软骨素酶ABC促进自体神经移植后轴突再生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经损伤后增殖的雪旺细胞提供了一个有利于轴突再生的环境。它可作为轴突生长的细胞底物,并可以分泌众多神经营养因子,表面表达细胞粘连分子和整合蛋白,产生层粘蛋白、纤连蛋白、胶原和蛋白聚糖等胞外基质分子。还分泌多种单核细胞趋化因子以刺激巨噬细胞向变性神经的募集,后者可清除轴突和髓鞘碎片,并清除抑制轴突生长的髓鞘相关糖蛋白(MAG)。由多种胞外基质成分构成的基底膜是周围神经再生所必需的生长底物。神经损伤后,损伤以远的基底膜的完整性能得以保留是神经再生的必要条件。在众多胞外基质分子中既有促进轴突生长的分子,如层粘蛋白、纤连蛋白和Ⅳ型胶原等,也有抑制轴突生长的分子,如硫酸软骨素蛋白聚糖(CSPGs)。后者同样存在于中枢神经系统中,并是抑制中枢神经损伤后再生的重要因素。周围神经损伤后胞外基质的重塑,即增加促轴突生长的分子,去除抑制分子,对于神经再生是十分重要的。软骨素酶ABC是针对葡糖胺聚糖(GAG)的特异性糖苷酶,可以分解CSPGs上的GAG侧链,从而降解CSPGs。利用软骨素酶ABC降解CSPGs来促进神经再生,改善功能恢复已经在众多中枢神经损伤的研究中得到证实,但有关其对周围神经再生的作用的研究还很少。此外软骨素酶ABC治疗对雪旺细胞的影响,以及对基底膜的其他成分和基底膜结构完整性的影响均不明了。
     本研究以大鼠为研究对象,建立自体坐骨神经移植模型,用软骨素酶ABC对移植的神经进行移植前预处理。通过电生理检查和组织学观察研究移植后神经再生的情况,并利用免疫组化技术观察软骨素酶ABC治疗对移植神经内雪旺细胞和基底膜层粘蛋白这两种主要的促再生因素的影响。
     方法:
     1.软骨素酶ABC治疗对移植神经再生的影响
     30只大鼠随机分为3组,每组10只。A组为空白对照组,B组为赋形剂组,C组为实验组(软骨素酶治疗组)。
     盐酸氯胺酮注射液腹腔注射麻醉。两侧臀部斜行切口。劈开臀肌,分离股二头肌和半膜半腱肌,暴露并游离各组双侧坐骨神经。在距离梨状肌下缘约8mm处向远端切除右侧坐骨神经5mm,两断端回缩后形成约10mm的间隙以接纳移植神经;切除左侧坐骨神经10mm作为移植神经。A组:切取左侧坐骨神经10mm直接移植于右侧缺损处。B组:切取左侧坐骨神经10mm,在100μl PBS(赋形剂)溶液中浸泡2h后移植于右侧缺损处。C组:切取左侧坐骨神经10mm,在100μl软骨素酶ABC溶液中(10U/ml)浸泡2h后移植于右侧缺损处。
     术后8周进行运动神经传导速度测定。电生理检查完毕后切取各组移植神经中段5mm的神经节段。每组各随机选取1个神经节段做透射电镜观察,其余神经节段制成横切片,做神经纤维Palmgren镀银染色,光学显微镜观察再生轴突的密度。
     2.软骨素酶ABC治疗对移植神经层粘蛋白/基底膜的影响
     16只大鼠随机分为2组,每组8只。A组为对照组,B组为实验组。
     手术方法同上。A组:切取左侧坐骨神经10mm直接移植于右侧缺损处。B组:切取左侧坐骨神经10mm,在100μl软骨素酶ABC溶液中浸泡2h后移植于右侧缺损处。
     术后5天取材。切取各组移植神经近段5mm的神经节段制成横切片,用多克隆抗层粘蛋白抗体标记层粘蛋白,观察层粘蛋白免疫反应阳性产物在移植神经内的分布概况。
     3.软骨素酶ABC治疗对移植神经雪旺细胞的影响
     16只大鼠随机分为2组,每组8只。A组为对照组,B组为实验组。
     手术方法同上。A组:切取左侧坐骨神经10mm直接移植于右侧缺损处。B组:切取左侧坐骨神经10mm,在100μl软骨素酶ASC溶液中浸泡2h后移植于右侧缺损处。
     术后14天取材。切取各组移植神经近段5mm的神经节段制成横切片,用多克隆抗S-100蛋白抗体标记雪旺细胞,观察移植神经内S-100免疫反应阳性细胞的密度。
     结果:
     1.软骨素酶ABC治疗对移植神经再生的影响
     术后8周时A、B、C三组移植神经的运动传导速度的差异没有统计学意义(P=0.381),空白对照组与赋形剂组之间再生轴突数目的差异没有统计学意义(P=0.607),实验组再生轴突的数目多于空白对照组和赋形剂组(P<0.05)。
     2.软骨素酶ABC治疗对移植神经层粘蛋白/基底膜的影响
     术后5天时对照组与实验组的基底膜均呈现层粘蛋白阳性反应,且两组基底膜结构的完整性相似。
     3.软骨素酶ABC治疗对移植神经雪旺细胞的影响
     术后14天时两组大鼠移植神经均见S-100阳性染色细胞,分布较为均匀。对照组与实验组S-100阳性染色细胞的密度的差异没有统计学意义(P=0.945)。
     上述结果提示:
     1.软骨素酶ABC对移植神经做移植前预处理,可以促进近端神经向移植神经片段内长入。
     2.软骨素酶ABC对移植神经做移植前预处理没有影响移植后移植神经内雪旺细胞的数量,也没有破坏移植神经内层粘蛋白及基底膜的完整性,即没有破坏轴突再生的必要因素。
     因此利用软骨素酶ABC促进周围神经再生是一合理的治疗策略,对其进一步深入研究有助于改善周围神经损伤后的功能恢复。
The proliferating Schwann cells following peripheral nerveinjury provide a favorable environment for axonal regeneration.They can act as the substratum for axonal growth, secrete a varietyof neurotrophic factors, express cell adhesion molecule andintegrin on their surface, and produce extracellular matrixmolecules including laminin, fibronectin, collagen, and variousproteoglycans. They can also secret a variety of monocytechemotactic factors to stimulate the recruitment of macrophagesinto the degenerating nerves. The recruiting macrophages can removethe debris of the degraded axons and myelin sheaths, and removemyelin-associated glycoprotein (MAG), which would otherwiseinhibit axonal growth. The endoneurial basal laminae that arecomposed of various extracellular matrix molecules areindispensable substratum for peripheral nerve regeneration. Afterperipheral nerve injury, the basal laminae distal to the injury canremain intact, which is prerequisite for nerve regeneration. Theextracellular matrix components are composed of axongrowth-promoting molecules, such as laminin, fibronectin andⅣtype collagen, as well as growth-inhibiting molecules, such aschondroitin sulfate proteoglycans (CSPGs). The latter also ispresent in central nervous system, and is one of the major inhibitingfactors for axonal regeneration after central nervous injury. Theremodeling of the extracellular matrix, e. g. enhancing the axongrowth-promoting molecules and removing the inhibiting molecules,is very important for nerve regeneration. It has been known thattreatment with chondroitinase ABC which can degrade the GAG sidechains of CSPGs specifically can enhance nerve regeneration and functional recovery after central nervous system injury. Thestudies about the role of chondroitinase ABC on peripheral nerveregeneration are quite rare. Whether the treatment withchondroitinase ABC has effects on Schwann cells, other componentsof basal laminae, and the structural integrity of the basal laminaeremain unresolved.
     In this study, we established the autograft model of rat sciaticnerve, and treated the nerve grafts with chondroitinase ABC beforethey were interposed into the nerve gaps to increase the degradationof CSPGs. Axonal regeneration into the grafts was assessed byelectrophysiological test and morphologic study. The effects oftreatment with chondroitinase ABC on the Schwann cells and basallamina laminin of the nerve grafts, which are the major axongrowth-promoting factors, were assessed by immuno-histochemicaltechnique.
     Methods:
     1. Effect of treatment with chondroitinase ABC on axonalregeneration in nerve grafts
     Thirty rats were randomised into three groups containing 10 ratseach. Group A, controls group (no treat); Group B, vehicle treatgroup; Group C, chondroitinase ABC treat group.
     Under anesthesia with intraperitoneal ketamine hydrochloride,the sciatic nerves on both sides were approached through a glutealmuscle-splitting incision and isolated free of surrounding fascia.A 5mm segment of the right sciatic nerve was excised distally fromthe point that was 8 mm distal to the inferior border of thepiriformis. This made a 10 mm gap defect after retraction of thenerve ends. A 10 mm segment of the left sciatic nerve was excisedto act as the graft. In group A, the 10 mm segment of the left sciaticnerve was interposed into the gap defect of the right sciatic nerveimmediately. In group B, the 10 mm segment of the left sciatic nervewas incubated in 100μ1 of PBS (vehicle) for 2 h before grafting into the defect of the right sciatic nerve. In group C, the 10 mmsegment of the left sciatic nerve was incubated in 100μl ofchondroitinase ABC (10U/ml)for 2h before grafting.
     At postoperative 8 weeks, the MCV was measured for each nervegraft. After electrophysiological test,, a 5 mm nerve segment wasexcised from the midway trunk of the graft. One nerve segment wasselected randomly from each group and was performed transmissionelectron microscopic investigation. The other segments of eachgroup were made into transverse sections and stained with Palmgrenmethod for light microscopic investigations. The numbers of theregenerating axons in the grafts were counted and compared betweenthree groups.
     2. Effect of treatment with chondroitinase ABC on laminin/basallamina of nerve grafts
     Sixteen rats were randomized into two groups containing 8 ratseach. Group A, controls group (no treat); Group B, chondroitinasetreat group.
     Surgical technique was the same as above-mentioned. In group A,the 10 mm segment of the left sciatic nerve was interposed into thegap defect of the right sciatic nerve immediately. In group B, the10 mm segment of the left sciatic nerve was incubated in 100μl ofchondroitinase ABC (10U/ml)for 2h before it was grafted.
     At postoperative 5 days, a5 mm nerve segment was excised fromthe proximal trunk of the graft and made into transverse sections.Polyclonal anti-laminin antibody was used to label basal laminae.
     3. Effect of treatment with chondroitinase ABC on Schwann cellsin nerve grafts
     Sixteen rats were randomized into two groups containing 8 ratseach. Group A, controls group (no treat); Group B, chondroitinasetreat group.
     Surgical technique was the same as above-mentioned. In group A,the 10mm segment of the left sciatic nerve was interposed into the gap defect of the right sciatic nerve immediately. In group B, the10 mm segment of the left sciatic nerve was incubated in 100μl ofchondroitinase ABC (10U/ml) for 2h before it was grafted.
     At postoperative 14 days, a5mm nerve segment was excised fromthe proximal trunk of the graft and made into transverse sections.Polyclonal anti-S-100 antibody was used to label Schwann cells. Thenumbers of Schwann cells were counted and compared between twogroups.
     Results:
     1. Effect of treatment with chondroitinase ABC on axonalregeneration in nerve grafts
     There was no significant difference in MCV between the threegroups at postoperative 8 weeks (P=0.381). The difference in numberof regenerative axons between group A and B was insignificant (P=0.607). Group C had more regenerating axons than group A and B,and the difference was significant (P<0.05).
     2. Effect of treatment with chondroitinase ABC on laminin/basallamina of nerve grafts
     At 5 days, both group A and B revealed intense laminin labelingin grafts, and the two groups were similar in structural integrityof basal laminae of grafts.
     3. Effect of treatment with chondroitinase ABC on Schwann cellsin nerve grafts
     At 14 days, both group A and B revealed positive S-100 labelingin grafts. No significant difference was found between group A andB in number of Schwann cells in grafts (P=0.945).
     The above-mentioned results suggest:
     1. Treating nerve autografts before they are grafted withchondroitinase ABC can enhance axonal regeneration into the grafts.
     2. Treating nerve autografts before they are grafted withchondroitinase ABC does not influence the number of Schwann cellsin the grafts, and does not impair the laminin and the structural integrity of basal laminae of the grafts, i.e. does not impair themajor axon growth-promoting factors.
     In conclusion, treatment with chondroitinase ABC is a logicalstrategy to enhance peripheral nerve regeneration. The furtherresearch in this field may improve functional recoveryI afterperipheral nerve injury.
引文
1. Lundborg G, Rosen B, Dahlin L, et al. Tubular repair of the median or ulnar nerve in. the human forearm: A 5-year follow-up [J]. J Hand Surg [Br], 2004, 29(2): 100-107.
    2. Hall S. The response to injury in the peripheral nervous system [J]. J Bone Joint Surg [Br], 2005, 87(10): 1309-1319.
    3. Martin LJ, Kaiser A, Price AC. Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative stress and is apoptosis [J]. J Neurobiol, 1999, 40(2): 185-201.
    4. 陈晓东,顾玉东,徐建光.损伤大鼠坐骨神经诱导运动神经元凋亡的初步报告[J].中华手外科杂志,1999,15(2):111-113.
    5. Raivich G, Liu ZQ, Kloss CU, et al. Cytotoxic potential of proinflammatory cytokines: combined deletion of TNF receptors TNFR1 and TNFR2 prevents motoneuron cell death after facial axotomy in adult mouse [J]. Exp Neurol, 2000, 178(2): 186-193.
    6. Friedman B, Kleinfield D, Ip NY, et al. BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons [J]. J Neurosci, 1995, 15(2): 1044-1056.
    7.李方澜,周丽华,刘佛林,等.植物抗氧化剂TA9901保护臂丛撕脱后运动神经元的实验研究[J].中华手外科杂志,2004,20(1):61-64.
    8. Yu WH. Spatial and temporal correlation of nitric oxide synthase expression with CuZn-superoxide dismutase reduction in motor neurons following axotomy [J]. Ann N Y Acad Sci, 2002, 962: 111-121.
    9. Chan YM, Wu W, Yip HK, et al. Caspase inhibitors promote the surival of avulsed spinal motoneurons in neonatal rats [J]. Neuroreport, 2001, 12(3): 541-545.
    10. Dai CF, Kanoh N, Li KY, et al. Study on facial motoneuronal death after proximal or distal facial nerve transaction [J]. Am J Otol, 2000, 21(1): 115-118.
    11. Groves MJ, Christopherson T, Giometto B, et al. Axotomy-induced apoptosis in adult rat primary sensory neurons [J]. J Neurocytol, 1997, 26(9): 615-624.
    12. Jiang Y, Zhang M, Koishi K, et al. TGF-beta 2 attenuates the injury-induced death of mature motoneurons [J]. J Neurosci Res, 2000, 62(6): 809-813.
    13. Kiryu-Seo S, Hirayama T, Kato R, et al. Noxa is a critical mediator of p53-dependent motor neuron death after nerve injury in adult mouse [J]. J Neorosci, 2005, 25(6): 1442-1447.
    14. Lewis SE, Mannion RJ, White FA, et al. A role for HSP27 in sensory neuron survival [J]. J Neurosci, 1999, 19(20): 8945-8953.
    15. McKay Hart A, Brannstrom T, Wiberg M, et al. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: time course of cell death and elimination [J]. Exp Brain Res, 2002, 142(3): 308-318.
    16. Schenker M, Kraftsik R, Glauser L, et al. Thyroid hormone reduces the loss of axotomized sensory neurons in dorsal root ganglia after sciatic nerve transection in adult rat [J]. Exp Neurol, 2003, 184(1): 225-236.
    17. Shi TJ, Tandrup T, Bergman E, et al. Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57BL/6J mouse: marked changes both in cell numbers and neoropeptide expression [J]. Neurosciencs, 2001, 105(1): 249-263.
    18. Tandrup T, Woolf CJ, Coggeshall RE. Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve [J]. J Comp Neurol, 2000, 422(2): 172-180.
    19. Ygge J. Neuronal loss in lumber dorsal root ganglia after proximal compared to distal sciatic nerve resection: a quantitative study in the rat [J]. Brain Res, 1989, 478(1): 193-195.
    20. Huppenbauer CB, Tanzer L, Jones KL. Detection of retrogradely transported WGA-HRP in axotomized adult hamster facial motoneurons occurs after initiation of the axon reaction [J]. J Neurocytol, 2001, 30(11): 907-916.
    21. Averill S, Davis DR, Shortl PJ, et al. Dynamic pattern of reg-2 expression in rat sensory neurons after peripheral nerve injury [J]. J Neurosci, 2002, 22(17): 7493-7501.
    22. Perlson E, Medzihradszky KF, Darula Z, et al. Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injury [J]. Mol Cell Proteomics, 2004, 3(5): 510-520.
    23. Kirsch M, Terheggen U, Hofmann HD. Ciliary neurotrophic factor is an early lesion-induced retrograde signal for axotomized facial motoneurons [J]. Mol Cell Neurosci, 2003, 24(1): 130-138.
    24. Costigan M, Befort K, Karchewski L, et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundred of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci, 2002, 3: 16.
    25. Xiao HS, Hunag QH, Zhang FX, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain [J]. Proc Natl Acad Sci USA, 2002, 99(12): 8360-8365.
    26. Fernandes KJ, Fan DP, Tsui BJ, et al. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M [J]. J Comp Neurol, 1999, 414(4): 495-510.
    27. Frey D, Laux T, Xu L, et al. Shared and unique roles of CAP43 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol, 2000, 149(7): 1443-1454.
    28. Lund LM, Machado VM, McQuarrie IG. Increased beta-actin and tubulin polymerization in regrowing axons: relationship to the conditioning lesion effect [J]. Exp Neurol, 2002, 178(2): 306-312.
    29. Meiri KF, Saffell JL, Walsh FS, et al. Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43(GAP-43) function and is associated with GAP-43 phosphorylation in growth cones [J]. J Neurosci, 1998, 18(24): 10429-10437.
    30. Strittmatter SM, Fankhauser C, Huang PL, et al. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43 [J]. Cell, 1995, 80(3): 445-452. .
    31. Godell CM, Smyer ME, Eddleman CS, et al. Calpain activity promotes the serling of severed giant axons [J]. Proc Natl Acad Sci USA, 1997, 94(9) : 4751-4756.
    32. Ahmed FA, Ingoglia NA, Sharm SC. Axon resealing following transection takes longer in central axons than in peripheral axons: implications for axonal regeneration [J]. Exp Neurol, 2001, 167(2): 451-455.
    33. Rutishauser U. Adhesion molecules of the nervous system [J]. Curr Opin Neurobiol, 1993, 3(5): 709-715.
    34. Ziv NE, Spira ME. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity [J]. J Cell Biol, 1998, 140(1): 223-232.
    35. Spira ME, Oren R, Dormann A, et al. Caicium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration [J]. Cell Mol Neurobiol, 2001, 21(6): 591-604.
    36. Iniguez A, Alvarez J. Isolated axons of Wlds mice regrow centralward [J]. Neurosci Lett, 1999, 268(2): 108-110.
    37. Campenot RB, Eng H. Protein synthesis in axons and its possible functions [J]. J Neurocytol, 2000, 29(11-12): 793-798.
    38. Zheng JQ, Kelly TK, Chang B, et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons [J]. J Neurosci, 2001, 21(23): 9291-9303.
    39. Verma P, Chierzi S, Codd AM, et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration [J]. J Neurosci, 2005, 25(2): 331-342.
    40. Geddis MS, Rehder V. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury [J]. J Neurosci Res, 2003, 74(2): 210-220.
    41. Lunn ER, Perry VH, Brown MC, et al. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve [J]. Eur J Neurosci, 1989, 1(1): 27-33.
    42. Perry VH, Brown MC, Lunn ER, et al. Evidence that very slow Wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve [J]. Eur J Neurosci, 1990, 2(9): 802-808.
    43. Glass JD, Brushart TM, George EB, et al. Prolonged survival of transsected nerve fibers in C57BL/Ola mice is an intrinsic characteristic of theaxon [J]. J Neurocytol, 1993, 22(5): 311-321.
    44. Glass JD, Culver DG, Levey AI, et al. Very early activation of m-calpain in peripheral nerve during Wallerian degeneration [J]. J Neurol Sci, 2002, 196(1-2): 9-20.
    45. Araujo Couto L, Sampaio Narciso M, Hokoc JN, et al. Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers [J]. J Neurosci Res, 2004, 77(3): 410-419.
    46. De S, Trigueros MA, Kalyvas A, et al. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration [J]. Mol Cell Neurosci, 2003, 24(3): 753-765.
    47. Zhai Q, Wang J, Kim A, et al. Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration [J]. Neuron, 2003, 39(2): 217-225.
    48.黄涛,秦建强,刘大庸,等.外周神经损伤后许旺细胞激活巨嗜细胞的实验研究[J].中华显微外科杂志,2002,25(3):192-193.
    49. Kuhlmann T, Bitsch A, Stadelmann C, et al. Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen [J]. J Neurosci, 2001, 21(10): 3401-3408.
    50. Bedi KS, Winter J, Berry M, et al. Adult rat dorsal root ganglion neurons extend neuritis on predegenerated but not on normal peripheral nerves in vitro [J]. Eur J Neurosci, 1992, 4(3): 193-200.
    51. Krekoski CA, Neubauer D, Graham JB, et al. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts [J]. J Neurosci, 2002, 22(23): 10408-10415.
    52. Luk HW, Noble LJ, Werb Z. Macrophages contribute to the maintenance of stable regenerating neuritis following peripheral nerve injury [J]. J Neurosci Res, 2003, 73(5): 644-658.
    53. Alvarez J, Giuditta A, Koenig E. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype: with a critique of slow transport theory [J]. Prog Neurobiol, 2000, 62: 1-62.
    54. Taskinen HS, Roytta M. Cyclosporin A affects axons and macrophages during Wallerian degeneration [J]. J Neurotrauma, 2000, 17(5): 431-440.
    55. KeilhoffG, Fansa H, Wolf G. Nitric oxide synthase, an essential factor in peripheral nerve regeneration [J]. Cell Mol Biol, 2003, 49(6): 885-897.
    56. Fansa H, Keilhoff G, Horn T, et al. Stimulation of Schwann cell proliferation and axonal regeneration by FK506 [J]. Restor Neurol Neurosci, 2000, 16(2): 77-86.
    57. Bisby MA, Tetzlaff W, Brown MC. Cell body response to injury in motoneurons and primary sensory neurons of a multant mouse, Ola(Wld), in which Wallerian degeneration is delayed [J]. J Comp Neurol, 1995, 359(4): 653-662.
    58. Brown MC, Perry VH, Hunt SP, et al. Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration [J]. Eur J Neurosci, 1994, 6(3): 420-428.
    59.顾立强,裴国献.周围神经损伤基础与临床[M].第1版.北京:人民军医出版社,2001.
    60. Ide C, Tohyama K, Yokota R, et al. Schwann cell basal lamina and nerve repair [J]. Brain Res, 1983, 288(1-2): 61-75.
    61. Giannini C, Dyck PJ. The fate of Schwann cell basement membranes in permanently transected nerves [J]. J Neuropathol Exp Neurol, 1990, 49(6): 550-563.
    62. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration [J]. Mol Neurobiol, 1997, 14: 67-116.
    63. Yu WM, Feltri ML, Wrabetz L, et al. Schwann cell-specific ablation of laminin γ1 causes apoptosis and prevents proliferation [J]. J Neurosci, 2005, 25(18): 4463-4472.
    64. Aumailley M, Smyth N. The role of laminins in basement membrane function [J]. J Anat, 1998, 193(Pt1): 1-21.
    65. Previtali SC, Nodari A, Taveggia C, et al. Expression of laminin receptors in Schwann cell differentiation: evidence for distinct roles [J]. J Neurosci, 2003, 23(13): 5520-5530.
    66. Chen ZL, Strickland S. Laminin γ1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve [J]. J Cell Biol, 2003, 163(4): 889-899.
    67. Ferguson TA, Muir D. MMP-2 and MMP-9 increase the neuritepromoting potential of Schwann cell basal laminae and are upregulated in degenerated nerve [J]. Mol Cell Neurosci, 2000, 16(2):157-167.
    68. Trigg DJ, O' Grady KM, Bhattacharyya T, et al. Peripheral nerve regeneration: comparison of laminin and acidic fibroblast growth factor [J]. Am J Otolaryngol, 1998, 19(1): 29-32.
    69. Uziyel Y, Hall S, Cohen J. Influence of laminin-2 on Schwann cell-axon interaction [J]. Glia, 2000, 32(2): 109-121.
    70.王国英,平井圭一,钟世镇,等.雪旺氏细胞基底膜成分Laminin在神经再生中的作用探讨[J].中国临床解剖学杂志,1992,10(3):200-207.
    71. he Beau JM, hiuzzi FJ, Depto AS, et al. Up-regulation of laminin B2 gene expression in dorsal root ganglion neurons and nonneuronal cells during sciatic nerve regeneration [J]. Exp Neurol, 1995, 134(1): 150-155.
    72. Martini R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves [J]. J Neurocytol, 1994, 23(1): 1-28.
    73. Agius E, Cochard P. Comparison of neurite outgrowth induced by intact and injured sciatic, nerves: a confocal and functional analysis [J]. J Neurosci, 1998, 18(1): 328-338.
    74. Bovolenta P, Fernaud-Espinosa I. Nervous system proteoglycans as modulators of neurite outgrowth [J]. Pro Neurobiol, 2000, 61: 113-132.
    75. Lander AD, Fujii DK, Reichard LF. Purification of a factor that promotes neurite outgrowth: isolation of laminin and associated molecules [J]. J Cell Biol, 1985, 101(3): 898-913.
    76. Chiu AY, Matthew WD, Patterson PH. A monoclonal antibody that blocks tha activity of a neurite regeneration-promoting factor: studies on the binding site and its localization in vivo [J]. J Cell Biol, 1986, 103(4): 1383-1398.
    77. Cole GJ, Loewy A, Glaser L. Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules [J]. Nature, 1986, 320: 445-447.
    78. Hantaz-Ambroise D, Vigny M, Koenig J. Heparan sulfate proteoglycan and laminin mediate two different types of neurite outgrowth [J]. J Neurosci, 1987, 7(8): 2293-2304.
    79. Dou CL, Levine JM. Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan [J]. J Neurosci, 1994, 14(12): 7616-7628.
    80. Fidler PS, Schuette K, Asher RA, et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2 [J]. J Neurosci, 1999, 19(20): 8778-8788.
    81. McKeon RJ, Hoke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars [J]. Exp Neurol, 1995, 136(1): 32-43.
    82. Muir D, Engvall E, Varon S, et al. Schwannorna cell-derived inhibitor of the neurite-promoting activity of laminin [J]. J Cell Biol, 1989, 109(5): 2353-2362.
    83. Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, et al. Brain derived versican V2 is a potent inhibitor of axonal growth [J]. J Cell Sci, 2000, 113(5): 807-816.
    84. Snow DM, Lemmon V, Carrino DA, et al. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro [J]. Exp Neurol, 1990, 109(1):lll-130.
    85. Ughrin YM, Chen ZJ, Levine JM. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse [J]. J Neurosci, 2003, 23(1):175-186.
    86. Braunewell KH, Pesheva P, McCarthy JB, et al. Functional involvement of sciatic nerve-derived versican- and decorin-like molecules and other chondroitin sulphate proteoglycans in ECM-mediated cell adhesion and neurite outgrowth [J]. Eur J Neurosci, 1995, 7(4): 805-814.
    87. Martin S, Levine AK, Chen ZJ, et al. Deposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system. J Neurosci, 2001, 21(20): 8119-8128.
    88. Zuo J, Hernandez YJ, Muir D. Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury [J]. J Neurobiol, 1998, 34(1): 41-54.
    89. Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition [J]. J Neurosci, 2003, 23(28): 9276-9288.
    90. Rezajooi K, Pavlides M, Winterbottom J, et al. NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions [J]. Mol Cell Neurosci, 2004, 25(4): 572-584.
    91. Kuecherer-Ehret A, Graeber MB, Edgar D, et al. Immunoelectron microscopic localization of laminin in normal and regenerating mouse sciatic nerve [J]. J Neurocytol, 1990, 19: 101-109.
    92. Tona A, Perides G, Rahemtulla F, et al. Extracellular matrix in regeneration rat sciatic nerve: a comparative study on the localization of laminin, hyaluronic acid, and chondroitin sulfate proteoglycans, including versican [J]. J Histochem Cytochem, 1993, 41: 593-599.
    93.杨雄里,等 译.神经生物学—从神经元到脑[M].第1版.北京:科学出版社,2003.
    94. Bourde 0, Kiefer R, Toyka KV, et al. Quantification of interleukin-6 mRNA in wallerian degeneration by competitive reverse transcription polymerase chain reaction [J]. J Neuroimmunol, 1996, 69(1-2): 135-140.
    95. Bolin LM, Verity AN, Silver JE, et al. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury [J]. J Neurochem, 1995, 64(2): 850-858.
    96. Banner LR, Patterson PH. Major changes in the expression of the mRNA for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia [J]. Proc Natl Acad Sci USA, 1994, 91(15): 7109-7113.
    97. Curtis R, Scherer SS, Somogyi R, et al. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve [J]. Neuron, 1994, 12(1): 191-204.
    98. Heumann R, Lindholm D, Bandtlow C, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages [J]. Proc Natl Acad Sci USA, 1987, 84(23): 8735-8739.
    99. Meyer M, Matsuoka I, Wetmore C, et al. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanism are responsible for the regulation of BDNF and NGF Mrna [J]. J Cell Biol, 1992, 119(1): 45-54.
    100. Hoke A, Cheng C, Zochodne DM. Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats [J]. Neuroreport,2000, 11(8): 1651-1654.
    101. Patel TD, Jackman A, Rice FL, et al. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo [J]. Neuron, 2000, 25(1): 345-357.
    102. Tucker KL, Meyer M, Barade YA. Neurotrophins are required for nerve growth during development [J]. Nat Neurosci, 2001, 4(1): 29-37.
    103. Horie H, Kadoya T, Hikawa N, et al. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy [J]. J Neurosci, 2004, 24(8): 1873-1880.
    104. Mohiuddin L, Delcrolx JD, Fernyhough P, et al. Focally administered nerve growth factor suppresses molecular regenerative responses of axotomized peripheral afferents in rats [J]. Neuroscience, 1999, 91(1): 265-271.
    105. Streppel M, Azzolin N, Dohm S, et al. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve [J]. Eur J Neurosci, 2002, 15(8): 1327-1342.
    106. 蒋立新,钟世镇.周围神经损伤修复机理的研究进展[J].中华手外科杂志,1997,13(1):55-58.
    107. Houle JD, Tom VJ, Mayes D, et al. Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord [J]. J Neuroci, 2006, 26(28): 7405-7415.
    108. David S, Aguayo AJ. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats [J]. Science, 1981, 214: 931-933.
    109. Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord [J]. J Neurosci, 2002, 22(15): 6670-6681.
    110.冯世庆,郭世绂,陈君长,等.神经生长因子和脑源性神经营养因子基 因修饰的雪旺细胞和胚胎脊髓细胞悬液植入促进大鼠脊髓损伤修复的研究[J].中华骨科杂志,2001,21(9):555-561.
    111.冯世庆,周先虎,孔晓红,等.自体激活雪旺细胞移植治疗急性脊髓损伤的实验研究[J].中华骨科杂志,2006,26(8):553-557.
    112. Zuo J, Ferguson TA, Hernandez YJ, et al. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan [J]. J Neurosci, 1998, 18(14): 5203-5211.
    113. Krekoski CA, Neubauer D, Zuo J, et al. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan [J]. J Neurosci, 2001, 21(16): 6206-6213.
    114. Baichwal RR, Bigbee JW, DeVries GH. Macrophage-mediated myelin-related mitogenic factor for cultured Schwann cells [J]. Proc Natl Acad Sci USA, 1988, 85(3): 1701-1705.
    115. Salzer JL, Bunge RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury [J]. J Cell Biol, 1980, 84(3): 739-752.
    116. Salzer JL, Williams AK, Glaser L, et al. Studies of Schwann cell proliferation. If. Characterization of the stimulation and specificity of the response to a neurite membrane fraction [J]. J Cell Biol, 1980, 84(3): 753-766.
    117. Salzer JL, Bunge RP, Glasser L. Studies of Schwann cell proliferation. Ⅲ. Evidence for the surface localization of the neurite mitogen [J]. J Cell Biol, 1980, 84(3): 767-778.
    118. Sobue G, Pleasure D. Adhesion of axolemmal fragments to Schwann cells: a signal-and target-specific process closely linked to axolemmal induction of Schwann cell mitosis [J]. J Neurosci, 1985, 5(2): 379-387.
    119. Livesey FJ, O' Brien JA, Li M, et al. A Schwann cell mitogen accompanying regeneration of motor neurons [J]. Nature, 1997, 390: 614-618.
    120. Marchionni MA, Goodearl ADJ, Chen MS, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system [J]. Nature, 1993, 362: 312-318.
    121. Carraway KL, Burden SJ. Neuregulins and their receptors [J]. Curr Opin Neurobiol, 1995, 5(5): 606-612.
    122. Mahanthappa NK, Anton ES, Matthew WD. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth [J]. J Neurosci, 1996, 16(15): 4673-4683.
    123. Li H, Terenghi G, Hall SM. Effects of delayed reinnervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo [J]. Glia, 1997, 20(4): 333-347.
    124. Carroll SL, Miller ML, Frohnert PW, et al. Expression of neuregulins and their putative receptors, erbB2 and erbB3, is induced during Wallerian degeneration [J]. J Neurosci, 1997, 17(5): 1642-1659.
    125. Guertin AD, Zhang DP, Mak KS, et al. Microanatomy of axon/glial signaling during Wallerian degeneration [J]. J Neurosci, 2005, 25(13): 3478-3487.
    126. Atanasoski S, Scherer S, Sirkowski E, et al. ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury [J]. J Neurosci, 2006, 26(7): 2124-2131.
    127. Hall SM, Gregson N. The effects of mitomycin C on the process of regeneration in the mammalian peripheral nervous system [J]. Neuropathology App Neurobiology, 1977, 3(1): 65-78.
    128. Shen YJ, DeBellard ME, Salzer JL, et al. Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching [J]. Mol Cell Neurosci, 1998, 12(1-2): 79-91
    129. Chen YY, McDonald D, Cheng C, et al. Axon and Schwann cell partnership during nerve regrowth [J]. J Neuropathol Exp Neurol, 2005, 64(7): 613-622.
    130. Ara J, Bannerman P, Shaheen F, et al. Schwann cell-autonomous role of neuropilin-2 [J]. J Neurosci Res, 2005, 79(4): 468-475.
    131. Siebert H, Sachse A, Kuziel WA, et al. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system [J]. J Neuroimmunol, 2000, 110(1-2): 177-185.
    132. Toews AD, Barret C, Morell P. Monocyte chemoattractant protein-1 is responsible for macrophage recruitment following injury to sciatic nerve [J]. J Neurosci Res, 1998, 53(2): 260-267.
    133. Carroll SL, Frohnert PW. Expression of JE(monocyte chemoattractant protein-1)is induced by sciatic axotomy in wild type rodents but not in C57BL/Wld(s) mice [J]. J Neuropathol Exp Neurol, 1998, 57(10): 915-930.
    134. Sugiura S, Lahav R, Han J, et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro [J]. Eur J Neurosci, 2000, 12(2): 457-466.
    135. Tofaris G, Patterson P, Jessen K, et al. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF [J]. J Neurosci, 2002, 22(15): 6696-6703.
    136. Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-lalpha, and interleukin-lbeta [J]. J Neurosci, 2002, 22 (8) : 3052-3060.
    137. Liefner M, Siebert H, Sachse T, et al. The role of TNF-alpha during Wallerian degeneration [J]. J Neuroimmunol, 2000, 108(1-2): 147-152.
    138. Namikawa K, Okamoto T, Suzuki A, et al. Pancreatitis-associated protein-III is a novel macrophage chemoattractant implicated in nerve regeneration [J]. J Neurosci, 2006, 26(28): 7460-7467.
    139. Dailey AT, Avellino AM, Benthem L, et al. Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration [J]. J Neurosci, 1998, 18(17): 6713-6722.
    140. da Costa CC, van der Laan LJ, Dijkstra CD, et al. The role of the mouse macrophage scavenger receptor in myelin phagocytosis [J]. Eur J Neurosci, 1997, 9(12): 2650-2657.
    141. Eta M, Yoshikawa H, Fujimura H et al. The role of CD36 in peripheral nerve remyelination after crush injury [J]. Eur J Neurosci, 2003, 17(12): 2659-2666.
    142. Mears S, Schachner M, Brushart TM. Antibodies to myelin-associated glycoprotein accelerate preferential motor reinnervation [J]. J Peripher Nerv Syst, 2003, 8(2): 91-99.
    143. Tang S, Shen YJ, Debellard ME, et al. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site [J]. J Cell Biol, 1997, 138(6): 1355-1366.
    144. Watson FL, Heerssen HM, Moheban DB, et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex [J]. J Neurosci, 1999, 19(18): 7889-7900.
    145. Ye H, Kuruvilla R, Zweifel LS, et al. Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons [J]. Neuron, 2003, 39(1): 57-68.
    146. Delcroix JD, Valletta JS, Wu C, et al. NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals [J]. Neuron, 2003, 39(1): 69-84.
    147. Hammarberg H, Piehl F, Risling M, et al. Differential regulation of trophic factor receptor mRNA in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat [J]. J Comp Neurol, 2000, 426(4): 587-601.
    148. Hoke A, Gordon T, Zochodne DW, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell [J]. Exp Neurol, 2002, 173(1): 77-85.
    149. Bennett DLH, Boucher TJ, Armanimi MP, et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury [J]. J Neurosci, 2000, 20(1): 427-437.
    150. Wu W, Li L, Yick LW, et al. GDNF and BDNF alter the expression of neuronal NOS, c-Jun, and p75 and prevent motoneuron death following spinal root avulsion in adult rats [J]. J Neurotrauma, 2003, 20(6): 603-612.
    151. Chen ZY, Chai YF, Cao L, et al. Glial cell line-derived neurotrophic factor enhances axonal regeneration following sciatic nerve transection in adult rats [J]. Brain Res, 2001, 902 (2) : 272-276.
    152. Jessen KR, Mirsky R, Morgan L. Myelinated, but not unmyelinated axons, reversibly down-regulate N-CAM in Schwann cells [J]. J Neurocytol, 1987, 16(5): 681-688.
    153. Martini R, Scachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve [J]. J Cell Biol, 1988, 106(5): 1735-1746.
    154. Atwal JK, Massie B, Miller FD, et al. The Trk-Shc site signals neuronal survival and local axon growth via MEK and PI-3-kinase [J]. Neuron, 2000, 27(2): 265-277.
    155. Kiryushko D, Berezin V, Bock E. Regulation of neurite outgrowth: role of cell adhesion molecules [J]. Ann N Y Acad Sci, 2004, 1014: 140-154.
    156. Hinsby AM, Lundfald L, Ditlevsen DK, et al. ShcA regulates neurite outgrowth stimulated by neural cell adhesion molecule but not by fibroblast growth factor 2: evidence for a distinct fibroblast growth factor response to neural cell adhesion molecule activation [J]. J Neurochem, 2004, 91(3): 694-703.
    157. Islam R, Kristiansen LV, Romani S, et al. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions [J]. Mol Biol Cell, 2004, 15(4): 2003-2012.
    158. Schmid RS, Pruitt WM, Maness PF. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis [J]. J Neurosci, 2000, 20(1): 4177-4188.
    159. Michailov GV, Sereda MW, Brinkmann BG, et al. Axonal neuregulin-1 regulates myelin sheath thickness [J]. Science, 2004, 304: 700-703.
    160. Fawcett JW, Keynes RJ. Peripheral nerve regeneration [J]. Annu Rev Neurosci, 1990, 13: 43-60.
    161. Salonen V, Peltonen J, Roytta M, et al. Laminin in traumatized peripheral nerve: basement membrane changes during degeneration and regeneration [J]. J Neurocytol, 1987, 16(5): 713-720.
    162. Bixby JL, Harris WA. Molecular mechanisms of axon growth and guidance [J]. Annu Rev Cell Biol, 1991, 7: 117-159.
    163. Wang GY, Hirai KI, Shimada H. The role of laminin, a component of Schwann cell basal lamina, in rat sciatic nerve regeneration within antiserum-treated nerve grafts [J]. Brain Res, 1992, 570 (1-2) : 116-125.
    164. Tohyama K, Ide C. The localization of laminin and fibronectin on the Schwann cell basal lamina [J]. Arch Histol Jpn, 1984, 47(5): 519-532.
    165. Giancotti FG, Ruoslahti E. Integrin signaling [J]. Science, 1999, 285: 1028-1032.
    166. McKerracher L, Chamoux M, Arregui CO. Role of laminin and integrin interaction in growth cone guidance [J]. Mol Neurobiol, 1996, 12(2): 95-116.
    167. Gomez TM, Robles E, Poo M, et al. Filopodial calcium transients promote substrate-dependent growth cone tuening [J]. Science, 2001, 291: 1983-1987.
    168. Wildering WC, Hermann PM, Buiioch AG. Rapid neuromodulatory actions of integrin ligands [J]. J Neurosci, 2002, 22(7): 2419-2426.
    169. Gantus MAV, Nasciutti LE, Cruz CM,. et al. Modulation of extracellular matrix components by metalloproteinases and their tissue inhibitors during degeneration and regeneration of rat sural nerve [J]. Brain Res, 2006, 1122 (1) : 36-46.
    170. Werner A, Willem M, Jones LL, et al. Impaired axonal regeneration in alpha7 integrin-deficient mice [J]. J Neurosci, 2000, 20(5): 1822-1830.
    171. Wallquist W, Zelano J, Plantman S, et al. Dorsal root ganglion up-regulate the expression of laminin-associated integrins after peripheral but not central axotomy [J]. J Comp Neurol, 2004, 480(2): 162-169.
    172. Moon LD, Asher RA, Rhodes KE, et al. Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat [J]. Neuroscience, 2002, 109(1) :101-117.
    173. Danielsen N, Kerns JM, Holmquist B, et al. Pre-degenerated nerve grafts enhance regeneration by shortening the initial delay period [J]. Brain Res, 1994, 666 (2) : 250-254.
    174. Braunewell KH, Martini R, LeBaron R, et al. Up-regulation of a chondroitin sulphate epitope during regeneration of mouse sciatic nerve: evidence that the immunoreactive molecules are related to the chondroitin sulphate proteoglycans decorin and versican [J]. Eur J Neurosci, 1995, 7(4): 792-804.
    175. Koprivica V, Cho KS, Park JB, et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans [J]. Science, 2005, 310: 106-110.
    176. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury [J]. Nature, 2002, 416: 636-640.
    177. Caggiano AO, Zimber MP, Ganguly A, et al. Chondroitinase ABC improves locomotion and bladder function following contusion injury of the rat spinal cord [J]. J Neurotrauma 2005, 22(2): 226-239.
    178. Fouad K, Schnell L, Bunge MB, et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transaction of the spinal cord [J]. J Neurosci, 2005, 25(5): 1169-1178.
    179. Massey JM, Hubscher CH, Wagoner MR, et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury [J]. J Neurosci, 2006, 26(16): 4406-4414.
    180. Steinmetz MP, Horn KP, Tom VJ, et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord [J]. J Neurosci, 2005, 25(35) : 8066-8076.
    181. Graham JB, Neubauer D, Xue QS, et al. Chondroitinase applied to peripheral nerve repair averts retrograde axonal regeneration [J]. Exp Neurol, 2007, 203(1): 185-195.
    182. Gondre M, Burrola P, Weinstein DE. Accelerated nerve regeneration mediated by Schwann cells expressing a mutant form of the POU protein SCIP [J]. J Cell Biol, 1998, 141(2): 493-501.
    183. Brushart TM. Preferential reinnervation of motor nerves by regenerating motor axons [J]. J Neurosci, 1988, 8(3): 1026-1031.
    184. Madison RD, Archibald SJ, Brushart TM. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons [J]. J Neurosci, 1996, 16(18): 5698-5703.
    185. Madison RD, Archibald SJ, Lacin R, Krarup C. Factors contributing to preferential motor reinnervation in the primate peripheral nervous system [J]. J Neurosci, 1999, 19(24): 11007-11016.
    186. Martini R, Schachner M, Brushart TM. The L2/HNK- 1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves [J]. JNeurosci, 1994, 14(11): 7180-7191.
    187. Nichols CM, Brenner MJ, Fox IK, et al. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol, 2004, 190(2): 347-355.
    188. Robinsona GA, Madisona RD. Motor neurons can preferentially reinnervate cutaneous pathways [J]. Exp Neurol, 2004, 190(2): 407-413.
    189. Garratt AN, Voiculescu 0, Topilko P, et al. A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool [J]. J Cell Biol, 2000, 148(5): 1035-1046.
    190. Esper RM, Loeb JA. Rapid axoglial signaling mediated by neuregulin and neurotrophic factors [J]. J Neurosci, 2004, 24(27): 6218-6227.
    191. Colognato H, Baron W, Avellana-Adalid V, et al. CNS integrins switch growth factor signaling to promote target-dependent survival [J]. Nat Cell Biol, 2002, 4(11): 833-841.
    192. Previtali S C, Feltri ML, Archelos JJ, et al. Role of integrins in the peripheral nervous system [J]. Prog Neurobiol, 2001, 64: 35-49.
    193. Previtali SC, Dina G, Nodari A, et al. Schwann cells synthesize α 7 β1 integrin which is dispensable for peripheral nerve development and myelination [J]. Mol Cell Neurosci, 2003, 23(2): 210-218.
    194. Feltri ML, Porta D, Previtali SC, et al. Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons [J]. J Cell Biol, 2002, 156(1): 199-209.
    195. Wallquist W, Plantman S, Thams S, et al. Impeded interaction between Schwann cells and axons in the absence of laminin α 4 [J]. J Neurosci, 2005, 25(14): 3692-3700.
    196. Carey DJ, Colleen M, Rafferty CM, et al. Effects of inhibition of proteoglycan synthesis on the differentiation of cultured rat Schwann cells [J]. J Cell Biol, 1987, 105(8): 1013-1021.
    197. Larsen PH, Wells JE, StallcupWB, et al. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan [J]. J Neurosci, 2003, 23(35): 11127-11135.
    198. Torigoe K, TanakaH, Takahashi A, et al. Basic behavior of migratory Schwann cells in peripheral nerve regeneration. Exp Neurol, 1996, 137 (2) : 301-308.
    199. Symons NA, Danielsen N, Harvey AR. Migration of cells into and out of peripheral nerve isografts in the peripheral and central nervous systems of the adult mouse. Eur J Neurosci, 2001, 14 (3) : 522-532.
    200. You S, Petrov T, Chung PH, et al. The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells [J]. Glia, 1997, 20(2): 87-100.
    201. Labrador R0, But M, Navarro X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair [J]. Exp Neurol, 1998, 149(1): 243-252.
    202. Vogelezang MG, Liu Z, Relvas JB, et al. Alpha 4 integrin is expressed during peripheral nerve regeneration and enhances neurite outgrowth [J]. J Neurosci, 2001, 21(17): 6732-6744.
    203. Tan A, Colletti M, Rorai A, et al. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord [J]. J Neurosci, 2006, 26(18): 4729-4739.
    204. Grand AG, Myckatyn TM, Mackinnon SE, et al. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice [J]. J Neurosurg, 2002, 96(5): 924-932.
    205. Jensen JN, Tung TH, Mackinnon SE, et al. Use of anti-CD40 ligand monoclonal antibody as antirejection therapy in a murine peripheral nerve allograft model [J]. Microsurgery, 2004, 24(4): 309-315.
    206. Fornaro M, Tos P, Geuna S, et al. Confocal imaging of Schwann-cell migration along muscle-vein combined grafts used to bridge nerve defects in the rat [J]. Microsurgery, 2001, 21(4): 153-155.
    207. Karacaoglu E, Yuksel F, Peker F, et al. Nerve regeneration through an epineurial sheath:its functional aspect compared with nerve and vein grafts [J]. Microsurgery, 2001, 21(5): 196-201.
    208. Hadlock TA, Sundback CA,.Hunter DA, et al. A new artificial nerve graft containing rolled Schwann cell monolayers [J]. Microsurgery, 2001, 21(3): 96-101.
    209. Walker JC, Brenner MJ, Mackinnon SE, et al. Effect of perineurial window size on nerve regeneration, blood-nerve barrier integrity, and functional recovery [J]. J Neurotrauma, 2004, 21(2): 217-227.
    210. Yan JG, Matloub HS, Sanger JR, et al. A modified end-to-side method for peripheral nerve repair: large epineural window helicoids technique versus small epineural window standard end-to-side technique [J]. J Hand Surg [Am], 2002, 2?(2): 484-492.
    211. Hasan NA, Neumann MM, Souky MA, et al. The influence of predegenerated nerve grafts on axonal regeneration from prelesioned peripheral nerves [J]. J Anat, 1996, 189(Pt 2): 293-302.
    212.阚世廉,宫可同,费起礼,等.健康神经与退变神经游离移植比较的实验研究(一)[J].中华手外科杂志,1995,11(1):45-47.
    213.劳杰,熊良俭,顾玉东,等.不同时间段的预变性神经段分子生物学变化[J].中华手外科杂志,2000,16(3):172-174.
    214. Ochi M, Wakasa M, Ikuta Y, et al. Nerve regeneration in predegenerated basal lamina graft: the effect of duration of predegeneration on axonal extension [J]. Exp Neurol, 1994, 128(2): 216-225.
    215. Keihoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerve: an effective technique to obtain activated Schwann cells for nerve conduits [J]. J Neurosci Methods, 1999, 89(1): 17-24.
    216.张西峰,韩西城,朱盛修,等.不同预变性时间大鼠神经移植的研究[J].中华实验外科杂志,2000,17(5):453-454.
    217.李存孝,李稔生,殷琦.预变性神经移植促进神经再生的动物实验[J].第四军医大学学报,2001,22(3):249-252.
    218. Bradley JL, Abernethy DA, King RH, et al. Neural architecture in transected rabbit sciatic nerve after prolonged nonreinnervation [J]. J Anat, 1998, 192(Pt 4): 529-538.
    219. Terenghi G, Galder JS, Birch R, et al. A morphological study of Schwann cells and axonal regeneration in chronically transected human peripheral nerve [J]. J Hand Surg [Br], 1998, 23(5): 583-587.
    220. Olmarker K, Stromberg J, Blomquist J, et al. Chondroitinase ABC (pharmaceutical grade) for chemonucleolysis. Functional and structural evaluation after local application on intraspinal nerve structures and blood vessels [J]. Spine, 1996, 21(17): 1952-1956.
    221. Brown MD. The rationale for and pre-clinical results of chondroitinase ABC in chemonucleolysis [J]. International Congress Series, 2001, 1223: 171-176.
    222. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance [J]. J Hand Surg [Am], 2000, 25(1): 391-414.
    223. Whitworth IH, Dore C, Hall S, et al. Different muscle graft denaturing methods and their use for nerve repair [J]. Br J Plast Surg, 1995, 48(7): 492-499.
    224. Meek MF, den Dunnen WFA, Schakenraad M, et al. Evaluation of several techniques to modify denatured muscle tissue to obtain a scafold for peripheral nerve regeneration [J]. Biometerials, 1999, 20(5): 401-408.
    225. Sanes JR, Schachner M, Covault J. Expression of several adhesive macromolecules (N-CAM, L 1, J 1, NILE, Uvomorulin, Laminin, Fibronectin, and a Heparan Sulfate Proteoglycan) in embryonic, adult, and denervated adult keletal muscle [J]. J Cell Biol, 1986, 102(2): 420-431.
    1. Lunn ER, Perry VH, Brown MC, et al. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve [J]. Eur J Neurosci, 1989, 1 (1) : 27-33.
    2. Perry VH, Brown MC, Lunn ER, et al. Evidence that very slow Wallerian degeneration in C5?BL/Ola mice is an intrinsic property of the peripheral nerve [J]. Eur J Neurosci, 1990, 2 (9) : 802-808.
    3. Glass JD, Brushart TM, George EB, et al. Prolonged survival of transsected nerve fibers in CS?BL/Ola mice is an intrinsic characteristic of the axon [J]. J Neurocytol, 1993, 22 (5) : 311-321.
    4. Lyon MF, Ogunkolade BW, Brown MC, et al. A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4 [J]. Proc Natl Acad Sci USA, 1993, 90 (20) : 9717-9720.
    5. Conforti L, Tarlton A, Mack TG, et al. A Ufd2/D4Colele chimeric and overexpression of Rbp7 in the slow Wallerian degeneration (Wlds) mouse [J]. Proc Natl Acad Sci USA, 2000, 97 (21) : 11377-11382.
    6. Adalbert R, Gillingwater TH, Haley JE, et al. A rat model of slow Wallerian degeneration (Wlds) with improved preservation of neuromuscular synapses [J]. Eur J Neurosci, 2005, 21 (1) : 271-277.
    7. Araki T, Sasaki Y, Milbrand J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J]. Science, 2004, 305 (5686) : 1010-1013.
    8. Wang J, Zhai Q, Chen Y, et al. A local mechanism mediates NAD-dependent protection of axon degeneration [J]. J Cell Biol, 2005, 170(3): 349-355.
    9. Sievers C, Platt N, Perry VH, et al. Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential [J]. Neurosci Res, 2003, 46 (2) : 161-169.
    10. Burne JF, Staple JK, Raff MC. Glial cells are increased proportionally in transgenic optic nerve with increased numbers of axons [J]. J Neurosci, 1996, 16 (6) : 2064-2073.
    11. Bergeron L, Yuan J. Sealing one' s fate: control of cell death in neurons [J]. Curr Opin Neurobiol, 1998, 8(1): 55-63.
    12. Finn JT, Weil M, Archer F, et al. Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases [J]. J Neurosci, 2000, 20 (4) : 1333-1341.
    13. George EB, Glass JD, Griffin JW. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels [J]. J Neurosci, 1995, 15 (10) : 6445-6452.
    14. LoPachin RM Jr, LoPachin VR, Saubermann AJ. Effects of axotomy on distribution and concentration of elements in rat sciatic nerve [J]. J Neurochem, 1990, 54 (1) : 320-332.
    15. Glass JD, Culver DG, Levey AI, et al. Very early activation of m-calpain in peripheral nerve during Wallerian degeneration. J Neurol Sci, 2002, 196(1-2): 9-20.
    16. Araujo Couto L, Sampaio Narciso M, Hokoc JN, et al. Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers [J]. J Neurosci Res, 2004, 77(3): 410-419.
    17. Wang MS, Wu y, Culver DG, et al. Pathogenesis of axonal degeneration: parallels between Wallerian degeneration and vincristine neuropathy [J]. J Neuropathol Exp Neurol, 2000, 59(7): 599-606.
    18. De S, Trigueros MA, Kalyvas A, et al. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration [J]. Mol Cell Neurosci, 2003, 24(3): 753-765.
    19. Zhai Q, Wang J, Kim A, et al. Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration [J]. Neuron, 2003, 39(2): 217-225.
    20. Baichwal RR, Bigbee JW, DeVries GH. Macrophage-mediated myelin-related mitogenic factor for cultured Schwann cells [J]. Proc Natl Acad Sci USA, 1988, 85(5): 1701-1705.
    21. Salzer JL, Bunge RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury [J]. JCell Biol, 1980, 84(3): 739-752.
    22. Salzer JL, Williams AK, Glaser L, et al. Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction [J]. J Cell Biol, 1980, 84(3): 753-766.
    23. Salzer JL, Bunge RP, Glasser L. Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen [J]. J Cell Biol, 1980, 84(3): 767-778.
    24. Sobue G, Pleasure D. Adhesion of axolemmal fragments to Schwann cells: a signal- and target-specific process closely linked to axolemmal induction of Schwann cell mitosis [J]. JNeurosci, 1985, 5(2): 379-387.
    25. Mears S, Schachner M, Brushart TM. Antibodies to myelin-associated glycoprotein accelerate preferential motor reinnervation [J]. J Peripher Nerv Syst, 2003, 8(2): 91-99.
    26. Shen YJ, DeBellard ME, Salzer JL, et al. Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching [J]. Mol Cell Neurosci, 1998, 12(1-2): 79-91.
    27. Tang S, Shen YJ, Debellard ME, et al. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site [J]. J Cell Biol, 1997, 138(6): 1355-1366.
    28. Mueller M, Leonhard C, Wacker K, et al. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages [J]. Lab Invest, 2003, 83(2): 175-185..
    29. Hirata K, Mitoma H, Ueno N, et al. Differential response of macrophage subpopulation to myelin degradationin the injured rat sciatic nerve [J]. J Neurocytol, 1999, 28(8): 685-695.
    30. Shen ZL, Lassner F, Becker M, et al. Cellular activity of resident macrophages during Wallerian degeneration [J]. Microsurgery, 2000, 20(5): 255-261.
    31.黄涛,秦建强,刘大庸,等.外周神经损伤后许旺细胞激活巨噬细胞的实验研究[J].中华显微外科杂志,2002,25(3):192-193.
    32. Carroll SL, Frohnert PW. Expression of JE(monocyte chemoattractant protein-1)is induced by sciatic axotomy in wild type rodents but not in C57BL/Wld(s) mice [J]. J Neuropathol Exp Neurol, 1998, 57(10): 915-930.
    33. Toews AD, Barret C, Morell P. Monocyte chemoattractant protein-i is responsible for macrophage recruitment following injury to sciatic nerve [J]. J Neurosci Res, 1998, 53(2): 260-267.
    34. Sugiura S, Lahav R, Han J, et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro [J]. Eur J Neurosci, 2000, 12(2): 457-466.
    35. Tofaris G, Patterson P, Jessen K, et al. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF [J]. J Neurosci, 2002, 22(15): 6696-6703.
    36. Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-lalpha, and interleukin-lbeta [J]. J Neurosci, 2002, 22(8): 3052-3060.
    37. Liefner M, Siebert H, Sacbse T, et al. The role of TNF-alpha during Wallerian degeneration [J]. J Neuroimmunol, 2000, 108(1-2): 147-152.
    38. Avellino AM, Dailey AT, Harlan JM, et al. Blocking of up-regulated ICAM-1 does not prevent macropjage infiltration dueing Wallerian degeneration of peripheral nerve [J]. Exp Neurol, 2004, 187(2): 430-444.
    39. Kuhlmann T, Bitsch A, Stadelmann C, et al. Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen [J]. J Neurosci, 2001, 21(10): 3401-3408.
    40. Atanasoski S, Shumas S, Dickson C, et al. Differential cyclin D1 requirement of proliferating Schwann cells during development and after injury [J]. Mol Cell Neurosci, 2001, 18(6): 581-592.
    41. Kim HA, Pomeroy SL, Whoriskey W, et al. A developmentally regulated switch directs regenerative growth of Schwann cells through cyclin Dl [J]. Neuron, 2000, 26(2): 405-416.
    42. Atanasoski S, Boiler D, De Ventura L, et al. Cell cycle inhibitors p21 and pl6 are required for the regulation of Schwann cell proliferation [J]. Glia, 2006, 53(2):147-157.
    43. Kubota A, Komiyama A, Matsumoto M, et al. Effect of macrophage suppression with silica on the proliferation of Schwann cells during Wallerian degeneration [J]. Brain Res, 1998, 802(1-2): 254-258.
    44. Kubota A, Suzuki K. Effect of liposome-mediated macrophage depletion on Schwann cell proliferation during Wallerian degeneration [J]. J Neurotrauma, 2000, 17(9): 789-798.
    45. Banner LR, Patterson PH. Major changes in the expression of the mRNA for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia [J]. Proc Natl Acad Sci USA, 1994, 91(15): 7109-7113.
    46. Curtis R, Scherer SS, Somogyi R, et al. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve [J]. Neuron, 1994, 12(1): 191-204.
    47. Livesey FJ, OBrien JA, Li M, et al. A Schwann cell mitogen accompanying regeneration of motor neurons [J]. Nature, 1997, 390(6660): 614-618.
    48. Averill S, Davis DR, Shortland PJ, et al. Dynamic pattern of reg-2 expression in rat sensory neurons after peripheral nerve injury [J]. J Neurosci, 2002, 22(17): 7493-7501.
    49. Marchionni MA, Goodearl ADJ, Chen MS, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system [J]. Nature, 1993, 362(6418): 312-318.
    50. Carraway KL, Burden SJ. Neuregulins and their receptors [J]. Curr Opin Neurobiol, 1995, 5(5): 606-612.
    51. Mahanthappa NK, Anton ES, Matthew WD. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth [J]. J Neurosci, 1996, 16(15): 4673-4683.
    52. Li H, Terenghi G, Hall SM. Effects of delayed reinnervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo [J]. Glia, 1997, 20(4): 333-347.
    53. Carroll SL, Miller ML, Frohnert PW, et al. Expression of neuregulins and their putative receptors, erbB2 and erbB3, is induced during Wallerian degeneration [J]. J Neurosci, 1997, 17(5): 1642-1659.
    54. Guertin AD, Zhang DP, Mak KS, et al. Microanatomy of axon/glial signaling during Wallerian degeneration [J]. JNeurosci, 2005, 25(13): 3478-3487.
    55. Atanasoski S, Scherer S, Sirkowski E, et al. ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury [J]. J Neurosci, 2006, 26(7): 2124-2131.
    56. Maurel P, Salzer JL. Axonal regulation of Schwann cell proliferation and survival and the initial event of myelination requires PI 3-kinase activity [J]. J Neurosci, 2000, 20(12): 4635-4645.
    57. Zhao YL, Takagawa K, Oya T, et al. Active Src expression is induced after rat peripheral nerve injury [J]. Glia, 2003, 42(2): 184-193.
    58. Ara J, Bannerman P, Shaheen F, et al. Schwann cell-autonomous role of neuropilin-2 [J]. J Neurosci Res, 2005, 79(4): 468-475.
    59. Brown MC, Perry VH, Hunt SP, et al. Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration [J]. Eur J Neurosci, 1994, 6(3): 420-428.
    60. Bisby MA, Tetzlaff W, Brown MC. Cell body response to injury in motoneurons and primary sensory neurons of a multant mouse, Ola(Wld), in which Wallerian degeneration is delayed [J]. J Comp Neurol, 1995, 359(4): 653-662.
    61. Taskinen HS, Roytta M. Cyclosporin A affects axons and macrophages during Wallerian degeneration [J]. J Neurotrauma, 2000, 17(5): 431-440.
    62. KeilhoffG, Fansa H, Wolf G. Nitric oxide synthase, an essential factor in peripheral nerve regeneration [J]. Cell Mol Biol, 2003, 49(6): 885-897.
    63. Fansa H, Keilhoff G, Horn T, et al. Stimulation of Schwann cell proliferation and axonal regeneration by FK506 [J]. Restor Neurol Neurosci, 2000, 16(2): 77-86.
    64. DanielsenN, Kerns JM, Holmquist B, et al. Pre-degenerated nerve grafts enhance regeneration by shortening the initial delay period [J]. Brain Res, 1994, 666(2): 250-254.
    65. Marcol W, Kotulska K, Swiech-Sabuda E, et al. Regeneration of sciatic nerve of adult rats induced by extracts from distal stumps of pre-degenerated peripheral nerves [J]. J Neurosci Res, 2003, 72(3): 417-424.
    66. Siebert H, Sachse A, Kuziel WA, et al. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system [J]. J Neuroimmunol, 2000, 110(1-2): 177-185.
    67. Luk HW, Noble LJ, Werb Z. Macrophages contribute to the maintenance of stable regenerating neuritis following peripheral nerve injury [J]. J Neurosci Res, 2003, 73(5): 644-658.
    68. Agius E, Cochard P. Comparison of neurite outgrowth induced by intact and injured sciatic nerves: a confocal and functional analysis [J]. J Neurosci, 1998, 18(1): 328-338.
    69. Muir D, Engvall E, Varon S, et al. Schwannorna cell-derived inhibitor of the neurite-promoting activity of laminin [J]. J Cell Biol, 1989, 109(5): 2353-2362.
    70. Braunewell KH, Pesheva P, McCarthy JB, et al. Functional involvement of sciatic nerve-derived versican- and decorin-like molecules and other chondroitin sulphate proteoglycans in ECM-mediated cell adhesion and neurite outgrowth [J]. Eur J Neurosci, 1995, 7(4): 805-814.
    71. Braunewell KH, Martini R, LeBaron R, et al. Up-regulation of a chondroitin sulphate epitope during regeneration of mouse sciatic nerve: evidence that the immunoreactive molecules are related to the chondroitin sulphate proteoglycans decorin and versican [J]. Eur J Neurosci, 1995, 7(4): 792-804.
    72. Zuo J, Hernandez YJ, Muir D. Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury [J]. J Neurobiol, 1998, 34(1): 41-54.
    73. Ferguson TA, Muir D. MMP-2 and MMP-9 increase the neurite-promoting potential of Schwann cell basal laminae and are upregulated in degenerated nerve [J]. Mol Cell Neurosci, 2000, 16(2): 157-167.
    74. Krekoski CA, Neubauer D, Graham JB, et al. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts [J]. J Neurosci, 2002, 22(23): 10408-10415.
    75. Zuo J, Ferguson TA, Hernandez YJ, et al. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan [J]. J Neurosci, 1998, 18(14): 5203-5211.
    76. Schenker M, Kraftsik R, Glauser L, et al. Thyroid hormone reduces the loss of axotomized sensory neurons in dorsal root ganglia after sciatic nerve transection in adult rat [J]. Exp Neurol, 2003, 184(1): 225-236.
    77. Groves MJ, Christopherson T, Giometto B, et al. Axotomy-induced apoptosis in adult rat primary sensory neurons [J]. J Neurocytol, 1997, 26(9): 615-624.
    78. McKay Hart A, Brannstrom T, Wiberg M, et al. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: time course of cell death and elimination [J]. Exp Brain Res, 2002, 142(3): 308-318.
    79. Tandrup T, Woolf CJ, Coggeshall RE. Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve [J]. J Comp Neurol, 2000, 422(2): 172-180.
    80. Shi TJ, Tandrup T, Bergman E, et al. Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57BL/6J mouse: marked changes both in cell numbers and neoropeptide expression [J]. Neurosciencs, 2001, 105(1): 249-263.
    81.张烽,顾玉东,徐建光.大鼠坐骨神经损伤后神经元细胞凋亡的初步观察[J].中华手外科杂志,2000,16(1):53-55.
    82. Lewis SE, Mannion RJ, White FA, et al. A role for HSP27 in sensory neuron survival [J]. J Neurosci, 1999, 19(20): 8945-8953.
    83. Chan YM, Wu W, Yip HK, et al. Caspase inhibitors promote the surival of avulsed spinal motoneurons in neonatal rats [J]. Neuroreport, 2001, 12(3): 541-545.
    84. Jiang Y, Zhang M, Koishi K, et al. TGF-beta 2 attenuates the injury-induced death of mature motoneurons [J]. J Neurosci Res, 2000, 62(6): 809-813.
    85. Hammarberg H, Piehl F, Risling M, et al. Differential regulation of trophic factor receptor mRNA in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat [J]. J Comp Neurol, 2000, 426(4): 587-601.
    86. Martin LJ, Kaiser A, Price AC. Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative stress and is apoptosis [J]. J Neurobiol, 1999, 40(2): 185-201.
    87. Yah Q, Matheson C, Lopez OT, et al. The biological responses of axotomied adult motoneurons to brain derived neurotrophic factor [J]. J Neuro.sci, 1994, 14(9): 5281-5291.
    88. Kiryu-Seo S, Hirayama T, Kato R, et al. Noxa is a critical mediator of p53-dependent motor neuron death after nerve injury in adult mouse [J]. J Neurosci, 2005, 25(6): 1442-1447.
    89.陈晓东,顾玉东,徐建光.损伤大鼠坐骨神经诱导运动神经元凋亡的初步报告[J].中华手外科杂志,1999,15(2):111-113.
    90. Dai CF, Kanoh N, Li KY, et al. Study on facial motoneuronal death after proximal or distal facial nerve transaction [J]. Am J Otol, 2000, 21(1): 115-118.
    91. Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action [J]. Curr Opin Neurobiol, 2001, 11(3): 272-280.
    92. Frade JM, Barde YA. Nerve growth factor: two receptors, multiple functions [J]. Bioessays, 1998, 20(2): 137-145.
    93. Ginty DD, Segal RA. Retrograde neurotrophin signaling: Trk-ing along the axon [J]. Curr Opin Neurobiol, 2002, 12(3): 268-274.
    94. Watson FL, Heerssen HM, Moheban DB, et al. Rapid nuclear responses to target-derived neurotrophins requires retrograde transport of ligand-receptor complex [J]. J Neurosci, 1999, 19(18): 7889-7900.
    95. Ye H, Kuruvilla R, Zweifel LS, et al. Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons [J]. Neuron, 2003, 39(1): 57-68.
    96. Delcroix JD, Valletta JS, Wu C, et al. NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals [J]. Neuron, 2003, 39(1): 69-84.
    97. Heumann R, Lindholm D, Bandtlow C, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages [J]. Proc Natl Acad Sci USA, 1987, 84(23): 8735-8739.
    98. Meyer M, Matsuoka I, Wetmore C, et al. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA [J]. J Cell Biol, 1992, 119(1): 45-54.
    99. Ernfors P, Rosario CM, Merlio JP, et al. Expression of mRNA for neurotrophic receptors in the dorsal root ganglion and spinal cord during development and following peripheral or central axotomy [J]. Brain Res Mol Brain Res, 1993, 17(3-4): 217-226.
    100. Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor deveiop with sensory deficits [J]. Nature, 1994, 368(6467): 147-150.
    101. Klein R, Smeyne RJ, Wurst W, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesion and neonatal death [J]. Cell, 1993, 75(1): 113-122.
    102. Henderson CE, Camu W, MettlingC, et al. Neurotrophin promote motor neuron survival and are present in embryonic limb bud [J]. Nature, 1993, 363(6426): 266-270.
    103. Kobayashi NR, Bedard AM, Hincke MT, et al. Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy [J]. Eur J Neurosci, 1996, 8(5): 1018-1029.
    104. Thippeswamy T, Jain RK, Mumtaz N, et al. Inhibition of neuronal nitric oxide synthase result in neurodegeneration changes in the axotomised dorsal root ganglion neurons: evidence for a neuroprotective role of nitric oxide in vivo [J]. Neurosci Res, 2001, 40(1): 37-44.
    105. Yu WH. Spatial and temporal correlation of nitric oxide synthase expression with CuZn-superoxide dismutase reduction in motor neurons following axotomy [J]. Ann N Y Acad Sci, 2002, 962: 111-121.
    106. Thippeswamy T, Mckay JS, Morris R, et al. Glia-mediated neuroprotection: evidence for the protective role of the NO-cGMP pathway via neuron-glial communication in the peripheral nervous system [J]. Glia, 2005, 49(2): 197-210.
    107. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in the three Akts [J]. Genes Dev, 1999, 13(22): 2905-2927.
    108. Kane LP, Shapiro VS, Stokoe D, et al. Induction of NF-kappaB by the Akt/PKB kinase [J]. Curr Biol, 1999, 9(11): 601-604.
    109. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB [J]. J Biol Chem, 1998, 273(49): 32377-32379.
    110. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor [J]. Cell, 1999, 96(6): 857-868.
    111. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J]. Cell, 1997, 91(2): 231-241.
    112. Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J]. Science, 1999, 286(5443): 1358-1362.
    113. Namikawa K, Honma M, Abe K, et al. Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration [J]. J Neurosci, 2000, 20(8): 2875-2886.
    114. Fernyhough P, Smith DR, Schapansky J, et al. Activation of nuclear factor-kappaB via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons [J]. J Neurosci, 2005, 25(7): 1682-1690.
    115. Diem R, Meyer R, Weishaupt JH, et al. Reduction of potassium currents and phosphatidylinositol3-kinase-dependent AKT phosphorylation by tumor necrosis factor-(alpha) rescues axotomized retinal ganglion cells from retrograde cell death in vivo [J]. J Neurosci, 2001, 21(6): 2058-2066.
    116. MiddletonG, Hamanous M, EnokidoY, et al. Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons [J]. J Cell Biol, 2000, 148(2): 325-332.
    117. Sendtner M, Stokli KA, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration [J]. J Cell Biol, 1992, 118(1): 139-148.
    118. Duberley RM, Johnson IP. Increased expression of the aipha subunit of the ciliary neurotrophic factor (CNTF) receptor by rat facial motoneurons after neonatal axotomy and CNTF treatment [J]. Neurosci Lett, 1996, 218(3): 188-192.
    119. Mata M, Jin CF, Fink DJ. Axotomy increases CNTF receptor mRNA in rat spinal cord [J]. Brain Res, 1993, 610(1): 162-165.
    120. Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neirons after axotomy [J]. Nature, 1990, 345(6274): 440-441.
    121. Sendtner M, Gotz R, Holtmann B, et al. Endogenous ciliary neurotrophic factor is a lesion factor for axotomized motoneurons in adult mice [J]. J Neurosci, 1997, 17(18): 6999-7006.
    122. Groves MJ, An SF, Giometto B, et al. Inhibition of sensory neuron apoptosis and prevention of loss by NT-3 administration following axotomy [J]. Exp Neurol, 1999, 155(2): 284-294.
    123. Wu W, Li L, Yick LW, et al. GDNF and BDNF alter the expression of neuronal NOS, c-Jun, and p75 and prevent motoneuron death following spinal root avulsion in adult rats [J]. J Neurotrauma, 2003, 20(6): 603-612.
    124. Murphy PG, Borthwick LS, Johnston RS, et al. Nature of the retrograde signal from injured nerves that induces interleukin-6 mRNA in neurons [J]. J Neurosci, 1999, 19(10): 3791-3800.
    125. Boulton TG, Stahl N, Yancopoulos GD. Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors [J]. J Biol Chem, 1994, 269(15): 11648-11655.
    126. Maclennan AJ, Neitzel KL, Devlin BK, et al. In vivo localization and characterization of functional ciliary neurotrophic factor receptor which utilize JAK-STAT signaling [J]. Neuroscience, 2000, 99(4): 761-772.
    127. Kirsch M, Terheggen U, Hofmann HD. Ciliary neurotrophic factor is an early lesion-induced retrograde signal for axotomized facial motoneurons [J]. Mol Cell Neurosci, 2003, 24(1): 130-138.
    128. Schweizer U, Gunnersen J, Karch C, et al. Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult [J]. J Cell Biol, 2002, 156(2): 287-297.
    129. Airaksinen MS, Titevsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant [J]? Mol Cell Neurosci, 1999, 13(5): 313-325.
    130. Trupp M, Arenas E, Fainzilber M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene [J]. Nature, 1996, 381 (6585) : 785-789.
    131. Honma M, Namikawa K, Mansur K, et al. Developmental alteration of nerve injury induced glial cell line-derived neurotrophic factor (GDNF) receptor expression is crucial for the determination of injured motoneuron fate [J]. J Neurochem, 2002, 82(4): 961-975.
    132. Hottinger AF, Azzouz M, Deglon N, et al. Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus [J]. J Neurosci, 2000, 20(15): 5587-5593.
    133. Hoke A, Cheng C, Zochodne DM. Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats [J]. Neuroreport, 2000, 11(8): 1651-1654.
    134. Hoke A, Gordon T, Zochodne DW, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell [J]. Exp Neurol, 2002, 173(1): 77-85.
    135. Bennett DL, Boucher TJ, Armanimi MP, et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury [J]. J Neurosci, 2000, 20(1): 427-437.
    136. Coulpier M, Ibanez CF. Retrograde propagation of GDNF-mediated signals in sympathetic neurons [J]. Mol Cell Neurosci, 2004, 27(2): 132-139.
    137. Besset V, Scott RP, Ibanez CF. Signaling complexes and protein-protein interaction involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase [J]. J Biol Chem, 2000, 275(50): 39159-39166.
    138. Tsujino H, Kondo E, Fukuoka T, et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury [J]. Mol Cell Neurosci, 2000, 15(2): 170-182.
    139. Averill S, Michael GJ, Shortland PJ, et al. NGF and GDNF ameliorate the increase in ATF3 expression which occurs in dorsal root ganglion cells in response to peripheral nerve injury [J]. Eur J Neurosci, 2004, 19(6): 1437-1445.
    140. Walsh GS, Orike N, Kaplan DR, et al. The invulnerability of adult neurons: a critical role for p73 [J]. J Neurosci, 2004, 24(43): 9638-9647.
    141. Perrelet D, Perrin FE, Liston P, et al. Motoneuron resistance to apoptotic cell death in vivo correlates with the ratio between X-linked inhibitor of apoptosis proteins(XIAPs) and its inhibitor, XIAP-associated factor 1 [J]. J Neurosci, 2004, 24(15): 3777-3785.
    142. Anneser JM, Berthele A, Borasio GD, et al. Axotomy of the sciatic nerve differentially affects expression of metabotropic glutamate receptor Mrna in adult rat motoneurons [J]. Brain Res, 2000, 868(2): 215-221.
    143. Akazawa C, Tsuzuki H, Nakamura Y, et al. The upregulated expression of sonic hedgehog in motor neurons after rat facial nerve axotomy [J]. J Neurosci, 2004, 24(36): 7923-7930.
    144. Li L, Houenou LJ, Wu W, et al. Characterization of spinal motoneuron degeneration following different types of peripheral nerve injury in neonatal and adult mice [J]. J Comp Neurol, 1998, 396(2): 158-168.
    145. Ljungberg C, Novikov L, Kellerth JO, et al. The neurotrophins NGF and NT-3 reduce sensory neuronal loss in adult rat after peripheral nerve lesion [J]. Neurosci Lett, 1999, 262(1): 29-32.
    146. Raivich G, Liu ZQ, Kloss CU, et al. Cytotoxic potential of proinflammatory cytokines: combined deletion of TNF receptors TNFR1 and TNFR2 prevents motoneuron cell death after facial axotomy in adult mouse [J]. Exp Neurol, 2000, 178(2): 186-193.
    147. Murray SS, Cheema SS. Constitutive expression of the low-affinity neurotrophin receptor and changes during axotomy-induced death of sensory neurons in the neonatal rat dorsal root ganglion [J]. J Anat, 2003, 202(Pt2): 227-238.
    148. Murray SS, Bartlett PF, Lopes EC, et al. Low-affinity neurotrophin receotor with targeted mutation of exon 3 is capable of mediating the death of axotomized neurons [J]. Clin Exp Pharmacol Physiol, 2003, 30(4): 217-222.
    149. Rende M, Hagg T, Manthorpe M, et al. Nerve growth factor receptor immunoreactivity in neurons of the normal adult rat spinal cord and its modulation after peripheral nerve lesions [J]. J Comp Neurol, 1992, 319(2): 285-298.
    150. Friedman B, Kleinfield D, Ip NY, et al. BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons [J]. J Neurosci, 1995, 15(2): 1044-1056.
    151. Sorensen B, Tandrup T, Koltzenburg M, et al. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice [J]. J Comp Neurol, 2003, 459(3): 242-250.
    152. Majdan M, Lachance C, Gloster A, et al. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis [J]. J Neurosci, 1997, 17(18): 6988-6998.
    153. Martin LJ, Price AC, McClendon KB, et al. Early events of target deprivation/axotomy-induced neuronal apoptosis in vivo: oxidative stress, DNA damage, p53 phoephorylation and subcellular redistribution of death proteins [J]. J Neurochem, 2003, 85(1): 234-247.
    154. Liu Z, Martin LJ. Motor neurons rapidly accumulate DNA single-strand breaks after in xitro exposure to nitric oxide and peroxynitrite and in vivo axotomy [J]. J Comp Neurol, 2001, 432(1): 35-60.
    155.薛峰,顾玉东,陈德松,等.银杏叶提取物对周围神经损伤后运动神经元的保护作用[J].中华手外科杂志,2002,18(1):46-48.
    156.李方澜,周丽华,刘佛林,等.植物抗氧化剂TA9901保护臂丛撕脱后运动神经元的实验研究[J].中华手外科杂志, 2004,20(1):61-64.
    157. Kenny AM, Kocsis JD. Peripheral axotomy induces long-term c-Jun amino-terminal kinase-l activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo [J]. J Neurosci, 1998, 18(4): 1318-1328.
    158. Herdegen T, Claret FX, Kallunki T, et al. Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury [J]. J Neurosci, 1998, 18(14): 5124-5135.
    159. Glicksman MA, Chiu AY, Dinno CA, et al. CEP-1347/KT7515 prevents motor neuronal programmed cell death and injury-induced dedifferentiation in vivo [J]. J Neurobiol, 1998, 35(4): 361-370.
    160. Maroney AC, Glicksman MA, Basma AN, et al. Motoneuron apoptosis is blocked by CEP-1347(KT7515). A novel inhibitor of the JNK signaling pathway [J]. J Neurosci, 1998, 18(1): 104-111.
    161. Kawamura T, Horie S, Maruyama T, et al. Prostaglandin E1 transported into cells blocks the apoptotic signals induced by nerve growth factor deprivation [J]. J Neurochem, 1999, 72(5): 1907-1914.
    162. Harrington AW, Kim JY, Yoon SO. Activation of Rac GTPase by p75 is necessary for c-jnu N-terminal kinase-mediated apoptosis [J]. J Neurosci, 2002, 22(1): 156-166.
    163. Keramaris E, Vanderluit JL, Bahadori M, et al. c-Jun N-terminal kinase 3 deficiency protects neurons from axotomy-induced death in vivo through mechanisms independent of c-Jun phosphorylation [J]. J Biol Chem, 2005, 280(2): 1132-1141.
    164. Gupta S, Campbell D, Derijard B, et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway [J]. Science, 1995, 267(5196): 389-393.
    165. Reimold AM, Grusby MJ, Fries JW, et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice [J]. Nature, 1996, 379(6562): 262-265.
    166. De Bilbao F, Giannakopoulos P, Srinivasan A, et al. In vivo study of motoneuron death induced by nerve injury in mice deficient in the caspasel/interleukin-1 beta-converting enzyme [J]. Neuroscience, 2000, 98(3): 573-583.
    167. Buschmann T, Martin-Villalba A, Kocsis JD, et al. Expression of Jun, Fos, and ATF-2 proteins in axotomized explanted and cultured adult rat dorsal root ganglia [J]. Neuroscience, 1998, 84(1): 163-176.
    168. Vanderluit JL, McPhail LT, Fernandes KJ, et al. Caspase-3 is activated following axotomy of neonatal facial motoneurons and caspase-3 gene deletion delays axotomy-induced cell death in rodents [J]. Eur J Neurosci, 2000, 12(10): 3469-3480.
    169. Stefanis L. Caspase-dependent and - independent neuronal death: two distinct pathways to neuronal injury [J]. Neuroscientist, 2005, 11(1): 50-62.
    170. Cregan SP, Fortin A, MacLaurin JG, et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death [J]. J Cell Biol, 2002, 158(3): 507-517.
    171. Wang H, Yu SW, Koh DW, et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death [J]. J Neurosci, 2004, 24(48): 10963-10973.
    172. Cheung EC, Melanson-Drapeau L, Cregan SP, et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms [J]. J Neurosci, 2005, 25(6): 1324-1334.
    173. Lang-Rollin IC, Rideout HJ, Noticewala M, et al. Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation [J]. J Neurosci, 2003, 23(35): 11015-11025.
    174. Barker PA. P75NTR: A study in contrasts [J]. Cell Death Differ, 1998, 5(5): 346-356.
    175. Bibel M, Hoppe E, Barde YA. Biochemical and functional interaction between the neurotrophin receptors trk and p75NTR [J]. EMBO J, 1999, 18(3): 616-622.
    176. Yoon SO, Casaccia-Bonnefil P, Carter B, et al. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival [J]. J Neurosci, 1998, 18(9): 3273-3281.
    177. Zhou XF, Li WP, Zhou FH, et al. Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: A possible role for the p75 neurotrophin receptor [J]. Neuroscience, 2005, 132(3): 591-603.
    178. Rutishauser U. Adhesion molecules of the nervous system [J]. Curr Opin Neurobiol, 1993, 3(5): 709-715.
    179. Guenard V, Kleitman N, Morrissey TK, et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration [J]. J Neurosci, 1992, 12(9): 3310-3320.
    180. Gu X, Thomas PK, King RH. Chemotropism in nerve regeneration studied in tissue culture [J]. J Anat, 1995, 186(Pt1): 153-163.
    181. Brushart TM. Preferential reinnervation of motor nerves by regenerating motor axons [J]. J Neurosci, 1988, 8(3): 1026-1031.
    182. Madison RD, Archibald SJ, Brushart TM. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons [J]. J Neurosci, 1996, 16(18): 5698-5703.
    183. Madison RD, Archibald SJ, Lacin R, Krarup C. Factors contributing to preferential motor reinnervation in the primate peripheral nervous system [J]. J Neurosci, 1999, 19(24): 11007-11016.
    184. Martini R, Schachner M, Brushart TM. The L2/HNK- 1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves [J]. J Neurosci, 1994, 14(11): 7180-7191.
    185. Nichols CM, Brenner MJ, Fox IK, et al. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration [J]. Exp Neurol, 2004, 190(2): 347-355.
    186. Fawcett JW, Keynes RJ. Peripheral nerve regeneration [J]. Annu Rev Neurosci, 1990, 13: 43-60.
    187. Robinson GA, Madison RD. Motor neurons can preferentially reinnervate cutaneous pathways [J]. Exp Neurol, 2004, 190(2): 407-413.
    188. Tanabe K, Bonilla I, Winkles JA, et al. Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth [J]. J Neurosci, 2003, 23(29): 9675-9686.
    189. Raivich G, Bohatschek M, Da Costa C, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration [J]. Neuron, 2004, 43(1): 57-67.
    190. Broude E, McAtee M, Kelley MS, et al. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy [J]. Exp Neurol, 1997, 148(1): 367-377.
    191. Schreyer DJ, Skene JH. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons [J]. J Neurobiol, 1993, 24(7): 959-970.
    192. Weber JR, Skene JH. The activity of a highly promiscuous AP-1 element can be confused to neurons by s tissue-selective repressive element [J]. J Neurosci, 1998, 18(14): 5264-5274.
    193. Lindwall C, Dahlin L, Lundboeg G, et al. Inhibition of c-Jun phoephorylation reduce axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons [J]. Mol Cell Neurosci, 2004, 27(3): 267-279.
    194. Pearson AG, Gray CW, Pearson JF, et al. ATF3 enhances c-Jun-mediated neurite sprouting [J]. Brain Res Mol Brain Res, 2003, 120(1): 38-45.
    195. Qiu J, Cafferty WB, McMahon SB, et al. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation [J]. J Neurosci, 2005, 25(7): 1645-1653.
    196. Skene JH, Jacobson RD, Snipes GJ, et al. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes [J]. Science, 1986, 233(4765): 783-786.
    197. Vanselow J, Grabczyk E, Ping J, et al. GAP-43 transgenic mice: dispersed genomic sequences confer a GAP-43-like expression pattern during development and regeneration [J]. J Neurosci, 1994, 14(2): 499-510.
    198. Fernandes KJ, Fan DP, Tsui BJ, et al. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M [J]. J Comp Neurol, 1999, 414(4): 495-510.
    199. Matsuura Y, Ochi M, Uchio Y, et al. The time-dependent difference of GAP-43 expression between sensory neurons and motoneurons after peripheral nerve transaction [J]. Scand J Plast Reconstr Surg Hand Surg, 1999, 33(3): 267-272.
    200. Chong MS, Reynolds ML, Irwin N, et al. GAP-43 expression in primary sensory neurons following central axotomy [J]. J Neurosci, 1994, 14(7): 4375-4384.
    201. Lund LM, McQuarrie IG. Axonal regrowth upregulates beta-actin and Jun D mRNA expression [J]. J Neurobiol, 1996, 31(4): 476-486.
    202. Hoffman PN, Cleveland DW. Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype [J]. Proc Natl Acad Sci USA, 1988, 85(12): 4530-4533.
    203. Moskowitz PF, Smith R, Pickett J, et al. Expression of the class III beta-tubulin in gene during axonal regeneration of rat dorsal root ganglion neurons [J]. J Neurosci Res, 1993, 34(1): 129-134.
    204. Miller FD, Tetzlaff W, Bisby MA, et al. Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha 1, during nerve regeneration in adult rats [J]. J Neurosci, 1989, 9(4): 1452-1463.
    205. Jones KJ, Storer PD, Drengler SM, et al. Differential regulation of cytoskeletal gene expression in hamster facial motoneurons: effects of axotomy and testosterone treatment [J]. JNeurosci Res, 1999, 57(6): 817-823.
    206. Lund LM, Machado VM, McQuarrie IG. Increased beta-actin and tubulin polymerization in regrowing axons: relationship to the conditioning lesion effect [J]. Exp Neurol, 2002, 178(2): 306-312.
    207. Bormann P, Zumsteg VM, Roth LW, et al. Target contact regulates GAP-43 and aipha-tubulin mRNA levels in regenerating retinal ganglion cells [J]. J Neurosci Res, 1998, 52(4): 405-419.
    208. Goldstein ME, Weiss SR, Lazzarini RA, et al. mRNA levels of all three neurofilament proteins decline following nerve transaction [J]. Brain Res, 1988, 427(3): 287-291.
    209. Oblinger MM, Szumlas RA, Wong J, et al. Changes in cytoskeletal gene expression affect the composition of regenerating axonal sprouts elaborated by dorsal root ganglion neurons in vivo [J]. J Neurosci, 1989, 9(8): 2645-2653.
    210. Bisby MA, Tetzlaff W. Changes in cytoskeletal protein synthesis following axon injury and during axon regeneration. Mol Neurobiol, 1992, 6(2-3): 107-123.
    211. Huppenbauer CB, Tanzer L, Jones KL. Detection of retrogradely transported WGA-HRP in axotomized adult hamster facial motoneurons occurs after initiation of the axon reaction [J]. J Neurocytol, 2001, 30(11): 907-916.
    212. Bussmann KA, Sofroniew MV. Re-expression of p75NTR by adult motor neurons after axotomy is triggered by retrograde transport of a positive signal from axons regrowing through damaged or denervated peripheral nerve tissue [J]. Neuroscience, 1999, 91(1): 273-281.
    213. Hirata A, Masaki T, Motoyoshi K, et al. Intrathecal adminietration of nerve growth factor delays GAP-43 expression and early phase regeneration of adult rat peripheral nerve [J]. Brain Res, 2002, 944(1-2): 146-156.
    214. Sun Y, Zigmond RE. Leukaemia inhibitory gactor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons [J]. Eur J Neurosci, 1996, 8(10): 2213-2220.
    215. Cavalli V, Kujala P, Klumperman J, et al. Sunday Driver links axonal transport to damage signaling [J]. J Cell Biol, 2005, 168(5): 775-787.
    216. Lee N, Neitzel KL, Devlin BK, et al. STAT3phosphorylation in injured axons before sensory and motor neuron nuclei: potential role for STAT3 as a retrograde signaling transcription factor [J]. J Comp Neurol, 2004, 474(4): 535-545.
    217. Perlson E, Medzihradszky KF, Darula Z, et al. Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injury [J]. Mol Cell Proteomics, 2004, 3(5): 510-520.
    218. Hanz S, Perlson E, Willis D, et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve [J]. Neuron, 2003, 40(6) : 1095-1104.
    219. Perlson E, Hane S, Ben-Yaakov K, et al. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve [J]. Neuron, 2005, 45(5) : 715-726.
    220. Spira ME, Benbassat D, Dormann A. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis [J]. J Neurobiol, 1993, 24(3): 300-316.
    221. Spira ME, Dormann A, Ashery U, et al. Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axon in vitro [J]. J Neurosci Methods, 1996, 69(1): 91-102.
    222. Ziv NE, Spira ME. Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range [J]. J Neurophysiol, 1995, 74(6): 2625-2637.
    223. Godell CM, Smyer ME, Eddleman CS, et al. Calpain activity promotes the serling of severed giant axons [J]. Proc Natl Acad Sci USA, 1997, 94(9): 4751-4756.
    224. Ahmed FA, Ingoglia NA, Sharm SC. Axon resealing following transection takes longer in central axons than in peripheral axons: implications for axonal regeneration [J]. Exp Neurol, 2001, 167(2): 451-455.
    225. Seckel BR. Enhancement of peripheral nerve regeneration [J]. Muscle Nerve, 1990, 13(9): 785-800.
    226. McQuarrie IG, Jacob JM. Conditioning nerve crush accelerate cytoskeletal protein transport in sprouts that form after a subsequent crush [J]. J Comp Neurol, 1991, 305(1): 139-147.
    227. Sjoberg J, Kanje M. The initial period of peripheral nerve regeneration and the importance of the local environment for the conditioning lesion effect [J]. Brain Res, 1990, 529(1-2): 79-84.
    228. Tapia M, Inestrosa NC, Alvarez J. Early axonal regeneration: repression by Schwann cells and a protease [J]? Exp Neurol, 1995, 131(1): 124-132.
    229. Iniguez A, Alvarez J. Isolated axons of Wlds mice regrow centralward [J]. Neurosci Lett, 1999, 268(2): 108-110.
    230. Ziv NE, Spira ME. Localized and transient elevation of intracellular Ca2+ induces the dedifferentiation of axonal segments into growth cones [J]. J Neurosci, 1997, 17(10): 3568-3579.
    231. Gitler D, Spira ME. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation [J]. Neuron, 1998, 20(6): 1123-1135.
    232. Spira ME, Oren R, Dormann A, et al. Caicium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration [J]. Cell Mol Neurobiol, 2001, 21(6): 591-604.
    233. Ziv NE, Spira ME. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity [J]. J Cell Biol, 1998, 140(1): 223-232.
    234. Campenot RB, Eng H. Protein synthesis in axons and its possible functions [J]. J Neurocytol, 2000, 29(11-12): 793-798.
    235. Zheng JQ, Kelly TK, Chang B, et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons [J]. J Neurosci, 2001, 21(23): 9291-9303.
    236. Verma P, Chierzi S, Codd AM, et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration [J]. J Neurosci, 2005, 25(2): 331-342.
    237. Geddis MS, Rehder V. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury [J]. J Neurosci Res, 2003, 74(2): 210-220.
    238. Smith SJ. Neuronal cytomechanics: The actin-based motility of growth cones [J]. Science, 1988, 242(4879): 708-715.
    239. Suter DM, Errante LD, Belotserkovsky V, et al. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling [J]. J Cell Biol, 1998, 141(1): 227-240.
    240. Mallavarapu A, Mitchison T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction [J]. J Cell Biol, 1999, 146(5): 1097-1106.
    241. Frey D, Laux T, Xu L, et al. Shared and unique roles of CAP43 and GAP-43 in actin regulation, neurite outgrowth, and anatomical plasticity [J]. J Cell Biol, 2000, 149(7): 1443-1454.
    242. Meiri KF, Saffell JL, Walsh FS, et al. Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43(GAP-43) function and is associated with GAP-43 phosphorylation in growth cones [J]. J Neurosci, 1998, 18(24): 10429-10437.
    243. Strittmatter SM, Fankhauser C, Huang PL, et al. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43 [J]. Cell, 1995, 80(3): 445-452.
    244. Gaete J, Kameid G, Alvarez J. Regenerating axons of the rat requires a local source of proteins [J]. Neurosci Lett, 1998, 251(3): 197-200.
    245. Bassell GJ, Zhang H, Byrd AL, et al. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture [J]. J Neurosci, 1998, 18(1): 251-265.
    246. Eng H, Lund K, Campenot RB. Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures [J]. J Neurosci, 1999, 19(1): 1-9.
    247. Koenig E, Martin R, Titmus M, et al. Cryptic peripheral ribosomal domain distributed intermittently along mammalian myelinated axons [J]. J Neurosci, 2000, 20(22): 8390-8400.
    248. Willis D, Li KW, Zheng JQ, et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNA in axons [J]. J Neurosci, 2005, 25(4): 778-791.
    249. Brittis PA, Lu Q, Flanagan JG. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target [J]. Cell, 2002, 110(2): 223-235.
    250. Ming GL, Wong ST, Henley J, et al. Adaptation in the chemotactic guidance of nerve growth cones [J]. Nature, 2002, 417(6887) ::411-418.
    251. Vance JE, Campenot RB, Vance DE. The synthesis and transport of lipids for axonal growth and nerve regeneration [J]. Biochim Biophys Acta, 2000, 1468(1): 84-96.
    252. Bourde 0, Kiefer R, Toyka KV, et al. Quantification of interleukin-6 mRNA in wallerian degeneration by competitive reverse transcription polymerase chain reaction [J]. J Neuroimmunol, 1996, 69(1-2): 135-140.
    253. Bolin LM, Verity AN, Silver JE, et al. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury [J]. J Neurochem, 1995, 64(2): 850-858.
    254. Patel TD, Jackman A, Rice FL, et al. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo [J]. Neuron, 2000, 25(2): 345-357.
    255. Tucker KL, Meyer M, Barade YA. Neurotrophins are required for nerve growth during development [J]. Nat Neurosci, 2001, 4(1): 29-37.
    256. Johnson EM Jr, Taniuchi M, DiStefano PS. Expression and possible function of nerve growth factor receptors on Schwann cells [J]. Trends Neurosci, 1988, 11(7): 299-304.
    257. Cao X, Shoichet MS. Investigation the Synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth [J]. Neuroscience, 2003, 122(2): 381-389.
    258. Kapur TA, Shoichet MS. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth [J]. J Biomed Mater Res A, 2004, 68(2): 235-243.
    259. Song HJ, Ming GL, Poo MM. cAMP-induced switching in turning direction of nerve growth cones [J]. Nature, 1997, 388(6639) :275-279.
    260. Zhang JY, Luo XG, Xian CJ, et al. Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents [J]. Eur J Neurosci, 2000, 12(12): 4171-4180.
    261. Previtali SC, Nodari A, Taveggia C, et al. Expression of laminin receptors in Schwann cell differentiation: evidence for distinct roles [J]. J Neurosci, 2003, 23(13): 5520-5530.
    262. Diamond J, Foerster A, Holmes M, et al. Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF [J]. J Neurosci, 1992, 12(4): 1467-1476.
    263. Liu RY, Snider WD. Different signaling pathways mediate regenerative versus deveiopmental sensory axon growth [J]. J Neurosci, 2001, 21(17): RC164.
    264. Cafferty WB, Gardiner NJ, Gavazzi I, et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons [J]. J Neuroci, 2001, 21(18): 7161-7170.
    265. Streppel M, Azzolin N, Dohm S, et al. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve [J]. Eur J Neurosci, 2002, 15(8): 1327-1342.
    266. Smith DS, Skene JHP. A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth [J]. J Neurosci, 1997, 17(2): 646-658.
    267. Giancotti FG, Ruoslahti E. Integrin signaling [J]. Science, 1999, 285: 1028-1032.
    268. McKerracher L, Chamoux M, Arregui CO. Role of laminin and integrin interaction in growth cone guidance [J]. Mol Neurobiol, 1996, 12(2): 95-116.
    269. Gomez TM, Robles E, Poo M, et al. Filopodial calcium transients promote substrate-dependent growth cone tuening [J]. Science, 2001, 291: 1983-1987.
    270. Wildering WC, Hermann PM, Buiioch AG. Rapid neuromodulatory actions of integrin ligands [J]. J Neurosci, 2002, 22(7): 2419-2426.
    271. Le Beau JM, Liuzzi FJ, Depto AS, et al. Up-regulation of laminin B2 gene expression in dorsal root ganglion neurons and nonneuronal cells during sciatic nerve regeneration [J]. Exp Neurol, 1995, 134(1): 150-155.
    272. Martini R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves [J]. J Neurocytol, 1994, 23(1): 1-28.
    273. Werner A, Willera M, Jones LL, et al. Impaired axonal regeneration in alpha7 integrin-deficient mice [J]. J Neurosci, 2000, 20(5): 1822-1830.
    274. Vogelezang MG, Liu Z, Relvas JB, et al. Alpha4 integrin is expressed during peripheral nerve regeneration and enhances neurite outgrowth [J]. J Neurosci, 2001, 21(17): 6732-6744.
    275. Condic ML, Letourneau PC. Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth [J]. Nature, 1997, 389: 852-856.
    276. Chen ZL, Strickland S. Laminin gammal is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve [J]. J Cell Biol, 2003, 163(4): 889-899.
    277. Atwal JK, Massie B, Miller FD, et al. The Trk-Shc site signals neuronal survival and local axon growth via MEK and PI-3-kinase [J]. Neuron, 2000, 27(2): 265-277.
    278. Kuruvilla R, Ye H, Ginty DD. Spatially and functionally distinct roles of the PI-3-K effector pathway during NGF signaling in sympathetic neurons [J]. Neuron, 2000, 27(3): 499-512.
    279. Aubert I, Ridet JL, Gage FH. Regeneration in the adult mammalian CNS: guided by development [J]. Curr Opin Neurobiol, 1995, 5: 625-635.
    280. Cai D, Shen Y, De Bellard M, et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism [J]. Neuron, 1999, 22(1): 89-101.
    281. Edstrom A, Ekstrom PA. Role of phosphatidylinositol 3-kinase in neuronal survival and axonal outgrowth of adult mouse dorsal root ganglia explants [J]. J Neurosci Res, 2003, 74(5): 726-735.
    282. Svensson B, Ekstrom PA, Edstrom A. Increased levels of mitogen activated protein kinase (MAP-K) detected in the injured adult mouse sciatic nerve [J]. Neurosci Lett, 1995, 200(1): 33-36.
    283. Schwaiger FW, Hager G, Schmitt AB, et al. Peripheral but not central axotomy induce changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT) [J]. Eur JNeurosci, 2000, 12(4): 1165-1176.
    284. Sim FJ, Zhao C, Li WW, et al. Expression of the POU-domain transcription factors SCIP/0ct-6 and Brn-2 is associated with Schwann cell but not oligodendrocyte remyelination of the CNS [J]. Mol Cell Neurosci, 2002, 20(4): 669-682.
    285. Mandemakers W, Zwart R, Jaegle M, et al. A distal Schwann cell - specific enhancer mediates axonal regulation of the Oct-6 transcription factor during peripheral nerve development and regeneration [J]. EMBO J, 2000, 19(12): 2992-3003.
    286. Esper RM, Loeb JA. Rapid axoglial signaling mediated by neuregulin and neurotrophic factors [J]. J Neurosci, 2004, 24(27): 6218-6227.
    287. Garratt AN, Voiculescu 0, Topilko P, et al. A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool [J]. J Cell Biol, 2000, 148(5): 1035-1046.
    288. Michailov GV, Sereda MW, Brinkmann BG, et al. Axonal neuregulin-1 regulates myelin sheath thickness [J]. Science, 2004, 304: 700-703.
    289. Zanazzia G, Einhebera S, Westreicha R, et al. Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination [J]. J Cell Biol, 2001, 152(6): 1289-1300.
    290. Colognato H, Baron W, Avellana-Adalid V, et al. CNS integrins switch growth factor signaling to promote target-dependent survival [J]. Nat Cell Biol, 2002, 4(11): 833-841.
    291. Akassoglou K, Yu WM, Akpinar P, et al. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation [J]. Neuron, 2002, 33(6): 861-875.
    292. Akassoglou K, Akpinar P, Murray S, et al. Fibrin is a regulator of Schwann cell migration after sciatic nerve injury in mice [J]. Neurosci Lett, 2003, 338(3): 185-188.
    293. Chernousov MA, Carey DJ. AlphaVbeta8 integrin is a Schwann cell receptor for fibrin [J]. Exp Cell Res, 2003, 291(2): 514-524.
    294. Uziyel Y, Hall S, Cohen J. Influence of laminin-2 on Schwann cell-axon interaction [J]. Glia, 2000, 32(2): 109-121.
    295. Fragoso G, Robertson J, Athlan E, et al. Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell [J]. Exp Neurol, 2003, 183(1): 34-46.
    296. Melendez-Vasquez CV, Einheber S, Salzer JL. Rho kinase regulates Schwann cell myelination and formation of associated axonal domains [J]. J Neurosci, 2004, 24(16): 3953-3963.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.