铣床主轴系统刚柔耦合多体动力学建模与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、高效、载荷/质量比大、精密复杂的机械系统已成为研发、生产现代机床产品的主流。高速加工或准高速加工要求机床系统具有很好的动态特性,以满足现代生产力、精度和可靠性的要求。在实际工程中,机床系统的加工性能在很大程度上取决于主轴系统的动态响应特性和可靠性。
     本文结合云南省省院省校合作项目“共建昆明铣床厂产品开发技术创新中心”,以有限元法和刚柔耦合多体系统动力学方法为基础,提出基于修正的C-B模态集成耦合法的动力学仿真模型,预估刚柔耦合多体主轴系统的动态响应的分析方法。该方法可以有效地解决考虑多动态参数激励的主轴系统的动态响应问题,仿真结果为机床主轴系统的动态设计和分析研究主轴系统的动态响应特性提供重要的参考数据和理论依据。
     本文在铣床主轴系统的协同设计与仿真的数据交换、主轴多体系统的刚柔耦合动力学建模、角接触球轴承3D接触动力分析、主轴—轴承部件耦合固有特性和动力响应分析、刚柔耦合多体主轴系统的动力分析等几个方面进行了较全面、系统、深入的数值分析和应用研究。
     基于Hertz接触理论,建立了角接触球轴承的接触动力学模型,提出考虑摩擦力、离心力和陀螺力矩作用的角接触球轴承3D接触动力学分析的方法;利用修正的Craig-Bampton模态集成耦合法,建立主轴—轴承部件耦合的动力分析模型,进行固有特性分析和受迫振动分析。利用文献[91]的模态试验数据验证了分析模型和计算结果的正确性。从总体上看,刚柔耦合多体主轴系统的动态响应具有周期性和稳定性,说明其具有较好的动态性能。
     分析出铣床主轴4000rpm的转速频率不会激起主轴系统的共振响应;在同转速条件下,刀具为6齿端铣刀时的切削力激励频率并不在主轴系统的安全频率范围。垂直主轴功率实验工况Ⅰ的切削深度为2/3最大值和切削深度为最大值两种边界条件下,柔性主轴最大径向振动位移值均在结点1处的刀具端。该位移值相对较大,具有较强的周期性,说明主轴系统具有较好的动态性能。主轴转速为4000rpm,柔性主轴结点1处的刀具端径向振动的位移值比柔性主轴—轴承部件的径向振动位移值大。刚柔耦合多体主轴系统的振动速度和加速度响应特性,表明柔性主轴具有较大的振动速度和加速度,尤其是冲击加速度,因此,铣床并不适合在4000rpm下,使用6齿刀具进行实际的零件加工。
Nowadays the mainstream of research and manufacture of machine tools is mechanical system which has high speed, effect, rate of load and mass, precise and complex properties. From the desire of modern productivity, precision and reliability, High or simi-high Speed Machining requires mechanical systems with high dynamic properties. However, the machining capability of mechanical systems almost depends on the dynamic response properties and reliability of Spindle systems in many engineerings.
     Based on the co-project of "Establishing Technique Center of Kunming Mill Machine Factory", accomplished by Yunnan Province and Kunming University of Science and Technology, the Spindle system dynamic model was analyzed according to Finite Element Method, Multi-bodies Flexible System Dynamics and the modified modal integral coupling method of Craig-Bampton. A numerical method on forecasting the dynamic response of multi-bodies flexible spindle system effectively was given by this dissertation. The new method can effectively deal with the dynamic response of spindle system with multi-dynamic parameters excitation and the simulation results provide basic data for Spindle system dynamic design and valuable theoretical basis for further research on dynamic response of Spindle system.
     The numerical analysis and its application were comprehensively and systematically studied. It's about co-design and simulation of Spindle system of milling machine, modeling the rigid and flexible coupling Spindle system, dynamic contact analysis of angular contact ball bearing, analysis on the inherent characteristics and dynamic response of spindle and bearing coupling model, dynamic analysis on multi-bodies flexible Spindle system.
     The contact dynamic model and numerical method of angular contact ball bearing was proposed on the basis of the theory of Hertz Contact Dynamic with the effect of speed, axis and radial preload, friction and centrifugal force. The coupled dynamic model of spindle and bearing was proposed on the basis of the modified modal integral coupling method of Craig-Bampton. Accomplish analysis on the inherent characteristics and dynamic response and validate the correctness of the analysis model and results with the data of EAM in the literature [91]. As a whole, the dynamic response of multi-bodies flexible Spindle system takes on periodicity and stability, the results indicate that it has preferable dynamic properties.
     From the results, we know the speed frequency is safe from triggering off the resonance of Spindle system, but the frequency of cutting force with six tooth-end milling cutter is out of the safe frequency range of Spindle system. Under two special conditions about the power experiment of the vertical Spindle, the cutting depth are 2/3 of max and max, the max displacements of radial vibration of the flexible spindle are both at the milling cutter, NODE ONE. The displacements is relatively big and having strong circles. It supports the Spindle has goog properities. Under the speed 4000rpm, the max displacement of radial vibration of the flexible spindle is at the milling cutter, NODE ONE. It's more than that of flexible spindle and bearing model. However, the velocity and acceleration of the Spindle vibration are much bigger and support this miling machine may not be suitable for working at the speed 4000rpm using six teeth cutting.
引文
[1] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用—建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社.2004.1
    [2] 杨萧,唐恒龄,廖伯瑜.机床动力学(Ⅰ).机械工业出版社.1983
    [3] 杨萧,唐恒龄,廖伯瑜.机床动力学(Ⅱ).机械工业出版社.1983
    [4] 郭策,蒋书运,孙庆鸿等.高速切削机床主轴轴承的研究与发展.机床与液压.2002(6):11-15
    [5] 杨军,郭力,卿红.机床高速电主轴原理与应用.机床与液压.2001(4):43-46
    [6] Ron Mecoy. Virtual Prototyping: The Practical Solution Inventor' Digest, May June 1998
    [7] 张耀满,王旭东,宋华福等.高速高精度机床运动仿真及其进给加速度测量.机械研究与应用.2004.17(3):19-21
    [8] 胡如夫,吴南星,孙庆鸿.机械结构虚拟优化设计技术与应用研究.中国工程科学.2004.6(10):47-48
    [9] 益科.高速加工技术的应用和发展前景.工具展望.2003(5):7-10
    [10] 姚华.数控机床高速电主轴的研究进展.机床与液压.2004(2):5-8
    [11] De-Ing.H.Shulz.高速加工发展概况[J].机械制造与自动化.2002(1):4-8
    [12] Ezugwu, E. O. High Speed Machining of Aero-Engine Alloys[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2004. 26(1): 1-11
    [13] Ezugwu, E. O. High Speed Machining of Aero-Engine Alloys[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2004. 26(1): 1-4
    [14] 蒙艳玫,李尚平,刘正士等.虚拟样机技术及其在创新产品开发中的应用.广西科学.2001.8(4):256-259
    [15] 王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社.2002
    [16] 韩西,钟厉,廖伯瑜.卧式镗床主轴系统建模的研究[J].重庆交通学院学报.1997.16(2):1-8
    [17] Y. Kang, Y. P. Chang, Integrated CAE strategies for the design of machine tool spindle-bearing systems[J]. Finite Element in Analysis and Design. 2001. 37: 485-511
    [18] Jorgensen, Bert R., Shin, Yung C. Dynamics of spindle-bearing systems at high speeds including cutting load effects. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 1998.120(2): 387-394
    [19] 毛海军.新一代数控内圆磨床的动力学建模与优化[D]:[博士学位论文].南京:东南大学机械工程系.2001
    [20] 陈新,孙庆鸿,毛海军等.基于接触单元的磨床螺栓连接面有限元建模与模型修正.中国机械工 程.2001.5.12(5):524-526
    [21] 郭策.高速高精度数控车床主轴系统的动态与热态特性研究[D]:[博士学位论文].南京:东南大学机械工程系.2003
    [22] 方建军,刘仕良.机械动态仿真与工程分析.化学工业出版社,2004
    [23] Bert R Jorgensen, Yung C Shin. Dynamics of Spindle-Beating Systems at High Speeds Including Cutting Load Effects[J]. Transactions of the ASME Journal of Manufacturing Science and Engineering. 1998. 120: 387-394
    [24] Al-Shareef, K. J. H, Bmndon, J. A. On the effects of variations in the design parameters on the dynamic performance of machine tool spindle-bearing systems[J]. International Journal of Machine Tools& Manufacture. 1990. 30(3): 431-445
    [25] A M Sharon. Dynamic Behavior of lathe Spindles with Elastic Supports including Damping by Finite Element Analysis[J]. Shock and Vibration Bulletin. 1981. (51): 83-97
    [26] W R Wang, C N Chang. Dynamic Analysis and Design of a Machine Tool Spindle-Bearing System[J]. ASME Journal of Vibration and Acoustics. 1994. 116(7): 280-285
    [27] K W Wang, Y C Shin,C H Chen. On the natural frequencies of high-speed spindles with angular contact bearings[C]. Proceedings of the Institution of Mechanical Engineers Part C: Mechanical Engineering Science 1991. 205(3): 147-154
    [28] M Week.金属切削机床的动态特性.机械工业出版社.1985
    [29] 杨家华.立铣立柱的实验模态分析.北京工业大学学报.1991.17(4):48-53
    [30] 杨家华.机床主轴部件有限元计算若干问题的研究[J].北京工业大学学报.1990.16(2):89-96
    [31] 杨家华,黄旭东,费仁元等.主轴组件振动模态的分析[J].北京工业大学学报.1993.19(2):89-95
    [32] Tony L. Schmitz. Shrink fit tool holder connection stiffness/damping modeling for frequency response prediction in milling. International Journal of Machine Tools and Manufacture. 2006 (2): 1-13
    [33] Velagala R Reddy, Anand M Sharan. The Finite Element Modeled Design of Lathe Spindles: The Static and Dynamic Analyses[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design. 1987. 109: 407-415
    [34] Tony L. Schmitz. Tool Point Frequency Response Prediction for High-Speed Machining by RCSA Journal of Manufacturing Science and Engineering. 2001. 123
    [35] 吴南星,孙庆鸿.数控车床多体系统振动特性研究.应用科学学报.2003.23(5):230-234
    [36] 郭策,孙庆鸿.高速高精度数控车床主轴双转子系统的动力特性计算.精密制造与自动化.2003.B9:50-52
    [37] 邱国富.数控机床进给系统的研究[D]:[硕士学位论文].东北:东北大学.2006
    [38] 王培功.XK717数控铣床进给传动系统的动力学建模及动态优化设计[D]:[硕士学位论文].浙江: 浙江工业大学.2005
    [39] 吴南星.高速高精度数控车床结构动力学特性与仿真技术研究[D]:[博士学位论文].南京:东南大学.2004
    [40] 吴晖.专用机床主轴系统及传动系统数值仿真研究[D]:[硕士学位论文].兰州:兰州理工大学.2003
    [41] A. Kahmman and R. Singh. Non-Linear Dynamics of a Spur Gear Pair. Journal of Sound and Vibration. 1991.144(3): 469-506
    [42] A. Kahraman and R. Singh. Interactions between Time-Varying Mesh Stiffness and Clearance Non-linearities in a Geared system. Journal of Sound and Vibration. 1991.146(1): 135-156
    [43] H. N. Ozguven. A Non-linear Mathematical Model for Dynamic Analysis of Spur Gears Including Shaft and Bearing Dynamics. Journal of Sound and Vibration. 1991.145(2): 239-260
    [44] 夏伯乾.齿轮耦合多平行转子—轴承系统动力学及其应用的研究[D]:[博士学位论文].西安:西安交通大学.1998
    [45] Chin-Shong Cen, S. Natsiavs, H. D. Nelson. Coupled Lateral-Torsional Vibration of a Gear-Pair System Supported by a Squeeze Film Damper. ASME Journal of Vibration and Acoustics. 1998.10.120:860-867
    [46] 张建云,齿轮传动对多平行转子—轴承系统动力学特性影响的研究[D]:[博士学位论文].西安:西安交通大学.1999
    [47] 余光伟,多平行转子—轴承—转子系统耦合振动的有限元分析[D]:[博士学位论文].上海:上海大学.1999
    [48] 陈小川等.虚拟制造技术研究概况综述.机械制造.1998.(12):8-10
    [49] 熊光楞,李伯虎,柴旭东.虚拟样机技术.系统仿真学报.2001.13(1):114-117
    [50] 赵雯,王维平,朱一凡等.协同虚拟样机技术研究.系统仿真学报.2001.1
    [51] 郝云堂,金烨,李辉.虚拟样机技术及其在ADAMS中的实践.机械设计与制造.2003.7(3):16-19
    [52] 郑建荣.ADAM虚拟样机技术入门与提高[M].北京:机械工业出版社.2002
    [53] MSC.Software著 邢俊文 陶永忠译.MSC.ADAMS/VIEW基础培训教程.清华大学出版社.2004
    [54] MSC.Software著 邢俊文 陶永忠译.MSC.ADAMS/VIEW高级培训教程.清华大学出版社.2004
    [55] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安工业大学出版社.1999
    [56] 李军,邢俊文等.ADAMS实例教程.北京理工大学出版社.2002.7
    [57] 刘国庆,杨庆东.ANSYS工程应用教程.中国铁道出版社.2004
    [58] 思科技产品研发中心编著.MATLAB 7辅助控制系统设计与仿真飞.电子工业出版社.2005
    [59] 思科技产品研发中心编著.MATLAB 7基础与提高.电子工业出版社.2005
    [60] 张森,张正亮等编著.MATLAB仿真技术与实例应用教程.机械工业出版社.2004
    [61] T. C. Lim, R. Singh, Vibration transmission through rolling element bearings, part Ⅰ: bearing stiffness formulation, Journal of Sound and Vibration 139 (2) (1990) 179-199
    [62] T. C. Lim, R. Singh, Vibration transmission through rolling element beatings, part Ⅱ: system studies, Journal of Sound and Vibration 139 (2) (1990) 201-225
    [63] T. C. Lim, R. Singh, Vibration transmission through rolling element beatings, part Ⅲ: geared rotor system studies, Journal of Sound and Vibration 151 (1) (1991) 31-54
    [64] T. C. Lim, R. Singh, Vibration transmission through rolling element beatings, part Ⅳ: statistical energy analysis, Journal of Sound and Vibration 153 (1) (1992) 37-50
    [65] T. C. Lim, R. Singh, Vibration transmission through rolling element bearings, part Ⅴ: effect of distributed contact load on roller bearing stiffness matrix, Journal of Sound and Vibration 169 (4) (1994) 547-553
    [66] H. V Liew, T. C. Lim, Analysis of time-varying rolling element bearing characteristics, Journal of Sound and Vibration 283 (2005) 1163-1179
    [67] Johnson K L.接触力学[M].徐秉业,等译.北京:高等教育出版社,1992.(Johnson K L.Contact Mechanics[M]. Cambridge University Press, 1985. (in Chinese))
    [68] 彼得.艾伯哈特,胡斌.现代接触动力学.东南大学出版社.2003.6
    [69] 袁士杰 吕哲勤.多刚体系统动力学.北京理工大学出版社.1992
    [70] 陈乐生 王以伦.多刚体动力学基础.哈尔滨工程大学出版社.1995
    [71] J·维滕伯格.多刚体系统动力学.北京航空学院出版社.1986
    [72] E·J·Hang.机械系统的计算机辅助运动学和动力学.高等教育出版社.1996
    [73] Craig R. R. and Bampton. M. C. C. Coupling of Substructures for Dynamics Analyses. AIAA Journal. 1968. 6(7): 1313-1319
    [74] Ottarsson Gisli. Modal Flexibility Method in ADAMS/Flex. March 31, 1998; provided with the ADAMS/Flex documentation or available from MDI Inc. in pdf format.
    [75] 刘锦阳 洪嘉振.柔性体的刚—柔耦合动力学分析.固体力学学报.2002.6.23(2):159-166
    [76] 阳光武,肖守讷,金鼎昌.柔性物体对系统的动力学影响分析.机床与液压.2005f4):49-55
    [77] 费从宇 黄文虎等.有限柔度多柔体系统刚柔耦合运动分析.振动工程学报.1995.9.8(3):212-218
    [78] 李晶 李明瑞 黄文彬.刚柔耦合约束多体系统的动力分析.力学学报.1994.5.26(3):333-340
    [79] 刘锦阳 洪嘉振.刚-柔耦合动力学系统的建模理论研究.力学学报.2002.5.34(3):408-415
    [80] 王建明 洪嘉振 刘又午.刚柔耦合系统动力学建模新方法.振动工程学报.2003.6.16(2):194-197
    [81] 洪嘉振 尤超蓝.刚柔耦合系统动力学研究进展.动力学与控制学报.2004.6.2(2):1-6
    [82] 于清 洪嘉振.刚柔耦合多体系统动力学的若干热点问题.力学进展.1999.5.29(2):145-154
    [83] 杨辉 洪嘉振 余征跃.刚柔耦合多体系统动力学实验研究综述.力学进展.2004.5.34(2):171-181
    [84] 阎绍泽 季林红 范晋伟 刘又午.柔性机械系统动力学的变形耦合方法.机械工程学报.2001.8.37.(8):1-4
    [85] 黄文虎 邵成勋等.多柔体系统动力学.科学出版社.1996
    [86] 陆佑方.刚柔耦合多体系统动力学.高等教育出版社.1996
    [87] 洪嘉振.计算多体系统动力学.高等教育出版社.1999
    [88] 王建明 刘又午 刘才山 张大钧.动力刚化多体系统动力学.非线性动力学学报.1996.12.3(4):351-359
    [89] 杨辉 洪嘉振 余征跃.动力刚化问题的实验研究.力学学报.2004.1.36(1):118-123
    [90] 洪嘉振 蒋丽忠.动力刚化与多体系统刚—柔耦合动力学.计算力学学报.1999.8.16(3):295-301
    [91] 朱守寨.数控万能工具铣床XK8140主轴结合部等效动力学参数识别[D]:硕士学位论文.昆明:昆明理工大学,2006
    [92] 杨广勇 王育民.金属切削原理与刀具[M].北京理工大学出版社.1994.8
    [93] 高利.数控万能工具铣床XK8140主轴系统数字样机的建立与动力学分析[D]:硕士学位论文.昆明:昆明理工大学,2006
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.