讯范围受到限制的科学仪器面向公网的远程通信能力,提出了基于通信流截获技术的远程控制方法,实现了DSQ气质联用仪的远程操控;为解决UNIX平台下图形化仪器测控软件的远程共享问题,提出了一种结合虚拟专用网VPN技术和SSH远程登录技术的软件远程操控方法,实现了MAT900型质谱仪测控软件的远程访问及仪器的远程控制;为解决Windows平台下的现有仪器测控软件面向公网的远程通信能力,提出了基于API拦截技术的远程控制方法,实现了LTQ质谱仪的远程操控;提出了一种基于通信胶合层的科学仪器远程测控软件模型,将元操作与应用逻辑进行区隔,采用此模型设计开发了远程测控系统,实现了电子能谱仪的远程实验。
Scientific instruments as a tool for mankind to understand the physical world, are the basic conditions for scientific research and technological innovation. At present, the lack of overall scientific instruments resources is conspicuous contradiction in our country, and there are equipment deficiency, uneven distribution, low utilization, sharing problems…etc. For the present situation of the application of scientific instruments, building the remote sharing system for large-scale scientific instruments, can effectively, fully share the high quality resources of research equipments. The remote operation techniques for scientific instruments as the key technology of remote sharing system of instruments, has provided important technical support for implementation of the remote experiments and remote real-time control of large-scale instruments and related remote application services. Remote operation has become one of the important development trends of scientific instruments, which not only can overcome the geographical barriers to the use of instruments to improve instrument efficiency and save experiment costs, but also support real-time cooperations of remote instrument experiments from several scientists in different places to enhance scientific experiments level.
     Due to the variety of modern scientific instruments, complexity and discrepancy of system constitutes, large variety of operation methods, and diverseness for work platforms and software, extracting and resolving the common key technical issues involved in the process of building the remote operation system for scientific instruments will be helpful for instrumentation application developers to select feasible ways and means of a specific instruments, and develop the best technical solutions and means to quickly build a remote operation system platform. Construction of a remote operation system can make large number of instruments, which can only be operated locally, connected in network to expand its external communication capabilities and achieve remote access and control instruments and to facilitate the application and use of instruments and implementation of the remote experiments. Meanwhile, the instrument operation model and implementation technology involved in the construction of the remote system provide a reference for instrument manufacturers to design a remote measurement and control platform for the new generation scientific instruments.
     This paper concentrates on researching the scientific instruments remote operation techniques and system implementation, and solves a series of crucial technical problems in construction process of remote operation system for instruments covering: system model and implementation method, instruments network communications, remote access to operation software and control network security. It provides a remote operation model for scientific instruments based on communication data flow, discusses the implementation method and means. Based on this model, it chooses five different ways to acquire the control information, develops remote operation system implementation technology and application research from different communication levels.
     The main contents are as follows:
     (1) Research on remote operation model and implementation method for scientific instruments
     For large number of existing scientific instruments, when it comes to how to efficiently and quickly achieve their remote operation, research work of system structure, implementation means and so on as common crucial technology is still relatively weak. A remote operation model of scientific instruments based on communication data flow is presented. Through the analysis of control signal path, we divides the path into eight main communication layers including: numerical operation systems, communications modules, instruments external communication, host operating system, internal I/O communication in software system, the professional instruments software, and HCI (Human–Computer Interaction) interface. In the eight communication layers, research work is carried out to propose the relevant implementation methods, which realize the remote operation of the instrument by intercepting that layer’s data information and building networked terminal platform for remote operation. The eight types of methods have their own characteristics, their relevance and complexity varies from one to another, and they can not only be implemented alone, but also be used in combination with others. They provide a complete solution and technical reference for instrument remote operation system constructing.
     (2) Development and application of instrument network adapter based on embedded system
     For the situation that a large number of existing old scientific instruments do not have remote network communication capability and ensure the network security of instrument using, according to the communication modes and interface features of scientific instrument, the network adapter on the basis of embedded system is developed. The network adapter is used for transmitting instrument control information and data, and making instruments to get on the Internet. It safely separates instruments and network, which can make instruments avoid exposure in the network, and also the adapter filters all the data in the network, only transmitting the remote control information and data in specific format, and effectively resists various kinds of malicious attacks from the network, which guarantees the security of using instrument. To fit the instrument interface, work environment and other conditions, the adapter supplies various types of instruments interface, network communication modes and geographical positions, site images and other relevant information; and integrates multiple services of software and hardware, via flexible configuration, providing a comparatively comprehensive network access solution for instrument networking.
     (3) Research and implementation of remote operation system for scientific instruments based on data flow intercepting
     A remote control method based on data flow intercepting is proposed for scientific instruments with network communication interface. Develop data intercepting and transmitting software system for instruments external communication, in order to expand instruments remote communication capacity. Intercepted data from system transmission is the original instruments instruction data, which is in a small amount and has high real-time performance. This remote control method does not need any alteration of original instruments and software systems, and its implementation does not depend on the instruments platform. So its versatility is strong, and it is applicable to all kinds of scientific instruments with a network communication interface, and can also be extended to instruments with other communication interfaces. In addition, the system equipped with network server system, separates the control object from the controlled object to improve network security. Meanwhile, internal network can also be formed locally or remote end, to make several test instruments or remote computer systems share access to one public network IP address of Internet. In the remote system, only the server system has the fixed IP address, in this way IP address resources can be saved and address resources effectiveness can be enhanced. Using remote control method based on data flow intercepting for DSQ GC-MS, build a remote operation system efficiently and conveniently in the basis of original measurement and control platform of the instrument, and through the operation of the original instrument control software to achieve remote control of instruments.
     (4) Research and implementation of remote sharing system of scientific instruments under UNIX platform
     For the graphical instrument measurement and operation software under UNIX platform, on the basis on X Window System, a software remote control method combined with virtual private network VPN technology and SSH remote login technique is proposed, which redirects input and output functions of measurement and control software, and designs and constructs the scientific instrument remote sharing system based on VPN. Instrument remote sharing system based on VPN is constructed by using the features of X Window System, and nothing is modified in the original software, so this method is also suitable for all kinds of remote operation for the measurement and control software of scientific instruments. The achievement of this method costs low, realizes easily and retains all the function of original system, and also it is meaningful for large-scale scientific instrument labs to develop and construct the instrument remote experiment system effectively. At the same time, three-layer VPN network framework constructed by this method will separate remote communication data of instrument from ordinary Internet network data safely, and ensure the safety of instrument system. This network construction can also be applied on remote sharing system achieved by other methods to protect the safety of network transmission, and it provides the reference for construction of safe and common instrument remote control network. There is a typical application on MAT900 mass spectrometer, through controlling remotely the host computer, remote access to the measurement and control software and the instrument is realized.
     (5) Research and implementation of remote operation system for scientific instruments based on API hooking
     For instrument and control software in Windows, a remote control method based on API hooking is proposed. Development of I/O communications data interception synchronization software system, using API hooking to intrude the original control software, intercepts communication data flow between instrument and software, making the control program at remote end can communicate with instruments directly through the network, and in this way instrument software’s long-distance communication capability is extended. Information transmitted in the system is the original instrument instruction data, in a small amount, and the system has high real-time performance. The remote operation method does not need any alteration of the original instruments and software systems, but its technology depends on the Windows operating system, which subjects to certain limitations. The remote system controls data flow in the software application layer, and no matter what method application program and the system use to localization objective function, the API hooking technology can guarantee that the interception is working. So in Windows, this method also has universality, and is applicable to various types of scientific instruments with external communication interface. For the LTQ mass spectrometer, using remote control method based on API hooking, develops a remote operation system efficiently and conveniently in the basis of original instruments measurement and control platform, and through the operation of the original instrument monitoring software to achieve instruments remote control.
     (6) Remote measurement and control software model for scientific instruments based on glue layer
     According to measurement and control software functions and tasks of property, using the method of modifying instrument control software, a remote measurement and control software model for scientific instruments based on glue layer is proposed. In terms of the work content of measurement and control software for scientific instruments, the model is divided into three-layer architecture: software and hardware interface layer, data acquisition layer and data processing layer. A glue layer, which was inserted into the data acquisition layer, divided the software into two parts. Adopting remote communication solution for glue layer, the networked control system was implemented. The remote measurement and control software model is applicable to remote sharing system transform for the existing scientific instruments in the case of having the source codes of instrument control software. At the same time, the model provides a reference for equipment manufacturers to design a new generation of scientific instruments for remote measurement and control platform: Uses the embedded system to realize the server which is built in the instruments, when the client software is integrated into the application software system, to achieve the remote operation for small and medium equipments; Or applies this model in the design of network measurement and control software for the large-scale scientific instruments. Applying the remote measurement and control software model for scientific instruments based on glue layer, it has developed the remote operation system for electron spectrometer and realized instrument's remote control and network experiment.
引文
[1]王大珩.振兴中国现代科学仪器[J].学会, 1995, (4): 34.
    [2]郭志坚.我国仪器仪表中、长期科学和技术发展规划的思考[J].中国仪器仪表, 2004, (9): 1-4.
    [3]樊世勇.现代科学仪器及技术改造浅谈[J].甘肃科技, 2001, (5): 48.
    [4]范世福.科学仪器事业的发展方向和前沿[J].现代科学仪器, 2003, (1): 16-19.
    [5]金钦汉.对于我国科学仪器发展战略的几点思考[J].现代科学仪器, 2004, (4): 3-8.
    [6]国际仪器仪表行业的“四个现代化”[J].自动化技术与应用, 2004, 8
    [7]夏春阳,袁欲彬,王伟.大型科学仪器设备资源共享机制新探[J].科技管理研究, 2005, (3): 18-19.
    [8]奥丰源,陈俊杰.大型科学仪器远程共享机制研究[J].电脑开发与应用, 2008, 21(8): 36-38.
    [9]陈静,匡健,朱竹.大型仪器设备的资源整合与开放共享[J].三峡大学学报(人文社会科学版), 2007, 29: 63-64.
    [10]孟保艳.浅谈大型精密仪器设备的资源共享[J].实验室研究与探索, 1997, (6): 121-122.
    [11]李俊杰.浅议高校大型仪器设备资源共享平台的构建[J].高校实验室工作研究, 2007, 92(2): 86-88.
    [12]国外仪器仪表的发展趋势[J].地质装备, 2001, 2(2): 26-29.
    [13]赵伟,张小牛,孟浩文.网络化——测量技术与仪器发展的新趋势[J].电测与仪表, 2000, 37(7): 5-9.
    [14] Fan G Y, Mercurio P J, Young S J, et al. Telemicroscopy[J]. Ultramicroscpy, 1993, 52: 499-503.
    [15] Chumbley L S, Meyer M, Fredrickson K, et al.Computer networked scanning electron microscope for teaching, research, and industry applications[J]. Microscopy Research and Technique, 1995, 32: 330-336.
    [16] Chumbley L S, Meyer M, Fredrickson K, et al. A new paradigm-multi-user scanning electron microscopy[J]. The Journal of The Minerals, Metals & Materials Society, 1995, 47(9): 13-17.
    [17] Morgan C, Pardoe D, Smith N. Toward a Standard for Remote Microscope Control Systems [J]. Journal of Scanning Microscopies, 1998, 20(2): 110-116.
    [18] Hadida-Hassan M, Young S, Peltier S, et al. Web-Based Telemicroscopy [J]. Journal of Structural Biology, 1999, (125): 235-245.
    [19] Brauchli K, Christen H, Haroske G, et al. Telemicroscopy by the Internet Revisited [J]. Journal of Pathology, 2002, (196): 238-243.
    [20] Paul Preuss. Look deep, look far: remote microscope and telescopy[EB/OL].http://www.lbl.gov/Science-Articles/Archive/remote-scopy.html.
    [21] Voelkl E, Allard L F, Nolan T A, et al. Remote Operation of Electron Microscopes [J]. Journal of Scanning Microscopies, 1997, 19(4): 286-291.
    [22] Wagstaff J, McKay G, Reid A, et al. Remote operation of a Cameca SX100 scanning electron microprobe[J]. Computers & Geosciences, 1999, 25(4): 523-529.
    [23] University of Delaware. Mass spectrometry: remote experimentation and collaboration[EB/OL]. http://www.udel.edu/topics/internet2/proj/maldi
    [24] Mansfield J F, Adamson A, Coffman K. Development of a System to Provide Full, Real-time Remote Control of a Scanning Electron Microscope across the Second Generation Internet: The Teaching SEM[J]. Microsc. Microanal, 2000, 6(1): 31–41.
    [25] Internet2. Remote Instrumentation[EB/OL]. http://www.internet2.edu/science/remote.html.
    [26] J. Paul Finn, Roya Saleh, Stefan Thesen, et al. MR Imaging with Remote Control: Feasibility Study in Cardiovascular Disease[J]. Radiology, 2006, 241(2): 528-537.
    [27] Kisseberth N, Whittaker M, Weber D, et al. emScope-A Tool Kit for Control and Automation of a Remote Electron Microscope[J]. 1997, 120(3): 309-319.
    [28] Chand G, Breton B C, Caldwell N H M. World Wide Web-Controlled Scanning Electron Microscope[J]. Scanning, 1997, 19(4): 292-296.
    [29] Yoshida K, Takaoda A, Hayashi S, et al. Development of a Remote Operation System for an Ultra-high-voltage Electron Microscope [J]. Journal of Electron Microscopy, 1999, 48(6): 865-872.
    [30] Takaoka A, Yoshida K, Mori H, et al. International Telemicroscopy with a 3 MV Ultrahigh Voltage Electron Microscope [J]. Ultramicroscopy, 2000, (83): 93-101.
    [31] Yamada A. The Remote Control Scanning Microscope with Web Operation interface[EB/OL]. http://www.jeoleuro.com/news/jeolnews/NEWSHOME/News%20home/25/index.html
    [32] Yamada A, Hirahara O, Tsuchida T, et al. A practical method for the remote control of the scanning electron microscope[J]. Journal of Electron Microscopy, 2003, 52(2): 101-109.
    [33] Tanaka M, Tameike A, Ishikawa N, et al. Development and Application of an Internet Electron Microscopy System for the Outreach Program in Japan[J]. Microsc. Microanal, 2008, 14(2): 176-183.
    [34] JEOL. JEOL Demonstrates Remote TEM Operation using New Sirius Enhancement[EB/OL]. http://www.jeolusa.com/NEWSEVENTS/PressReleases/tabid/314/newsid735/17/Default.aspx
    [35] Perkins J M, Blom D A, McComb D W, et al. Functional Remote Microscopy via the AtlanTICC Alliance[J]. Microsc. Microanal, 2007, 13 (S2): 1702-1703.
    [36] Isabell T C, Ohkura Y, Kobayashi T, et al. Remote Teaching for Electron Microscopy[J], Microscopyand Microanalysis, 2008, 14(2): 872-873.
    [37]吕露,楼柿涛,蒋大真,等.基于互联网的扫描探针显微镜远程控制研究[J].高技术通讯, 2000, 10(4): 45-47.
    [38]蔡英文,杨誉宗,吕露,等.基于因特网的STM远程实时控制系统的设计与实现[J].计算机工程, 2003, 29(4): 93-95.
    [39]杨誉宗,吕露,蔡英文,等.利用Winsock实现基于Internet的多用户远程分权访问控制STM系统[J].计算机应用研究, 2002, (3): 31-32.
    [40]刘敦一.大型科学装备远程共享示范研究——离子探针示范系统[J].地球学报, 2006, 27(1): 50.
    [41]冯劲松,孙吉贵,方向,等.科学仪器远程操作的软件远程测控技术研究[J].计算机工程与应用, 2005, (35): 85-87.
    [42]冯劲松.离子探针远程监控系统的研制[D].长春:吉林大学硕士学位论文, 2005.
    [43]叶桦.基于大型离子探针质谱仪远程共享的界面信息提取[D].长春:吉林大学硕士学位论文, 2005.
    [44]霍正聃,田地,江游,等.科学仪器远程操作中样品图像传输模型的研究与实现[J].计算机应用研究, 2006, (2): 149-150.
    [45]杨红生.大型科学仪器工作站屏幕图像远程共享技术的研究[D].长春:吉林大学硕士学位论文, 2008.
    [46]张鑫.基于扫描电镜的远程控制系统的研制[D].长春:吉林大学硕士学位论文, 2007.
    [47]北京理工大学完成ESI-TOF质谱仪远程共享系统及其网络实验室建设(简讯), 2008
    [48]梁田甜,杨育,张英,等.基于Internet的透射式电子显微镜远程共享模型研究及应用[J].现代制造工程, 2005, (10): 67-70.
    [49]张英,杨育,梁田甜,等.基于Internet的透射式电子显微镜网络化共享系统[J].机械与电子, 2005, (1): 47-50.
    [50]张英.机电仪器资源网络化协同共享支持系统的研究和开发[D].重庆:重庆大学硕士学位论文, 2005.
    [51]李学静.仪器设备资源网络化共享系统体系结构及运作方法研究[D].重庆:重庆大学博士学位论文, 2007.
    [52]程志英,朱静,闫允杰,等.场发射电子显微镜的远程共享[J].电子显微学报, 2005, 24(4): 379.
    [53]钱亚东,祁国宁,李响烁.基于网络的仪器设备共享研究[J].计算机集成制造系统, 2005, 11 (8): 1169-1173.
    [54]雷长海,杨勇骥,朱志年,等.基于Windows API调用的远程仪器同步控制方法研究[J].医疗卫生装备, 2006, 27(8): 8-10.
    [55]侯永涛,顾寄南.网络化制造环境下的软件工具共享技术的研究综述[J].中国制造业信息化, 2004, 33 (9): 86-88.
    [56]毛科杰,范莉娅,王爱民,等.基于ASP的软件资源共享通用平台研究及实现[J].航空制造技术, 2005, 48(10): 50-55.
    [57]范莉娅,黄雪梅,徐云.基于Web的贵重仪器设备共享系统研究与实现[J].计算机工程与设计, 2007, 28(9): 2123-2126.
    [58] Edwards J D. Performance Differences between Remote Desktop Protocol (RDP) and Independent Computing Architecture (ICA) [EB/OL]. http://spla.sh/documents/Performance%20Differences.pdf.
    [59] Yang S J, Nieh J, Selsky M, et al. The Performance of Remote Display Mechanisms for Thin-Client Computing[C]. Proceedings of the 2002 USENIX Annual Technical Conference, Monterey, California, USA, 2002: 131– 146.
    [60] Baratto R A, Nieh J, Kim L. THINC: A Remote Display Architecture for Thin-Client Computing [EB/OL]. http://www.cs.columbia.edu/techreports/cucs-027-04.pdf.
    [61] TAN Yu-an, CAO Yuan-da. Design and Implementation of an RDP Device Driver for Windows 2000[J]. Journal of Beijing Institute of Technology, 2003, 12(3): 260-264.
    [62]李泉,杨树堂,陆松年,等.基于VNC的互动式实验教学支撑系统的研究[J].信息技术, 2007, (10): 138-141.
    [63]刘奎恩,王青,淮晓永.一种基于VNC的智能应用服务系统的设计和实现[J].计算机工程与应用, 2004, (9): 131-133.
    [64]钟晓东,胡晓亮,张永红,等.基于CSCW的分布式多媒体远程合作会诊系统的设计与实现[J].电子学报, 2003, 31(11): 1634-1638.
    [65]沈士根,叶利华,乐光学.基于RDP议的远程接入平台设计与实现[J].微电子学与计算机, 2008, 25(3): 55-57.
    [66]钱文珺.基于RDP协议的远程终端学习系统[J].微电子学与计算机, 2006, 23(11): 208-209.
    [67]袁科萍.基于WBT的远程软件实验室[J].东华大学学报(自然科学版), 2004, 30(2): 71-74.
    [68]沈士根.面向软件资源共享的RDP Server研究与实现[J].计算机系统应用, 2007, (10): 52-56.
    [69] Implementing Windows Terminal Server and Citrix MetaFrame on IBM Eserver xSeries Servers [EB/OL]. http://www.redbooks.ibm.com/redpapers/pdfs/redp3629.pdf.
    [70]郑建龙,陆冬云,温浩. Citrix瘦客户机/服务器计算技术在化工计算中的应用[J].计算机与应用化学, 2002, 19(3): 202-206.
    [71]陈飞,孟友彪. Citrix瘦客户机/服务器技术在化工企业中的应用[J].电脑知识与技术, 2004, (11): 37-39.
    [72]董慧,方金云,赵红超.基于Citrix的异地软件共享系统的设计与实现[J].计算机工程, 2009,35(1): 49-51.
    [73]蒋义刚.基于ICA协议的终端服在数字校园中的应用[J].软件导刊, 2006, (5): 45-46.
    [74]汤海冰,杨秀平,耿浩.基于RFB协议的双向远程控制模型及实现[J].科学技术与工程, 2005, 5(12): 832-834.
    [75]张跃冬,朱定局,宋振华,等.一个面向分布式桌面计算环境的超瘦客户端[J].计算机工程, 2007, 33(7): 104-106.
    [76]周受钦,胡亚红,谢友柏. CMDNET中异地调用系统的环境及实现[J].工程应用, 1999, (3): 6-11.
    [77]胡亚红,刘恒,谢友柏. Sun工作站上利用CGI实现远程程序调用[J].计算机应用研究, 1998, (4): 62-65.
    [78]胡亚红,周受钦,姜培林,等.现代设计中的远程程序调用[J].中国机械工程, 2001, 12(9): 1035-1038.
    [79]范莉娅,王云莉,陈罡,等.基于CORBA的CAD软件封装系统[J].计算机工程与应用, 2003, (9): 61-62.
    [80]侯永涛,顾寄南.基于CORBA的制造业软件封装的研究[J].制造业自动化, 2006, 28 (1): 33-35.
    [81]王云莉,肖田元,杨楠.协同产品开发平台的研究与实现[J].计算机集成制造系统, 2002, 8(8): 640-644.
    [82]袁利永,汪红波.基于Web Services技术实现软件共享的研究[J].中国远程教育, 2005, (8): 67-69.
    [83]王志宏,祁国宁,顾新建.基于Web服务的软件资源共享研究[J].计算机系统应用, 2006, (1): 74-76.
    [84]唐伟,吴国兵.基于Web服务技术的软件共享的实现[J].计算机系统应用, 2006, (7): 78-80.
    [85]丁传锁,陈启美,章德,陈锁柱.“网络RTU”的实现[J].仪器仪表学报, 2002, 23(3,增刊): 708-709, 716.
    [86] Yen-Cheng Lai, Phone Lin, Yao-Ting Huang. Design and Implementation of a Wireless Internet Remote Access Platform [J]. Wireless Communications & Mobile Computing, 2006, 6(4): 413-429.
    [87] Ryota OZAKI, Soichiro HIDAKA, Kazuya KODAMA, Katsumi MARUYAMA. Design and Implementation of Remote Device Access Facility to Support Device Migration[J]. IEICE Transactions on Information and Systems, 2007, E90-D(1): 59-66.
    [88] Li-Hua Wu, Huai-Jian Ma, Qiu-Guan Wang. Instrument network interface converter[J]. Proceedings of the Second international Symposium on Instrumentation Science and Technology, 2002, 1(6): 281-285.
    [89] Fei Qiao, Heiko Schlange, Horst Meier, Wolfgang Massberg. Internet-Based Remote Access for aManufacturing-Oriented Teleservice[J]. The International Journal of Advanced Manufacturing Technology, 2005, 31(7-8): 825-832.
    [90] Taqi Hasan, Lantronix. Secure Remote Device Management in Firewall-Protected Environments[J]. The Magazine of Record For The Embedded Computing Industry, 2008, 28-30.
    [91] A.Laugier, N.Allahwerdi, J.Baudin, P.Gaffney, W.Grimson, T.Groth, L.Schilders. Remote Instrument Telemaintenance[J]. Comput Methods Programs Biomed, 1996, 50(2): 187-194.
    [92] Subbarao V.Wunnava, Peter Hoo. Remote Instrumentation Access & Control (RIAC) through Inter-Networking[C]. Southeastcon’99. Proceedings. IEEE, 1999: 116-121.
    [93]杨丰华,兰图,洪永强.基于ARM的多参数检测仪及其网络接入设计[J].仪器仪表学报, 2006, 27(6): 1467-1468.
    [94]李平均,申健,范威.基于GPRS网络的单片机的Internet接入[J].微电子学与计算机, 2006, 23(3): 34-39.
    [95]修震,吴平东,黄杰,陈之龙.基于Internet的远程控制中无线接入技术的应用[J].计算机工程, 2004, 31(15): 101-102, 126.
    [96]王晓萍.基于TCPIP协议的现场状态监测仪器网络通讯设计[J].仪器仪表学报, 2004, 25(2): 263-265.
    [97]丁传锁,陈启美,章德,王俊.基于嵌入式网络数据集中器的测控系统研究[J].仪器仪表学报, 2002, 23(3): 794-795.
    [98]杨建,张慧慧.基于嵌入式系统的数据采集系统网络接入的设计与实现[J].仪器仪表学报, 2005, 26(8): 290-298.
    [99]石刚,井元伟,徐皑冬.嵌入式网络化装置的设计与实现[J].仪器仪表学报, 2005, 26(8): 528-531.
    [100]陈莉,莫日根,王雄春.嵌入式系统接入网及其网络接口技术研究[J].嵌入式系统应用, 2007, 23(3-2): 39-40, 80.
    [101]关守平,姚勇,刘海龙,张跃辉.嵌入式系统网络接口模块设计及应用[J].仪器仪表学报, 2007, 28(4): 267-270.
    [102]额日登布鲁格,赵伟.一种网络化测量接口装置的研制[J].电测与仪表, 2003, 40(5): 18-21.
    [103]申睿,赵伟.一种新型仪器网络接口装置的研制[J].电测与仪表, 2005, 42(3): 12, 33-36.
    [104]王秋光,卢菊春,吴光涛,等.仪器网络接口转换装置的研究[J].哈尔滨理工大学学报, 2002, 7(3): 44-47.
    [105]林君.现代科学仪器及其发展趋势[J].吉林大学学报(信息科学版), 2002, 20(1): 1-7.
    [106] Fredian T W, Stillerman J A. X-Windows-Based User Interface for Data Acquisition and Display [J]. Review of Scientific Instruments, 1990, 61(10): 3283-3285.
    [107] Herman S K, Aburdene M F. Design of a Graphical User Interface for Laboratory Instruments [J]. Journal of Engineering Design, 1991, 2(3): 197-218.
    [108] Zimmerman. Real-Time and Embedded Unix in Acquisition and Control Applications [C]. Proceedings of the 1993 International Control Engineering Conference, Stamford, CT, USA: Reed Exhibition Companies, 1993. 275-277.
    [109] Nakamura K, Miyata T, Kataza H. Development of Control Software System for Cooled Mid-Infrared Camera and Spectrometer on the Subaru Telescope [J]. Report of the National Astronomical Observatory of Japan, 2001, 5(3): 81-90.
    [110] Favre E, Bertrand D, Pellegrini C. A Network Distributed Real-Time Data Acquisition and Analysis System Based on X Window [C]. Proceedings of the Fifth Annual IEEE Symposium on Computer-Based Medical Systems, Piscataway, NJ, USA: IEEE, 1992. 147-154.
    [111] Ramamurthy M K, Bowman K P, Jewett B F, et al. A Networked Desktop Synoptic Laboratory [J]. American Meteorological Society, 1992, 73(7): 944-950.
    [112] Richardson T, Bennett F, Mapp G, et al. Teleporting in an X Window System Environment [J]. IEEE Personal Communications, 1994, 1(3): 6-12.
    [113] Scheifler R W, Gettys J. The X Window System [J]. ACM Transactions on Graphics, 1986, 5(2): 79-109.
    [114] O.Elkeelany, M.M.Matalgah, J.Qaddour. Remote Access Virtual Private Network Architecture for High-Speed Wireless Internet Users[J]. Wireless Communications & Mobile Computing, 2004, 4(5):567-578.
    [115] Ahmed A.Joha, Fathi Ben Shatwan, Majdi Ashilbani. Remote Access VPNs Performance Comparison between Windows Server 2003 and Fedora Core 6[J]. IFIP International Federation for Information Processing, 2008, 256:329-343.
    [116] Makoto Kayashima, Masato Terada, Tatsuya Fujiyama, etc. VPN Construction Method for Multiple Firewall Environment[J]. Systems and Computers in Japan, 2000, 31(14): 57-63.
    [117]孙建华,孙铁,姜静.基于无线VPN的网络图像传输控制系统[J].仪器仪表学报, 2006, 27(6增刊): 637-638.
    [118]赵秀文,罗平,陈强,等.基于SSH和LDAP的分布式安全文件系统[J].计算机应用研究, 2006, (4): 101-103.
    [119]陈礼华,熊齐邦.基于TELNET-SSH的Linux主机监视系统[J].计算机应用, 2004, 24(12): 64-66.
    [120]唐悦. Windows进程套接字数据劫持技术研究[D].成都:四川大学工程硕士专业学位论文, 2004.
    [121]刘亚.基于API截获技术的远程监测系统设计与实现[D].西安:西安电子科技大学硕士学位论文, 2004.
    [122]郇义鹏.基于串口的数据通信安全技术研究[D].长沙:国防科技大学硕士学位论文, 2003.
    [123]刘克胜,王忠寿. API Hook关键技术解析[J].网络安全技术与应用, 2006, (11): 48-50.
    [124]程彦,杨建召. Win32中API拦截技术及其应用[J].长春工业大学学报(自然科学版), 2006, 27(4): 369-371.
    [125]阿布力米提·阿不都热依木,吐尔根·伊布拉音,牙森·艾则孜. Windows9x API的拦截技术[J].新疆大学学报(自然科学版), 2003, 20(2): 144-147.
    [126]郭天杰,齐玉东. Windows9x NT和2000下的API拦截技术[J].计算机应用研究, 2001, (9):125-127.
    [127]郭飞,周曼丽. Windows API拦截技术综述[J].计算机工程与应用, 2002, (19):144-146, 214.
    [128]王远. Windows系统API函数拦截技术研究[J].微计算机信息, 2006, 22(10-3):224-226.
    [129]李占红,王世卿,石磊. Detours拦截技术及其应用[J].计算机应用与软件, 2004, 21(6): 115-117.
    [130]胡伟,刘嘉勇.基于Detours包和数字水印的文件保护[J].成都信息工程学院学报, 2008, 23(2): 113-116.
    [131]朱强,周清雷,周世俊.基于Detours软件包的Win32 API拦截技术及应用[J].计算机应用, 2002, 22(12): 94-95.
    [132]冉林仓.用Detours拦截Win32 API函数[J].电脑编程技巧与维护, 2001, (11): 29-32.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.