生长激素联合辅酶Q_(10)治疗心力衰竭的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 通过建立阿霉素扩张型心肌病(Adriamycin-induced dilated cardiomyopathy,Adr-DCM)心力衰竭大鼠模型,探讨重组人生长激素和重组人生长激素联合辅酶Q10对其的治疗作用。方法 Wistar大鼠50只,雄性,随机分成4组,每组12~13只。随机抽出一组(12只)为正常对照组;其余为实验组。实验组按阿霉素2.5 mg·kg–1·次–1,腹腔注射,每周3次,连续4周;正常对照组腹腔注射等量生理盐水。实验组4周后再随机分成阿霉素对照组、重组人生长激素治疗组(生长激素组)和重组人生长激素联合辅酶Q10治疗组(联合治疗组)三个亚组。正常对照组和实验组4周后超声心动图检测大鼠左室舒张期末内径(LVED),左室收缩期末内径(LVES),左室舒张期末左室后壁厚度,左室内径缩短率(FS),左室射血分数(LVEF)。生长激素按0.5 mg·kg–1·次–1,每天1次,腹腔注射,连续2周;辅酶Q10 30 mg·kg–1·
    次–1,每天1次,灌胃,连续2周。治疗2周后,正常对照组和实验组再进行超声心动图检查,然后进行有创导管和生理记录仪检查,测大鼠右心房压、右心室压、主动脉压、左室内压峰值(LVSP)、左室等容收缩期压力最大上升速率(+dp/dtmax)、左室舒张末压(LVEDP)和左室舒张期压力下降最大速率(-dp/dtmax);并测量大鼠的左室内径和左室游离壁厚度,左、右心室重量和全心室总重量。大鼠左心室肌组织HE染色观察组织病理改变,V-G染色检测心肌胶原纤维及胶原容积分数(CVF)。结果 (1)实验组经阿霉素腹腔注射4周后,35只 Wistar大鼠完成Adr-DCM造模过程,实验组完成药物干预2周后,阿霉素对照组、生长激素组和联合治疗组的Adr-DCM 大鼠数目分别是9、8和9只。正常对照组12只大鼠完成实验。(2)与正常对照组相比,阿霉素对照组的大鼠心脏左室舒张期末内径明显增大(7.00±0.50比6.50±0.33 mm,P<0.01);而且左室收缩期末内径亦明显增大(4.60±0.34比3.40±0.42 mm,P<0.01);其左室内径缩短率明显下降(33.86%±3.04%比47.39%±4.96%,P<0.01);左室射血分数也明显下降(65.61%±3.75%比82.56%±6.40%,P<0.01);而舒张期末左室后壁厚度则减少(1.44±0.15比1.74±0.33 mm,P<0.01)。阿霉素对照组大鼠6周与4周的左室射血分数相比降低(71.04%±4.71%比65.61%±3.75%,P<0.05),左室内径缩短率亦降低
    
    
    (39.22%±4.35%比33.86%±3.04%,P<0.05)。与正常对照组相比,阿霉素对照组大鼠左室舒张末压增加(P<0.01),左室内压峰值下降(P<0.01),左室压力最大上升速率下降(P<0.01),左室压力最大下降速率减少(P<0.01)。有创导管测压阿霉素对照组与正常对照组相比右室压力增加(P<0.01),而右心房压力变化不明显(P>.05)。阿霉素对照组大鼠在心脏大体病理标本测量上左室内径增加(P<0.01),左室游离壁变薄(P<0.01),左室重量指数增加(P<0.05),阿霉素对照组大鼠心室肌组织HE染色观察见心肌细胞肥大,胞浆灶性溶解,有不同程度的颗粒变性与空泡变性,细胞核增大、分裂、畸形,细胞间隙增宽。V-G染色见阿霉素对照组大鼠心肌组织间质胶原纤维明显增多,其胶原容积分数CVF(%)较正常对照组明显增加(P<0.01)。(3)生长激素组与正常对照组相比,左室收缩期末内径明显增大(P<0.01),左室射血分数、左室内径缩短率、舒张期末左室后壁厚度减少(分别P<0.05);左室内压峰值、左室压力最大上升速率、左室压力最大下降速率均明显降低(分别P<0.01),左室舒张末压增加(P<0.01);右心房压力、右室压力、左室内径、左室游离壁厚度、左室重量指数均无明显差异(均为P>0.05);胶原容积分数增加(P<0.05)。生长激素组和阿霉素对照组相比,左室射血分数和左室内径缩短率增加(分别P<0.01和<0.05),左室舒张期末内径和左室收缩期末内径均缩小(分别P<0.05和<0.01);而舒张末期左室后壁厚度变化不明显(P>.05)。左室内压峰值增加(P<0.05),左室舒张末压减少(P<0.05),左室压力最大上升速率增加(P<0.01),左室压力最大下降速率增加(P<0.01)。有创导管测压生长激素组与阿霉素对照组相比,右心房压力变化不明显(P>0.05),右心室压力减少(P<0.05)。其左室内径减少(P<0.05),左室游离壁厚度和左室重量指数变化不明显(P>.05),左室胶原容积分数亦改变不明显(P>0.05)。(4)联合治疗组与正常对照组相比,舒张期末左室后壁厚度减少(P<0.05),左室收缩期末内径、左室舒张期末内径、左室射血分数、左室内径缩短率均无明显差异(分别P>0.05)。左室内压峰值、左室压力最大上升速率、左室压力最大下降速率均明显降低(分别P<0.01),左室舒张末压增加(P<0.01);右心房压力、右室压力、左室内径、左室游离壁厚度、左室重量指数均无明显差异(均为P>0.05);胶原容积分数增加(P<0.05)。联合治疗组与阿霉素对照组相比,左室收缩期末内径和左室舒张期末内径明显减少(分别P<0.01和P<0.05),左室射血分数、左室内径缩短率增加(分别P<0.01),
    
    
    舒张期末左室后壁厚度无明显差异(P>.05);左室内压峰值、左室压力最大上升速率、左室压力最大下降速率均明显增加(分别P<0.01),左室舒张末?
Objective To establish the rat model of heart failure using adriamycin-induced dilated cardiomyopathy (Adr-DCM), and to compare the effects of human recombinant growth hormone (hr-GH) alone and hr-GH added coenzyme Q10 (Co Q10).
    Methods Fifty male Wistar rats were randomly divided into four groups: normal control group, Adr control group, hr-GH group, and hr-GH added Co Q10 group. The rats in the latter three groups were treated with adriamycin (2.5mg/kg body weight per day, ip) for 4 weeks. The rats in normal control group received an equal volume of normal saline for six weeks. After 4 weeks, left ventricular dimension and cardiac function were studied by echocardiogram in all animals. Then, the rats in Adr control group, hr-GH group, and hr-GH added Co Q10 group received an equal volume of normal saline alone, hr-GH (0.5mg/kg per day, ip), and hr-GH (0.5mg/kg per day, ip) added Co Q10 (30mg/kg per day, with stomach-tube) for two weeks, respectively. After 6 weeks, left ventricular dimension and cardiac function in all rats were detected by echocardiogram. Right atrial pressure and right ventricular pressure were measured by invasive catheter, and the changes of hemodynamics were recorded by physiological signal recording instrument. Left ventricular interior diameter and the thickness of left ventricular free wall were measured after all rats were killed. Myocardial collagen network remodeling was observed by Van Gieson stain and collagen volume fraction (CVF) was calculated by pathological imagine analysis system.
    Results (1)After finish of the experiment, the number of rats in normal control group, Adr control group, hr-GH group, and hr-GH added Co Q10 group is 12, 9, 8 and 9, respectively; (2)Left ventricular end-diastolic diameter (LVED) and left ventricular end-systolic diameter (LVES) in Adr control group were significant larger than those in normal control group (7.00±0.50 vs. 6.50±0.33 mm, P<0.01
    
    
    and 4.60±0.34 vs. 3.40±0.42 mm, P<0.01; respectively). Left ventricular end-diastolic pressure (LVEDP), right ventricular pressure (RVP), Left ventricular interior diameter, and collagen volume fraction (CVF) in Adr control group were also significant higher than those in normal control group (10.8±2.3 vs. 1.4±0.4 mmHg, P<0.01; 24.7±5.1 vs. 19.2±4.5 mmHg, P<0.01; 3.54±0.39 vs. 2.91±0.2 mm, P<0.01; and 18.26%±3.93% vs. 12.06%±3.86%, P<0.01; respectively). On the contrary, the left ventricular ejection fraction (LVEF), the fraction shortening (FS), left ventricular systolic maximum pressure (LVSP), the maximum rate of ventricular pressure rise (+dp/dtmax) and fall (-dp/dtmax) in Adr control group were significant lower than those in normal control group (65.61%±3.75% vs. 82.56±6.4%, P<0.01; 33.86%±3.04% vs. 47.39%±4.96%, P<0.01; 78.7±8.3 vs. 119±10.5 mmHg, P<0.01; 1038±618 vs. 5185±840 mmHg/s, P<0.01; and 934±494 vs. 3817±506 mmHg/s, P<0.01; respectively). The thickness of left ventricular retral wall in end-diastolic and the thickness of left ventricular free wall in Adr control group were also significant less than those in normal control group (1.44±0.15 vs. 1.74±0.33 mm, P<0.01 and 2.65±0.31 vs. 3.07±0.27 mm, P<0.01; respectively). But there is no significant difference of right atrial pressure between two groups (P>0.05). The LVEF and FS at six weeks in Adr control group were lower than those at four weeks (P<0.05). Cardiac myocyte hypertrophy accompanied with nucleus augmentation, differentiation and defferiation. There were spot lysis, granular degeneration and vacuolation in the myocytic plasm. The intercellular space became enlargement. Those were observed in the rat myocardium in all samples in Adr control group, but not occurred in the normal control group. As compared with normal control group, the quantity of myocardium interstitial collagen fibers and CVF were increased significantly in Adr control group (18.26%±3.93% vs. 12.06%±3.86%, P<0.01), but there were no differences among the three subgroups (P>0.05). (3) The LVES, LVEDP, and CVF in hr-GH group were sign
引文
1 Yang R, Bunting S, Gillett N, et al. Growth hormone improves cardiac performance in experimental heart failure. Circulation, 1995, 92(2): 262-267.
    2 Hussain MA. Growth hormone for failing heart .J Eur Endocrinol, 1998,139(5):476-478.
    3 Caidahl K, Eden S, Bengtsson BA. Cardiovascular and renal effects of growth hormone. Clin Endocrinol,1994,40(3):393-400.
    4 Fazio S, Sabatini D, Capaldo B, et al. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med, 1996,334(13):809-814.
    5 Volterrani M, Desenzani P, Lorusso R, et al. Haemodynamic effects of intravenous growth hormone in congestive heart failure. Lancet,1997,349:1067-1068.
    6 Gomberg MM, Frishman WH, Bronx NY. Recombinant growth hormone: A new cardiovascular drug therapy. Am Heart J, 1996,135(6):1243-1262.
    7尹瑞兴, 赵定菁. 生长激素治疗心力衰竭研究进展. 临床心血管病杂志, 2000,16(2):93-95.
    8 Dreifuss P. Treatment of end stage dilated cardiomyopathy with growth hormone. Z Kardiol,1998,87(6):425-435.
    9 赵建美, 蒋晓天, 徐美玉. 阿霉素心肌病发病机理的实验研究. 南通医学院学报, 1999,19(2):160-161.
    10 杨萍, 孟繁波, 祝金明, 等. 人重组生长激素对充血性心力衰竭猪强心作用的实验研究. 中国老年学杂志, 2003,23(1):47-49.
    11 李贞子, 张伟才, 张殿清, 等. 实验性心肌损伤与能量代谢关系的实验研究. 中国地方病学杂志, 1995,14(6):341-344.
    12 Ross J Jr. Dilated cardiomyopathy: concepts derived from gene deficient and transgenic animal models. Circ J, 2002,66(3):219-224.
    13 Roten LM, Nemoto S, Simsic JM, et al. Effect of gene deletion of tissue inhibitor of the matrix metalloproteinase-type 1(TIMP1) on left ventricular geometry and function in mice. J Mol Cell Cardiol, 2000,32(1):109-120.
    14 Doroshow JH, Locker GY, Meyer CE, et al. Enzymatic defenses of the mouse
    
    
    heart against reactive oxygen metabolites. J Clin Invest, 1980,65(1):128.
    15 Meyer CE, McGuire WP, Liss RH, et al. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Sience,1977,97:165.
    16 张银中, 徐惠芳. 一氧化氮在炎症反应中的作用. 国外医学麻醉学与复苏分册, 1997,18(1):1.
    17 Beckman JS, Crow JP. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans, 1993,21:330.
    18 刘励军, 杨继声, 卢兴. 阿霉素心肌病时左心室收缩性、舒张性和顺应性的动态演变及其对心泵储备功能的影响. 中国应用生理学杂志, 1991,7(2):180-183.
    19 刘励军, 吾柏铭, 洪小苏. 阿霉素心肌病左心室舒张各阶段的变化及指标评价. 苏州医学院学报, 1995,15(6):1016-1019.
    20 李贵隆, 主编. 现代心肌病学. 第1版. 成都: 四川科学技术出版社, 1998. 104-105.
    21 Timsit J, Riou B, Bertherat J,et al. Effects of chronic growth hormone hypersecretion on intrinsic contractivity, energetics, isomyosin pattern, and myosin adenosine triphosphatase activity of rat left ventricle. J Clin Invest,1990,86(2):507-515.
    22 Sacca L, Ciltadini A, Fazio S, et al. Growth hormone and the heart. Endocr Rev, 1994,15:555-573.
    23 Gomberg MM, Frishman WH, Bronx MD. Recombinant growth hormone: A new cardiovascular drug therapy. Am Heart J, 1996,132(6): 1244-1262.
    24 Boger RH. Nitricoxide and the mediation of the hemodynamic effects of growth hormone in humans. J Endocrinol Invest, 1999,22(Suppl5):S75-S81.
    25 Boger RH, Skamira C, Bode-Boger SM, et al. Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in inpatients with acquired growth hormone defficiency. A double-blind, placebo-controlled study. J Clin Invest, 1996,98(12):2706-2713.
    26 Capaldo B, Lembo G, Rendina V, et al. Sympathetic deactivation by growth hormone treatment in patients with dilated cardiomyopathy. Eur Heart J, 1998,19(4):623-627.
    
    27 Beranek JT. Why growth hormone therapy is efficient in heart failure ? Eur Heart J, 1999,20(3):242-243.
    28 Jin H, Yang R, Gillett N, et al. Beneficial effects of growth hormone and insulin like growth factor-1 in experimental heart failure in rats treated with chronic ACE inhibition. J Cardiovasc Pharmacol, 1995,26:420-425.
    29 Dreifuss P. Therapy of terminal dilated cardiomyopathy with growth hormone. Z Kardiol, 1998,87(6):425-435.
    30 Shen YT, Woltmann RF, Appleby S, et al. Lack of beneficial effects of growth homone treatment in conscious dogs during development of heart failure. Am J Physiol, 1998,274(2pt2):H456-466.
    31 诸宁译. 辅酶Q10治疗特发性扩张型心肌病的长期疗效和安全性.国外医学. 心血管疾病分册, 1991,18(1):27.
    32 Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci USA, 1985,82(3):901-904.
    33 Ernster L. Facts and ideas about the functions of coenzyme Q in mitochondria. In: Filkers K, Yamamura Y, eds. Biomedical and Clinical Aspects of Coenzyme Q. Vol 1. El-sevier/North-Holland. Amsterdam, 1977.128.
    34 Suglyama S, Ozawa T, Kato T, et al. Recovery time course of ventricular vulnerability after coronary reperfusion in relation to mitochondrial function in ischemic myocardium. Am Heart J, 1980,100(6 Pt 1):829-837.
    35 陈新谦, 金有豫. 新编药物学. 第13版, 北京: 人民卫生出版社, 1992.416.
    36 Colucci WS, Wright RF, Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. N Engl J Med, 1986,314(6):349-358.
    37 Mortensen SA, Vadhanavikit S, Baandrup U, et al. Long-term coenzyme Q10 therapy: A major advance in the management of resistant myocardial failure. Drugs Exp Clin Res, 1985,11(8):581-593.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.