辅酶Q类似物的合成及其电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辅酶Q是一类广泛存在于自然界真核生物细胞膜上的脂溶性醌类化合物,在细胞线粒体呼吸链上作为关键的电子传递中间体参与有关生物氧化的能量转换过程,是细胞呼吸和细胞代谢的激活剂,也是重要的抗氧化剂和非特异性免疫增强剂。研究表明,辅酶Q结构类似物的合成及其相关的生物活性是辅酶Q研究的一个重要方面。目前,基于电极和纳米材料仿生界面的构建在生物识别、生物传感、模拟生物过程以及理解生物分子在生物界面中的重要作用等方面都优于单独的有机或无机体系。从仿生学的观点来看,构建功能化的仿生界面为探索生物分子在生物过程中的功能起到了重要作用。基于此,本文合成了一系列辅酶Q类似物,对其电子传递机理和构效关系进行研究;同时以模仿线粒体呼吸链的初始阶段为契机,通过构建辅酶Q功能化的仿生界面研究了辅酶Q在呼吸链中重要的质子偶联电子传递作用,为帕金森病的早期诊断提供了新方法。具体内容如下:
     1.辅酶Q类似物的合成、电子传递性质及其生物活性研究
     通过应用简单、有效的方法合成了一系列6-位取代的辅酶Q类似物(UQAs),并检测了它们在质子惰性溶剂中的电子传递的性质与UQAs的生物活性。通过电化学和紫外-可见光谱电化学方法研究了UQAs在质子惰性溶剂中电子传递过程和半醌自由基性质。通过MTT实验研究了10种含不同取代基的UQAs对小鼠黑色素瘤B16F10细胞的毒活性得到结构-生物活性之间的关系。从UQAs抑制小鼠黑色素瘤B16F10细胞生长活性的IC50值可以看出,合成的UQAs能有效的诱导肿瘤细胞死亡。在细胞毒活性的测试中,6-乙烯基泛醌5和6-(4’氟代苯基)泛醌7的活性最高,其IC50值分别是6.1μM和6.2μM,而辅酶Q10的IC50值>100μM。通过现场电子自旋共振光谱技术来研究细胞毒活性,发现醌类化合物导致癌细胞死亡的能力与其半醌自由基的弛豫时间有关。值得注意的是,活性高的化合物5和6-苯基泛醌6的半醌自由基的弛豫时间更长。这为将来醌类化合物作为抗癌药物提供有价值的参考。
     2.亚甲基桥连的双辅酶Qo的电化学性质及其氢键作用研究
     合成了亚甲基桥连的双辅酶Q0化合物(Bis-CoQo),并采用电化学,现场紫外-可见和电子顺磁共振光谱电化学技术对Bis-CoQo及其所有还原产物:单自由基阴离子、反磁二价阴离子和四价阴离子性质进行表征。在无水乙腈溶液中,Bis-CoQo的循环伏安电化学性质为三步四电子的氧化还原过程。这一性质表明双醌内部有强的相互作用力。并通过变温循环伏安法,确认了Bis-CoQo的第三步电化学氧化还原过程中伴随了化学反应。在含有微量水的乙腈溶剂体系中,各电子转移的电位差随着乙腈溶剂中水含量的增加而减少。Bis-CoQo的还原产物和乙腈溶液中的水形成的氢键强度可通过峰电位的位移来计算。当加入适量水观察到一个还原峰时,双醌内强的分子内作用力消失。此外,也考察了Bis-CoQo在Hela细胞内的抗氧化能力。
     3.基于辅酶Q衍生物支撑仿生膜的构建及其在NADH/NAD+的氧化还原反应中的研究
     设计合成了三个不同烷基链长的泛醌二硫化物(QnS,n=1,5,10),通过QnS自组装修饰在金电极表面形成QnS-SAM后,将泛醌修饰的金电极放在含NADH/NAD+磷脂囊泡溶液中孵化,从而在SAM修饰的金电极表面形成悬浮的磷脂双层膜(QnS-HBM-NADH/NAD+)。在该仿生膜模式下,当表面修饰的泛醌作电子传递中间体和NADH/NAD+包埋在磷脂双层膜中时,不仅大大减小NADH的氧化过电势,而且也实现了NADH和NAD+的可逆转化。通过原位的表面增强拉曼光谱手段验证了NADH和NAD+的相互转化;紫外-可见光谱电化学实验表明在QnS-HBM-NADH/NAD+这种仿生膜模式下电化学氧化NADH得到的NAD+具有生物活性。该仿生膜界面的建立可作为一种应用平台研究生物相关的电活性分子嵌在生物膜中的性质为探究疏水环境下的氧化还原反应机制提供新思路。
     4.功能化量子点模拟呼吸链中辅酶Q电子传递反应及其在帕金森病检测中的应用
     通过设计和合成了一系列不同链长含1,2,3-三唑环的泛醌二硫化物(QnNS, n=2,5,10)。将其作为表面包裹配体功能化半导体量子点(QnNS-QDs),因为配体跟QDs之间的电子传递导致QDs的荧光变化。结果表明还原态HQnNS固定在QDs表面后增强了荧光,而氧化态QnNS修饰在QDs表面后猝灭了QDs的荧光。荧光和光谱电化学研究表明QnNS-QDs的荧光随氧化还原电位而变化,其变化程度取决于链长的不同,可以通过电化学方式可逆调控QnNS-QDs荧光的增强和猝灭效应。从生物学的角度研究泛醌系列化合物在呼吸链中重要的电子与质子传递作用,且对线粒体呼吸链的初始阶段进行仿生建立了检测复合体Ⅰ的光学生物传感器。实验结果表明在NADH存在的体系中,QnNS-QDs的荧光随复合体Ⅰ浓度的增大而增强。这表明在QDs表面的氧化包裹层QnNS在复合体Ⅰ和NADH作用下得到两电子、两质子而生物催化还原为HQDNS,从而增强QDs的荧光。流行病学研究表明线粒体中复合体Ⅰ功能失调是早期PD阶段的发病原因。其它证据也表明复合体Ⅰ缺失是PD诊断的一个关键指标。通过QnNS-QDs体系的荧光变化检测人成神经瘤SH-SY5Y细胞内复合体Ⅰ的缺失水平,这对于早期分子诊断和监测PD进展有重要意义和潜在的应用前景。
Coenzyme Q, also known as ubiquinone. is a lipid-soluble compound, indispensable for optimal functioning of all living organisms. As the only nonprotein component of the mitochondrial electron-transport chain, CoQ is a central electron carrier, simultaneously transferring protons from the mitochondrial matrix to the intermembrane space. The concomitant proton gradient across the inner mitochondrial membrane is essential for ATP production. Apart from their main function. CoQ and several other CoQ family members have additional functions in the regulation of the cellular metabolism and antioxidant function as scavengers of free radicals. Some research indicates that systemic ubiquinone analogues (UQAs) studies for synthesis and biological application are generating interesting. Recently, biointerface fabrication and research on electrode and nano materials surface enjoys increasing interest in biosensing, bio-recognition, understanding molecule-biointerfaces interaction and biomimicking biological process, better than either solely organic or inorganic systems. From a biomimetic point of view, functionalized biointerfaces have played an important role in understanding of biomolecules behaviours in biological processes. On these account, the dissertation focuses on the Preparaiong of a series of UQAs. These unique compounds have been investigated to explore their electron-transfer processes and structure-activities relationships of UQAs were examined in this study. We construct the bio-interface using ubiquinone to represents a biomimetic electron-transfer system, modeling part of the mitochondrial respiratory chain the proton coupled electron transfer, and for Parkinson's disease diagnosis and progression. The details are summarized as follows:
     1. In situ spectroeletrochemistry and biological activities of natural UQAs
     Quinones are a group of potent antineoplastic agents. Here we described effective and facile routes to synthesize a series of UQAs. These unique compounds have been investigated by electrochemistry and in situ UV-Vis spectroelectrochemistry to explore their electron-transfer processes and radical properties in aprotic media. The structure-activities relationships of inhibiting cancer cell proliferation of UQAs were examined in murine melanoma B16F10 cells. Our results revealed that UQAs had improved antiproliferative activity and displayed better inhibitory effects than natural ubiquinone 10. The cytotoxic activities of UQAs were correlated to the semiubiquinone radicals, which were confirmed by in situ electron spin resonance. In the cytotoxicity test,6-vinyl ubiquinone 5 and 6-(4'-fluorophenyl) ubiquinone 7 that possess half maximal inhibitory concentration value (IC50) of 6.1μ.M and 6.2μM. This would make them as valuable candidates for future pharmacological studies
     2. Electrochemical study and hydrogen bond interaction of bis-coenzyme Qo
     A methylene-bridged bis-coenzyme Qo (Bis-CoQo) that shows intramolecular electronic communications has been for the first time synthesized. By employing electrochemical, in-situ UV-vis and electron paramagnetic resonance spectroelectrochemical techniques, the unstable reduced intermediate species:mono-radicals, diamagnetic dianions and tetra-anions of Bis-CoQo have been observed. The electron-transfer process can be defined as a three-step reduction process with a total of four-electron in CH3CN solution. The chemical reaction in the third redox step process was confirmed by variable temperature cyclic voltammetry. In an aprotic CH3CN solution, the peak potential separation between electron-transfer steps diminished sequentially with increasing concentration of water. The hydrogen bonding interactions between water and the electrochemical reduced intermediates of Bis-CoQo can be estimated by peak potential shifts. The electronic communications of Bis-CoQo may be blocked when one reduction peak observed with proper quantities of water in CH3CN solution. Bis-CoQo protected cellular antioxidant defense capacity is also assessed.
     3. Reversible redox of NADH and NAD+ at a hybrid lipid bilayer membrane using ubiquinone
     We synthesized three ubiquinone-terminated disulfides with different alkyl spacers (QnS, n =1,5,10). QnS is the modified on the gold electrode surfac using self-assembled techniques. Biomimetic membrane model in which ubiquinone is embedded in lipid bilayer membranes that contains the NADH/NAD+redox couple (QnS-HBM-NADH/NAD+) were then formed on the QnS-SAMs. Importantly, we have shown that reversible interconversion between NADH and NAD+could occur at a low overpotential when both ubiquinone, as a redox mediator, and NADH/NAD+ were embedded in a lipid bilayer. Further evidence for the reversible interconversion NADH/NAD+ was obtained by in situ surface enhanced Raman scattering, and spectroelectrochemical UV-vis experiments confirmed that the electrochemical NADH oxidation at the ubiquinone HBM allows for the regeneration of biologically active NAD+ Furthermore, this system can be used as a platform to examine biologically relevant electroactive molecules embedded in a natural membrane environment and provide new insights into the mechanism of biological redox cycling.
     4. Ubiquinone/ubiquinol coupled quantum Dots as switchable redox-fluorescent biosensor for Parkinson's Disease diagnosis
     We prepared surface-attached CdSe/ZnS QDs exploiting three ubiquinone-terminated disulphides (QnNS, n=2,5,10). The FL enhancement of reduced HQnNS and quenching of oxidized QnNS-modified QDs can be reversibly tuned with the redox potential of surface capping layer, following the transformation between QnNS and HQnNS state via electron transfer on the QDs surface. The FL and electrochemical properties are spacer dependent indicating the importance of the heterogeneous electron transfer kinetics from the surface capping layer to the QDs. Concerning synergy between ubiquinone and NADH in enzymatic reaction of electron transport chain, it enables us to follow the activities of complex I to mimic the initial electron-transfer process of respiratory chain and develop a unique optical sensor for the detection of complex I. We demonstrated the FL of QnNS-QDs light up with complex I in the presence of NADH arises from oxidized ubiquinone to reduced ubiquinol on the surface of QDs. Studies in human postmortem material indicate that impaired complex I activity of mitochondria are important in the pathogenesis of sporadic PD. Others have also demonstrated that complex I deficiency is a potential index for PD diagnosis. Importantly, the utility of the system is demonstrated by monitoring the FL change to trace complex I levels in human neuroblastoma SH-SY5Y cells. Our results demonstrated that our constructed QnNS-QDs sensor could be used for early detection of PD and monitoring disease progression. If our results are confirmed in other cohorts, there is no doubt that this biosensing approach is a significant step forward toward molecular diagnosis of PD.
引文
[1]张鸿,吴玉荷.类维生素物质-辅酶Q10的研究进展.国外医学卫生分册.2002,29(6):370-373.
    [2]Olgun A. Akman S. Tezcan S. Kutluay T. The effect of isoprenoid side chain length of ubiquinone on life span. Med. Hypotheses 2003,60:325-327.
    [3]Jeya MJ. Moon H. Lee JL, Kim IW, Lee JK. Current state of coenzyme Q 10 production and its applications. Appl. Microbiol. Biot.2010,85:1653-1663.
    [4]Lass A. Agarwal S. Sohal RS. Mitochondrial ubiquinone homologues, superoxide radical generation, and longevity in different mammalian species. J. Biol. Chem.1997,272: 19199-19204.
    [5]Matthews RT, Yang LC. Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. U. S. A.1998,95(15):8892-8897.
    [6]Liu SS. Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics. Ann. N.Y. Acad. Sci.2010,1201:84-95.
    [7]Do TQ, Schultz JR. Clarke CF. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc. Natl. Acad. Sci. U. S.A.1996.93(15):7534-7539.
    [8]Murphy MP. Targeting bioactive compounds to mitochondria. Trends Biotechnol.1997. 15:326-330
    [9]Soballe B, Poole RK. Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 2000,146:787-796.
    [10]Murphy MP. Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin. Biol. Ther.2001,1:753-764.
    [11]Cocheme H, Kelso G, James A, Ross M, Trnka J, Mahendiran T, Asin-Cayuela J, Blaikie F, Manas A, Porteous C. Mitochondrial targeting of quinones:therapeutic implications. Mitochondrion 2007,7:94-102
    [12]Alleva R, Tomasetti M, Battino M, Curatola G, Littarru GP, Folkers K. The roles of coenzyme Qio and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proc. Natl. Acad. Sci. U. S. A.1995,92:9388-9391.
    [13]Marks DB. Marks AD. Smitu CM. Basic medical biochemistry:a clinical approach. Williams and Wilkins 1996. p327.
    [14]Ernster L. Dallner G. Biochemical. Physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta.1995,1271:195-204.
    [15]Folkers K, Littarru GP, Ho L, Runge TM. Evidence for a deficiency of coenzyme Q10 in human heart disease. Int. Z. Vitaminforsch 1970,40:380-390.
    [16]Portakal O, Ozkaya O, Erdeni□nal M, Bozan B, Kosan M, Sayek I, Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin. Biochem.2000, 33(4):279-284.
    [17]Wittenstein B. Klein M, Finckh B, Ullrich K, Kohlschutter A. Plasma antioxidants in pediatric patients with glycogen storage disease, diabetes mellitus, and hypercholesterolemia. Free Radical Biol. Med.2002,33 (1):103-110.
    [18]叶青,张宾红,关屹.辅酶Q10的性质及其在化妆品中的应用.香料香精化妆品.1999,3:32-34。
    [19]肖新才,冯翔,苏宜香.辅酶Q10抗氧化作用研究进展.国外医学卫生学分册.2003,4:216-221.
    [20]Love R. Coenzyme Q10 shows promise for PD. Lancet Neurol.2002,1(8):464-474.
    [21]Frankish H. Coenzyme Q10 could slow functional decline in Parkinson's disease. Lancet 2002,9341(360):1227.
    [22]Costentin, C. Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem. Rev.2008,108:2145-2179.
    [23]Quan M, Sanchez D, Wasylkiw MF, Smith DK. Voltammetry of quinones in unbuffered aqueous solution:reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc.2007,129:12847-12856.
    [24]Baldwin RP, Packett D, Woodcock TM. Electrochemical behavior of adriamycin at carbon paste electrodes. Anal. Chem.1981,53(3):540-542.
    [25]Chaney Jr EN, Baldwin RP. Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. Anal. Chem.1982,54(14):2556-2560.
    [26]Kertesz V, Chambers JQ, Mullenix AN. Chronoamperometry of surface-confined redox couples. Application to daunomycin adsorbed on hanging mercury drop electrodes. Electrochim. Acta.1999,45(7):1095-1104.
    [27]Ma W, Zhou H, Ying YL, Li DW, Chen GR, Long YT, Chen HY. In situ spectroeletrochemistry and cytotoxic activities of natural ubiquinone analogues. Tetrahedron 2011,67:5990-6000.
    [28]李景虹.自组装膜电化学[M].北京:高等教育出版社,2002.4:11-15.
    [29]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装.高等学校化学学报.2001,22(6):1057-1065
    [30]王俊,曾百肇,周性尧.自组装膜技术在电分析化学中的应用.分析科学学报.2000,16(3):253-258
    [31]Motesharei K. Myles DC. Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. J. Am. Chem. Soc.1998,120:7328-7336.
    [32]刘斌,孙向英,徐金瑞.含硼酸基的自组装膜对糖的电化学识别.分析化学.2004,32(5):601-605.
    [33]Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc.1983,105(13):4481-4483.
    [34]Nuzzo RG, Fusco FA. Allara DL. Spontaneously organized molecular assemblies.3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J. Am. Chem. Soc.1987,109:2358-2361.
    [35]Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev.1996, 96(4):1533-1554.
    [36]Ishida A., M ajima T. Surface plasmon enhanced fluorescence measurement on flat and constructed gold surfaces. Analyst 2000,125:535-540.
    [37]Vericat C, Vela M.E, Benitez G, Carrob P, Salvarezza R.C. Self-assembled monolayers of thiols and dithiols on gold:new challenges for a well-known system. Chem. Soc. Rev. 2010.39:1805-1834.
    [38]Azzaroni O, Cipollone M, Vela ME, Salvarezza RC. Protective properties of dodecanethiol layers on copper surfaces:the effect of chloride anions in aqueous environments. Langmuir 2001,17:1483-1487.
    [39]Brunoro G, Frignani A, Colledan A, Chiavari C. Organic films for protection of copper and bronze against acid rain corrosion. Corros. Sci.2003,45:2219-2231.
    [40]Whelan CM, Kinsella M, Carbonell L, Hong Meng H, Maex K. Corrosion inhibition by self-assembled monolayers for enhanced wire bonding on Cu surfaces. Microelectron. Eng. 2003.70:551-557.
    [41]N. a. Nanomechanics, ed. B. Bhushan, Springer, Berlin-Heidelberg,2008.
    [42]Maboudian R, Ashurst WR, Carraro C. Self-assembled monolayers as anti-stiction coatings for MEMS:characteristics and recent developments. Sens. Actuators, A 2000,82: 219-223.
    [43]Wang Y, Zhou Y, Sokolov J, Rigas B, Levon K, Rafailovich M. A potentiometric protein sensor built with surface molecular imprinting method. Biosens. Bioelectron.2008,24: 162-166.
    [44]Chen H, Heng CK, Puiu PD, Zhou XD, Lee AC, Lim TM, Tan SN, Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy. Anal. Chim. Acta 2005,554:52-59.
    [45]Huang TJ, Brough B, Ho C-M, Liu Y, Flood AH, Bonvallet PA. Tseng H-R, Stoddart JF, Baller M, Magonov S. A nanomechanical device based on linear molecular motors. Appl. Phvs. Lett.2004.85:5391-393.
    [46]Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML. Single-molecule circuits with well-defined molecular conductance. Nano Lett.2006,6: 458-462.
    [47]Rogers JA, Nuzzo RG. Recent progress in soft lithography, in Materials Today 2005, vol. 8. pp.50-56.
    [48]Jiang X, Bruzewicz DA, Wong AP, Piel M. Whitesides GM. Proc. Directing cell migration with asymmetric micropatterns. Proc.Natl. Acad. Sci. U. S. A.2005,102:975-978.
    [49]Takeuchi S, DiLuzio WR, Weibel DB, Whitesides GM. Controlling the shape of filamentous cells of Escherichia coli. Nano Lett.2005,5:1819-1823.
    [50]Gu L, Wang L, Xun J, Ottova-Leitmannova A, Tien H. A new method for the determination of electrical properties of supported bilayer lipid membranes by cyclic voltammetry. Bioelectrochem. Bioenerg.1996,39(2):275-283.
    [51]Zhang Y, Dunlop J, Phung T, Ottova A, Tien H. Supported bilayer lipid membranes modified with a phosphate ionophore. Biosens. Bioelectron.2006,21 (12):2311-2314.
    [52]Ross E E, Bondurant B, Spratt T, Conboy JC, O'Brien DF, Saavedra SS. Formation of self-assembled, air-stable lipid bilayer membranes on solid supports. Langmuir 2001,17(8): 2305-2307.
    [53]赵艳,方炎.双层类脂膜成膜过程的电化学方法研究.电化学.2004,10(1):70-74.
    [54]罗云敬,沈含熙,刘海涛,孔德明.脂质体模拟生物膜研究药物吸收.高等学校化学学报.1998,19(11):1730-1734.
    [55]Ottova A, Tien H T. The 40th anniversary of bilayer lipid membrane research. Bioelectrochemistry 2002,56(1-2):171-173.
    [56]张彦莉,沈含熙.Ca2+和Pb2+与双层类脂膜相互作用的研究.化学传感器,2001,21(1):34-41.
    [57]Tien H T, Salamon Z. Formation of self-assembled lipid bilayers on solid substrates. Bioelectrochem. Bioenerg.1989,22(3):211-218.
    [58]Tien H T. Self-assembled lipid bilayers for biosensors and molecular electronic devices. Acta Mater.1990,2(6-7):316-318.
    [59]Ottova A, Tvarozek V, Racek J, Sabo J, Ziegler W, Hianik T, Tien HT. Self-assembled BLMs:biomembrane models and biosensor applications. Supramol. Sci.1997,4(1-2):101.
    [60]Feng J, Zhang C, Ottova AL, Tien HT. Photoelectric measurements of s-BLM/nucleoli:a new technique for studying apoptosis. Bioelectrochemistry 2000,51(2):187-191.
    [61]Wiegand G, Arribas-Layton N, Hillebrandt H. Sackmann E, Wagner P. Electrical properties of supported lipid bilayer membranes. J. Phys. Chem. B 2002.106(16):4245-4254.
    [62]Tien HT.715-Cyclic voltammetry of electron-conducting bilayer lipid membranes. Bioelectrochem. Bioenerg.1984,13(4-6):299-316.
    [63]Chen J, Tien HT. A comparative study between a two-compartment cell and the standard electrode system. Bioelectrochem. Bioenerg.1988.19(3):491-497.
    [64]Tien H T. Redox reactions in bilayer lipid membrane as determined by cyclic voltammetry. Bioelectrochem. Bioenerg.1984,12(5-6):529-533.
    [65]Kotowski J, Tien H T. Sucrose influence on lecithin and polypyrrole lecithin bilayer membranes. Bioelectrochem. Bioenerg. 1989,22(1):69-74.
    [66]Butko P, Salamon Z, Tien H T. Adsorption of gentamicin onto a bilayer lipid membrane. Bioelectrochem. Bioenerg.1990,23(2):153-160.
    [67]Muller P, Rudin DO, Tien HT, Wescott WC. Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System. Nature 1962,194:979-980.
    [68]Castellana ET, Cremer PS. Solid supported lipid bilayers:From biophysical studies to sensor design. Surf. Sci. Reports 2006,61:429-444.
    [69]Bamberg E, Alpes H, Apell HJ, Bradley R, Harter B, Quelle MJ. Urry DW. Formation of ionic channels in black lipid membranes by succinic derivatives of gramicidin A. J. Membrane Biol.1979,50:257-270.
    [70]Gomezlagunas F, Pena A, Lievano A, Darszon A. Incorporation of ionic channels from yeast plasma membranes into black lipid membranes. Biophys. J.1989.56:115-119.
    [71]Van Gelder P, Dumas F, Winterhalter M. Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes. Biophys. Chem.2000,85: 153-167.
    [72]Bezrukov SM, Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys. J.1993,64:16-25.
    [73]Gouaux E. [alpha]-Hemolysin from staphylococcus aureus:An Archetype of [beta]-Barrel, Channel-Forming Toxins. J. Struct. Biol.1998,121:110-122.
    [74]Gu LQ, Braha O, Conlan S, Cheley S, Bayley H, Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999,398:686-690.
    [75]Tscharner VV, McConnell HM. Physical properties of lipid Monolayers on alkylated planar glass surface. Biophys. J.1981,36(2):421-427.
    [76]Horn R G. Direct measurement of the force between two lipid bilayers and observation of their fusion. Biochim. Biophys. Acta 1984,778(1):224-228.
    [77]Tamm L K, McConnell H M. Supported phospholipid bilayers. Biophys. J.1985,47(1): 105-113.
    [78]Kalb E, Frey S, Tamm L K. Formation of supposed planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim. Biophys. Acta 1991.1103(2):307-316.
    [79]Tien H T, Salamon Z. Formation of self-assembled lipid bilayers on solid substrates. Bioelectrochem. Bioenerg.1989,22(3):211-218.
    [80]Stelzle M, Weissmuller G, Sackmann E. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Phys. Chem.1993,97(12): 2974-2981.
    [81]Florin EL, Gaub HE. Painted supposed lipid membranes. Biophys. J.1993,64(2): 375-384.
    [82]Richter RP, Remi B, Brisson AR. Formation of solid-supported lipid bilayers:an integrated view. Langmuir 2006,22(8):3497-3505.
    [83]Zhang LX, Sun XP, Song YH, Jiang XE, Dong SJ, Wang EK. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles:synthesis, characterization, and self-assembly. Langmuir 2006,22(6):2838-2843.
    [84]Momet S, Lambert O, Duguet E. The formation of supported lipid bilayers On silica nanoparticles revealed by cryoelectron microscopy. Nano Lett.2005,5(2):281-285.
    [85]Sabo J, Ottova A L, Laputkova G, Legin M, Vojcikova L, Tien HT. A combined AC-DC method for investigating supported bilayer lipid membranes. Thin Solid Films 1997,306(1):1 12-115.
    [86]Nikolelis DP, Siontorou CG, Krull U J. Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore. Modulation of ammonium selectivity by platelet-activating factor. Anal. Chem.1996,68(10):1735-1741.
    [87]ReMk M, SncjdarkoVa M, Otto M. Self-assembled lipid bilayers as a potassium sensor. Electroanalysis 1993,5(8):691-694.
    [88]Steinem C, Janshoff A, Galla HJ, Sieber M. Impedance analysis of ion transport through gramicidin channels incorporated in solid supported lipid bilayers. Bioelectrochem. Bioenerg. 1997,42(2):213-220.
    [89]Steinem C, Janshoff A, Galla HJ, Sieber M. Impedance analysis ofsupported lipid bilayer membranes:a scrutiny of different preparation techniques. Bioelectrochem. Bioenerg.1996, 1279(2):169-180.
    [90]Rhoten M C, Burgess J D, Hawkridge F M. The reaction of cytochrome c from different species with cytochrome c oxidase immobilized in an electrode supported lipid bilayer membrane. J. Electroanal. Chem.2002,534(2):143-150.
    [91]Wang LG, Li YH, Tien HT. Electrochemical transduction of immunological of reaction via s-BLMs. Bioelectrochem. Bioenerg.1995,36(2):145-147.
    [92]Ivnitski D, Wilkins E, Tien H T, Ottova A. Electrochemical biosensor based on supported planar lipid bilayers for fast detection of pathogenic bacteria. Electrochem. Commun.2000,2(7):457-460.
    [93]Brringer R, Gleiter H, Klein H.-P, Marquardt P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett. A 1984.102,365-369.
    [94]高晓云,陈进,王冕.激光气相合成FexSiy超微粉.无机材料学报.1992,7:429-434.
    [95]隋同波,王廷籍.激光法合成SiC超细粉末物理化学过程的研究.硅酸盐学报.1993,21:33-37.
    [96]郭广生,王伟洁.激光气相法制备Fe203超微粒子.无机材料学报.1993,8:377-381.
    [97]Pacheco-Malagon G, Garcia-Borquez A. TiO2-Al2O3 nanocomposites. J. Mater. Res. 1995,10:1264-1269.
    [98]Venkatachari KR, Huang D, Ostrander SP. Schulze WA, Stangle GC. A combustion synthesis process for synthesizing nanocrystalline zirconia powders. J. Mater. Res.1995,10: 748-755.
    [99]Cui ZL, Dong LF, Zhang ZK. Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method. Nanostruct. Mater.1995,5:829-833.
    [100]Qian YT, Su Y, Xie Y, Chen QW, Chen ZY. Hydrothermal preparation and characterization of nanocrystalline powder ofsphalerite. Mater. Res. Bull.1995,30:601-605.
    [101]Mo MS, Zeng JH, Liu XM, Yu WC, Zhang SY, Qian YT. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater.2002,14: 1658-1662.
    [102]Peng YY, Meng Z, Zhong C, Lu J, Yu WC. Jia YB, Qian YT. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett.2001,8: 772-773.
    [103]胡晓歌,王铁,程文龙,汪尔康,董绍俊.金属纳米线的合成与组装.分析化学2004,32,1240-1245.
    [104]Sinani VA, Koktysh DS, Yun BG, Matts RL, Pappas TC, Motamedi M, Thomas SN, Kotov NA. Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films. Nano Lett.2003,3:1177-1182.
    [105]Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002,23:1553-1561.
    [106]Salata OV. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004,2:3-9.
    [107]Ma J, Wong H, Kong LB, Peng KW. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 2003,14:619-623.
    [108]de la Isla A, Brostow W, Bujard B. Estevez M. Rodriguez JR. Vargas S, Castano VM. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mat. Resr. Innovat.2003,7:110-114.
    [109]Roy I, Ohulchanskyy TY. Pudavar HE. Bergey EJ. Oseroff AR. Morgan J, Dougherty TJ, Prasad PN:Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 2003,125:7860-7865.
    [110]Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol.2001,19:631-635.
    [111]Nicewamer-Pena SR. Freeman RG. Reiss BD, He L. Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ. Submicrometer metallic barcodes. Science 2001,294:137-141.
    [112]Guo J, Yang WL, Wang CC. Poly(N-isopropylacrylamide)-coated luminescent/ magnetic silica microspheres:preparation, characterization, and biomedical applications. Chem. Mater.2006,18:5554-5562.
    [113]Sathe RT, Agrawal A, Nie SM. Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals:Dual-Function Microcarriers for Optical Encoding and Magnetic Separation. Anal. Chem.2006,78:5627-5632.
    [114]Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, SchatzGC, Van Duyne RP. Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. J. Am. Chem. Soc.2008,130(38):12616-12617.
    [115]Ni J, Lipert RJ, Dawson GB. Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids. Anal. Chem.1999.71:4903-4908.
    [116]Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA. Raman dyelabeled nanoparticle probes for proteins. J. Am. Chem. Soc.2003,125:14676-14677.
    [117]Nonella M. A density functional investigation of model molecules for ubisemiquinone radical anions. J. Phys. Chem. B 1998,102:4217-4225.
    [118]Paddock ML, Feher G, Okamura MY. Identification of the proton pathway in bacterial reaction centers:Replacement of Asp-M17 and Asp-L210 with Asn reduces the proton transfer rate in the presence of Cd2+. Proc. Natl. Acad. Sci. U. S. A.2000,97:1548-1553.
    [119]Turunen M, Olssonc J, Dallnera G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta 2004,1660:171-199.
    [120]Wang XW, Ma W, Ying YL, Liang J, Long Y-T. Bis-Coenzyme Q0:Synthesis, Characteristics, and Application. Chem.-Asian J.2011,4:949-958.
    [121]Yu CA, Gu LQ, Lin YZ, Yu L. Effect of alkyl side chain variation on the electron-transfer activity of ubiquinone derivatives. Biochemistry 1985,24:3897-3902.
    [122]Hayashi T, Asai T, Hokazono H, Ogoshi H. Dynamic molecular recognition in a multifunctional porphyrin and a ubiquinone analog. J. Am. Chem. Soc.1993,115: 12210-12211.
    [123]Li WW, Hellwig P. Ritter M. Haehnel W. De novo design, synthesis, and characterization of quinoproteins. Chem. Eur. J.2006,12:7236-7245.
    [124]Smith RAJ, Kelso GF, James AM. Murphy MP. Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol.2004,382:45-67.
    [125]Roura-Perez G, Quiroz B, Aguilar-Martinez M, Frontana C, Solano A, Gonzalez I, Bautista-Martinez JA, Jimenez-Barbero J, Cuevas G. Remote position substituents as modulators of conformational and reactive properties of quinones. Relevance of the π/π intramolecular interaction. J. Org. Chem.2007.72:1883-1894.
    [126]Madej MG, Nasiri HR. Hilgendorff NS, Schwalbe H, Unden G, Lancaster CRD. Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positive Bacterium Bacillus licheniformis. Biochemistry 2006,45:15049-15055.
    [127]Schlosser M, Schaub B. Instant-ylid:ein lagerfahiges und gebrauchsfertiges Wittig-reagenz. Chimia 1982,36:396-397.
    [128]Jung YS, Joe BY, Cho SJ, Konishi Y.2,3-Dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones:glycation inhibitors with lipid peroxidation activity. Bioorg. Med. Chem. Lett.2005,15:1125-1129.
    [129]Williams DBG, Shaw ML. P-alkene bidentate ligands:an unusual ligand effect in Pd-catalysed Suzuki reactions. Tetrahedron 2007,63:1624-1629.
    [130]Kikumasa S, Seiichi I, Ryohei Y. Synthesis of coenzyme Q1. J. Org. Chem.1972,37: 1889-1892.
    [131]Kelso GF, Porteous CM, Coulteri CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RAJ, Murphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells. J. Biol. Chem.2001,276:4588-4596.
    [132]Cayuela, J, Manas, A. R. B, James, A. M, Smith, R. A. J, Murphy, M. P. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett.2004,571,9-16.
    [133]Carpino, L. A, Triolo, S. A, Berglund, R. A. Palladium (O)-catalyzed azidation of allyl esters. Selective synthesis of allyl azides, primary allylamines, and related compounds. J. Org. Chem.1989,54,3303-3310.
    [134]Lipshutz, B. H, Bulow, G, Lowe, R. F, Stevens, K. L. Allylated aromatics via Ni-catalyzed couplings of benzylic chlorides and vinylic organometallics. Tetrahedron 1996, 52,7265-7276.
    [135]Ohkawa, S, Terao, S, Terashit, Z, Shibouta, Y, Nishikawa, K. Dual inhibitors of thromboxane A2 synthase and 5-lipoxygenase with scavenging activity of active oxygen species (AOS). Synthesis of a novel series of (3-pyridylmethyl)benzoquinone derivatives. J. Med. Chem.1991,34,267-276.
    [136]Alison M D, Andrew DA. The preparation of side chain functionalized analogues of coenzyme Q for protein conjugation studies. Org. Biomol. Chem.2004,2,2371-2375.
    [137]Gupta N, Linschitz H. Hydrogen-bonding and protonation effects in electrochemistry of quinones in aprotic solvents. J. Am. Chem. Soc.1997,119:6384-6391.
    [138]Lehmann M.W. Evans DH. Anomalous behavior in the two-step reduction of quinones in acetonitrile. J. Electroanal. Chem.2001.500:12-20.
    [139]Bard AJ, Faulkner LR. In Electrochemical methods:Fundamentals and Applications; Second Edition. WILEY & Sons:New York.2001; Vol.2, pp 111.
    [140]Sumner JJ. Creager SE. Topological effects in bridge-mediated electron transfer between redox molecules and metal electrodes. J. Am. Chem. Soc.2000,122:11914-11920.
    [141]Bauscher M. Mantele W. Electrochemical and infrared-spectroscopic characterization of redox reactions of p-quinones. J. Phys. Chem.1992,96:11101-11108.
    [142]Manda S, Nakanishi I. Ohkubo K. Yakumaru H, Matsumoto K, Ozawa T, Ikota N, Fukuzumi S, Anzai K. Nitroxyl radicals:electrochemical redox behaviour and structure-activity relationships. Org. Biomol. Chem.2007,5:3951-3955.
    [143]Gilroy JB, McKinnon SDJ. Koivisto BD, Hicks RG. Electrochemical Studies of Verdazyl Radicals. Org. Lett.2007,9:4837-4840.
    [144]Morrison LE. Schelhom JE. Cotton TM, Bering CL, Loach PA. In Function of Quinones in Energy Conserving Systems; Trumpower, B. L., Ed, Academic Press:New York, 1982; pp 60.
    [145]Guo Q, Corbett JT, Yue G, Fann YC, Qian SY, Tomer KB, Mason RP. Electron spin resonance investigation of semiquinone radicals formed from the reaction of ubiquinone 0 with human oxyhemoglobin. J. Biol. Chem.2002,277:6104-6110.
    [146]Kim C, Kim N, Joo H, Youm JB. Park WS, Cuong DV, Park YS, Kim E, Min CK, Han J. Modulation by melatonin of the cardiotoxic and antitumor activities of adriamycin. J. Cardiovasc. Pharmacol.2005.46:200-210.
    [147]Flueraru M, So R, Willmore WG, Poulter MO, Durst T, Charron M, Wright JS. Cytotoxicity and cytoprotective activity of naphthalenediols in rat cortical neurons. Chem. Res.Toxicol.2006.19:1221-1227.
    [148]Gutierrez PL. The metabolism of quinone-containing alkylating agents:free radical production and measurement. Frontiers Biosci.2000,5:629-638.
    [149]Valderrama JA. Ibacache JA. Arancibia V, Rodriguez J, Theoduloz C. Studies on quinones. Part 45:Novel 7-aminoisoquinoline-5,8-quinone derivatives with antitumor properties on cancer cell lines. Bioorg. Med. Chem.2009,17:2894-2901.
    [150]Bair JS. Palchaudhuri R. Hergenrother P. J. Chemistry and biology of deoxynyboquinone. a potent inducer of cancer cell death. J. Am. Chem. Soc.2010,132: 5469-547.
    [151]Long YT. Yu ZH. Chen HY. Determination of coenzyme Q10 by in situ EPR spectroelectrochemistry. Electrochem. Commun.1999,1:194-196.
    [152]Kuila BK. Nandan B. Bchme M. Janke A, Stamm M. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chem. Commun.2009, 5749-5751.
    [153]Merz A. Bard AJ. A stable surface modified platinum electrode prepared by coating with electroactive polymer. J. Am. Chem. Soc.1978,100:3222-3223.
    [154]Ie Y, Uto T, Yamamoto N. Aso Y. Dendritic oligothiophene bearing perylene bis (dicarboximide) groups as an active material for photovoltaic device. Chem. Commun.2009, 1213-1215.
    [155]Lancaster CRD, Michel H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB0.Structure 1997,5:1339-1359.
    [156]Hayashi N, Ohnuma T, Saito Y, Higuchi H, Ninomiya K. Structure and electronic properties of quinone dimers connected with acetylene and diacetylene linkages. Tetrahedron 2009,65:3639-3644.
    [157]Li J, Ambroise A, Yang SI. Diers JR, Seth J, Wack CR, Bocian DF, Holten D, Lindsey JS. Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins. J. Am. Chem. Soc.1999,121:8927-8940.
    [158]Compton RG, Banks CE. Understanding Voltammetry,1st ed., World Scientific Publishing Co., Hackensack, NJ,2007.
    [159]Wu H, Zhang DQ, Su L, Ohkubo K, Zhang CX, Yin SW, Mao LQ, Shuai ZG, Fukuzumi S, Zhu DB. Intramolecular electron transfer within the substituted tetrathiafulvalene-quinone dyads:facilitated by metal ion and photomodulation in the presence of spiropyran. J. Am. Chem. Soc.2007,129:6839-6846.
    [160]Bayly SR, Gray TM, Chmielewski MJ, Davis JJ, Beer PD. Anion templated surface assembly of a redox-active sensory rotaxane. Chem. Commun.2007,2234-2236.
    [161]You SL, Hou XL, Dai LX, Cao BX, Sun J. Novel bis-N-[2-(diphenylphosphino) ferrocenylcarbonyl] diaminocyclohexane ligands:application in asymmetric allylic alkylation of imino esters with simple allyl carbonate. Chem. Commun.2000,1933-1934.
    [162]Brezak MC, Valette A, Quaranta M, Contour-Galcera MO, Jullien D, Lavergne O, Frongia C, Bigg D, Kasprzyk PG. Prevost GP, Ducommun B. IRC-083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells. Int. J. Cancer 2009,124:1449-1456.
    [163]Russell RA. Day AI, Pilley BA. Leavy PJ. Warrener RN. Regiospecific synthesis of bis (quinone monoacetals) and their annelation to give bisanthraquinones. J. Chem. Soc., Chem. Commun.1987.1631-1633.
    [164]Katz E, Willner I. A bis-quinone-functionalized Au-electrode subjected to hydrophobic magnetic nanoparticles acts as a three-state "Write-Read-Erase" information storage system. Electrochem. Commun.2006,8:879-882.
    [165]Hui Y, Chng ELK. Chng CYL. Poh HL, Webster RD. Hydrogen-Bonding Interactions between Water and the One-and Two-Electron-Reduced Forms of Vitamin Kl:Applying Quinone Electrochemistry To Determine the the Moisture Content of Non-Aqueous Solvents. J. Am. Chem. Soc.2009,131:1523-1534.
    [166]Yuasa J, Yamada S, Fukuzumi S. One-Step versus Stepwise Mechanism in Protonated Amino Acid-Promoted Electron-Transfer Reduction of a Quinone by Electron Donors and Two-Electron Reduction by a Dihydronicotinamide Adenine Dinucleotide Analogue. Interplay between Electron Transfer and Hydrogen Bonding. J. Am. Chem. Soc.2008,130:5808-5820.
    [167]Greaves MD. Niemz A, Rotello VM. Control of one-versus two-electron reduction of ubiquinone via redox-dependent recognition. J. Am. Chem. Soc.1999,121:266-267.
    [168]Flanagan JB. Margel S, Bard AJ, Anson FC. Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly (vinylferrocene). J. Am. Chem. Soc.1978,100:4248-4253.
    [169]Kim YO, Jung YM, Kim SB, Park SM. Two-dimensional correlation analysis of spectroelectrochemical data for p-benzoquinone reduction in acetonitrile. Anal. Chem.2004, 76:5236-5240.
    [170]A. J. Bard, J. A. Crayston, G. P. Kittlesen, T. V. Shea,M. S. Wrighton, Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal. Chem.1986,58: 2321-2331.
    [171]Sljukic B, Banks CE, Compton RG. An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J. Iran. Chem. Soc.2005,2:1-25.
    [172]Linschitz H, Rennert J, Korn TM. The Identification of Solvated Electrons and Radicals in Rigid Solutions of Photooxidized Organic Molecules; Recombination Luminescence in Organic Phosphors. J. Am. Chem. Soc.1954,76:5833-5839.
    [173]Macias-Ruvalcaba NA, Evans DH, Association Reactions of the Anion Radicals of Some Hydroxyquinones:Evidence for Formation of π-and σ-Dimers As Well As a Neutral-Anion Radical Complex. J. Phys. Chem. C 2010,114:1285-1292.
    [174]Mirceski V. Komorsky-Lovric S, Lovric M. Square Wave Voltammetry Theory and Application. Springer, Berlin,2007.
    [175]Bard AJ, Faulkner LR. Electrochemical Methods,2nd ed., Wiley, New York,2000.
    [176]Yang B, Liu L. Katz TJ. Liberko CA, Miller LL. Electron delocalization in helical quinone anion radicals. J. Am. Chem.Soc.1991,113:8993-8994.
    [177]Wilson GJ. Lin CY Webster RD. Significant Differences in the Electrochemical Behavior of the α-. β-, γ-. and δ-Tocopherols (Vitamin E). J. Phys. Chem. B 2006,110: 11540-11548.
    [178]Bortolotti CA. G Battistuzzi. M Borsari, P Facci, A Ranieri, Sola M. The redox chemistry of the covalently immobilized native and low-pH forms of yeast iso-1-cytochrome c. J. Am. Chem. Soc.2006,128:5444-5451.
    [179]Wheeler DE, Rodriguez JH, McCusker JK. Density functional theory analysis of electronic structure variations across the orthoquinone/semiquinone/catechol redox series. J. Phys. Chem. A 1999,103:4101-4112.
    [180]Alabugin IV, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding:A subtle balance of hyperconjugation and rehybridization. J. Am.Chem. Soc.2003,125:5973-5987.
    [181]Hong TB, Rahumatullah A, Yogarajah T, Ahmad M, YinKB. Potential effects of chrysin onMDA-MB-231 cells. Int. J. Mol. Sci.2010,11:1057-1069.
    [182]Chen MC, Ye YY, Ji G, Liu JW. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells. J. Agric. Food Chem.2010,58: 3330-3335.
    [183]Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 2006,311:1430-1436.
    [184]Sherwood S, Hirst J. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria:does the enzyme operate by a Q-cycle mechanism? Biochem. J.2006,400,541-550.
    [185]Rhoten MC, Hawkridge FM, Wilczek J. The reaction of cytochrome c with bovine and Bacillus stearothermophilus cytochrome c oxidase immobilized in electrode-supported lipid bilayer membranes. J. Electroanal. Chem.2002,535:97-106.
    [186]Suraniti E, Tumolo T, Baptista MS, Livache T, Calemczuk R. Construction of hybrid bilayer membrane (HBM) biochips and characterization of the cooperative binding between cytochrome-c and HBM. Langmuir 2007,23:6835-6842.
    [187]Favero, G, Campanella, L, Cavallo, S, D'Annibale, A, Perrella, M, Mattei, E, Ferri, T. Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions. J. Am. Chem. Soc.2005,127: 8103-8111.
    [188]Burgess JD, Rhoten MC. Hawkridge FM. Cytochrome c oxidase immobilized in stable supported lipid bilayer membranes. Langmuir 1998,14:2467-2475.
    [189]Peng ZQ. Tang JL, Han XJ. Wang EK, Dong SJ. Formation of a supported hybrid bilayer membrane on gold:A sterically enhanced hydrophobic effect. Langmuir 2002,18: 4834-4839.
    [190]Anderson NA, Richter LJ, Stephenson JC, Briggman KA. Characterization and control of lipid layer fluidity in hybrid bilayer membranes. J. Am. Chem. Soc.2007,129:2094-2100.
    [191]Twardowski M, Nuzzo RG. Phase dependent electrochemical properties of polar self-assembled monolayers (SAMs) modified via the fusion of mixed phospholipid vesicles. Langmuir 2004,20:175-180.
    [192]Dominska M, Krysinski P, Blanchard GJ. Interrogating interfacial organization in planar bilayer structures. Langmuir 2008,24:8785-8793.
    [193]Hosseini A. Collman JP, Devadoss A, Williams GY, Barile CJ, Eberspacher TA. Ferrocene Embedded in an Electrode-Supported Hybrid Lipid Bilayer Membrane:A Model System for Electrocatalysis in a Biomimetic Environment. Langmuir 2010.26:17674-17678.
    [194]Yang LC, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Flint Bea M. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J. Neurochem.2009,109: 1427-1439.
    [195]Jonassen T, Larsen PL, Clarke CF. A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc. Natl. Acad. Sci. U. S. A. 2001,98:421-426.
    [196]Yuasa J, Yamada S, Fukuzumi S. Detection of a Radical Cation of an NADH Analogue in Two-Electron Reduction of a Protonated p-Quinone Derivative by an NADH Analogue. Angew. Chem. Int. Ed.2008,47:1068-1071.
    [197]Gorton L, Dominguez E. Electrochemistry of NAD(P)+/NAD(P)H. In Encyclopedia of Electrochemistry; Wilson, G. S., Ed, Wiley-VCH Verlag GmbH & Co.:Weinheim,2002; Vol. 9, pp 67-143.10.1002/9783527610426.bard090004.
    [198]Antiochia R, Lavagnini I, Pastore P, Magno F. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide. Bioelectrochemistry 2004,64:157-163.
    [199]Carlson BW, Miller LL. Mechanism of the oxidation of NADH by quinones. Energetics of one-electron and hydride routes. J. Am. Chem. Soc.1985,107:479-485.
    [200]Antiochia R. Gallina A, Lavagnini I, Magno F. Kinetic and Thermodynamic Aspects of NAD-Related Enzyme-Linked Mediated Bioelectrocatalysis. Electroanalysis 2002.14: 1256-1261.
    [201]Wooten M. Gorski W. Facilitation of NADH electrooxidation at treated carbon nanotubes. Anal. Chem.2010.82:1299-1304.
    [202]Kitani A, Miller LL. Fast oxidants for NADH and electrochemical discrimination between ascorbic acid and NADH. J. Am. Chem. Soc.1981,103:3595-3597.
    [203]Zu YB, Shannon RJ, Hirst J. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Iλ) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Am. Chem. Soc.2003,125:6020-6021.
    [204]Qin LX. Ma W. Li DW. Li Y, Chen XY, Kraatz HB, James TD, Long Y-T. Coenzyme Q Functional ized CdTe/ZnS Quantum Dots for Reactive Oxygen Species (ROS) Imaging. Chem. Eur. J.2011.17:5262-5271.
    [205]Daza Millone MA, Vela ME, Salvarezza RC, Creczynski-Pasa TB, Tognalli NG, Fainstein A. Phospholipid Bilayers Supported on Thiolate-Covered Nanostructured Gold:In Situ Raman Spectroscopy and Electrochemistry of Redox Species. ChemPhysChem 2009,10: 1927-1933.
    [206]Marchal D, Pantigny J, Laval JM, Moiroux J, Bourdillon C. Rate Constants in Two Dimensions of Electron Transfer between Pyruvate Oxidase, a Membrane Enzyme, and Ubiquinone (Coenzyme Q8), Its Water-Insoluble Electron Carrier. Biochemistry 2001,40, 1248-1256.
    [207]Han XJ, Critchley K, Zhang LX, Pradeep SND, Bushby RJ, Evans SD. A novel method to fabricate patterned bilayer lipid membranes. Langmuir 2007,23:1354-1358.
    [208]Daza Millone MA, Vela ME, Salvarezza RC, CreczynskiPasa TB, Tognalli NG, Fainstein A. Phospholipid Bilayers Supported on Thiolate-Covered Nanostructured Gold:In Situ Raman Spectroscopy and Electrochemistry of Redox Species. ChemPhysChem 2009,10: 1927-1933.
    [209]Castellana ET, Paul SC. Solid supported lipid bilayers:From biophysical studies to sensor design. Surf. Sci. Reports 2006,61:429-444.
    [210]Jeuken LJC, Connell SD, Henderson PJF, Gennis RB, Evans SD, Bushby RJ. Redox enzymes in tethered membranes. J. Am. Chem. Soc.2006,128:1711-1716.
    [211]Plant AL. Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir 1999,15,5128-5135.
    [212]Long YT, Sutherland TC, Kraatz HB, Lee JS. Photoinduced production of NAD(P)H from an activated fluorescein-DNA monolayer. Chem. Commun.2004,2032-2033.
    [213]Ohkawa S, Terao S, Terashit Z, Shibouta Y, Nishikawa K. J. Med. Chem.1991,34: 267-276.
    [214]Laura PP, Sarah GK, Mark VW, Ronald B, Kumar S. Estimating Kinetic and Thermodynamic Parameters from Single Molecule Enzyme-Inhibitor Interactions. Langmuir 2008,24:11556-11561.
    [215]Alison MD, Andrew DA. The preparation of side chain functionalized analogues of coenzyme Q for protein conjugation studies. Org. Biomol. Chem.2004.2:2371-2375.
    [216]Milalsayuki K, Yasutaka A, Shiho O, Takuya N. Akihiko H, Yoshiro H. A mild and environmentally benign oxidation of thiols to disulfides. Synthesis 2007,21:3286-3289.
    [217]Ishida T, Yamamoto S, Mizutani W, Motomatsu M, Tokumoto H. Hokari H. Azehara H, Fujihira M. Evidence for cleavage of disulfides in the self-assembled monolayer on au (111). Langmuir 1997,13:3261-3265.
    [218]Ignatova M, Manolova N, Lachkova V, Varbanov S, Rashkov I. One-Step Preparation of Electrospun Microfibrous Polystyrene Mats Having Surface Enriched in p-tert-Butylcalix [4] arene Fitted with Phosphinoyl Pendant Arms. Macromol. Rapid Commun.2008,29: 1871-1876.
    [219]Liu YT, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 2010,31:330-338.
    [220]Rouxhet PG, Misselyn-Bauduin AM, Ahimou F, Genet MJ, Adriaensen Y, Desille T, Bodson P, Deroanne C. XPS analysis of food products:toward chemical functions and molecular compounds. Surf. Interface Anal.2008,40:718-724.
    [221]Yao C, Li XS, Neohb KG, Shi Zl, Kang ET. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J. Membr. Sci.2008,320:259-267.
    [222]Saprigin AV, Thomas CW, Dulcey CS, Patterson Jr CH, Spector MS. Spectroscopic quantification of covalently immobilized oligonucleotides. Surf. Interface Anal.2004,36: 24-32.
    [223]Bain CD, Troughton EB, Tao YT, Evall J, Ehitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc.1989,111:321-326.
    [224]Tero R, Takizawa M, Li YJ, Yamazaki M, Urisua T. Deposition of phospholipid layers on SiO2 surface modified by alkyl-SAM islands. Appl. Surf. Sci.2004,238:218-222.
    [225]Hong HG, Wonchoul P. Electrochemical characteristics of hydroquinone-terminated self-assembled monolayers on gold. Langmuir,2001,17:2485-2492.
    [226]Abhayawardhana AD, Sutherland TC. Heterogeneous proton-coupled electron transfer of a hydroxy-anthraquinone self-assembled monolayer. J. Electroanal. Chem.2011,653: 50-55.
    [227]Moncelli MR, Herrero R, Becucci L, Guidelli R. Kinetics of electron and proton transfer to ubiquinone-10 and from ubiquinol-10 in a self-assembled phosphatidylcholine monolayer. Biochim. Biophys. Acta 1998.1364:373-384.
    [228]Elliott SJ, Leger C, Pershad HR, Hirst J, Heffron K. Ginet N. Blasco F. Rothery RA, Weiner JH, Armstrong FA. Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochim. Biophys. Acta 2002.1555:54-59.
    [229]Pariente F. Tobalina F, Moreno G. Mechanistic Studies of the Electrocatalytic Oxidation of NADH and Ascorbate at Glassy Carbon Electrodes Modified with Electrodeposited Films Derived from 3,4-Dihydroxybenzaldehyde. Anal. Chem.1997,69: 4065-4075.
    [230]Karyakin AA, Ivanova YN, Karyakina EE. Equilibrium (NAD+/NADH) potential on poly (Neutral Red) modified electrode. Electrochem. Commun.2003,5:677-680.
    [231]Dieringer JA, Lettan RBII, Scheidt KA, Van Duyne RP. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc.2007, 129:16249-16256.
    [232]Ortiz RP, Delgado MCR, Casado J, Hernandez V, Kim O, Woo HY, Navarrete, JT L. Electronic Modulation of Dithienothiophene (DTT) as π-Center of D-π-D Chromophores on Optical and Redox Properties:□ Analysis by UV-Vis-NIR and Raman Spectroscopies Combined with Electrochemistry and Quantum Chemical DFT Calculations. J. Am. Chem. Soc.2004.126:13363-13376.
    [233]Cortes E, Etchegoin PG, Le Ru EC, Fai ME, Salvarezza RC. Electrochemical Modulation for Signal Discrimination in Surface Enhanced Raman Scattering (SERS). Anal. Chem.2010,82:6919-6925.
    [234]Rinia HA, Bonn M, Muller M. Quantitative multiplex CARS spectroscopy in congested spectral regions. J. Phys. Chem. B 2006,110:4472-4479.
    [235]Chen SP, Hosten CM, Vivoni A, Birke RL, Lombardi JR. SERS investigation of NAD+ adsorbed on a silver electrode. Langmuir 2002,18:9888-9900.
    [236]Siiman O, Rivellini R, Patel R. Orientation and conformation of NAD and NADH adsorbed on colloidal silver. Inorg.Chem.1988,27:3940-3949.
    [237]Gebicki J, Marcinek A, Zielonka J. Transient species in the stepwise interconversion of NADH and NAD+. Acc. Chem. Res.2004,37:379-386.
    [238]Yoon SK, Choban ER, Kan C, Tzedakis T, Kenis PJA. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis. J. Am. Chem. Soc.2005,127:10466-10467.
    [239]Siderowf A, Stern M. Update on Parkinson disease. Ann. Intern. Med.2003,138: 651-658.
    [240]Dawson TM, Dawson VL. Neuroprotective and neurorestorative strategies for Parkinson's disease. Nat. Neurosci.2002.5:1058-1061.
    [241]Dawson TM, Dawson VL. Molecular Pathways of Neurodegeneration in Parkinson's Disease. Science 2003,302:819-822.
    [242]Valente EM. et al. Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science 2004,304:1158-1160.
    [243]Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M. Panov AV. Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci.2000,3:1301-1306.
    [244]Jellinger KA. Neuropathological spectrum of synucleinopathies. Mov. Disord.2003,18 (Suppl6):S2-S12.
    [245]Litvan I, Halliday G, Hallett M. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J. Neuropathol. Exp. Neurol.2007,66:251-257.
    [246]Shi M, Bradner J, Hancock AM, Chung KA. Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Kim HM, Leverenz JB, Montine TJ, Ginghina C, Kang UJ, Cain KC, Wang Y, Aasly J, Goldstein D, Zhang J. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann. Neurol.2011,69:570-580.
    [247]Michalet X, Pinaud FF, Bentolila LA, Tsay JM. Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005,307:538-544.
    [248]Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater.2010,9:676-684.
    [249]Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.2004,22:969-976.
    [250]Wu X, Liu H, Liu J, Haley KN, Treadway JA. Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol.2003,21:41-46.
    [251]Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater.2006,18:1953-1964.
    [252]Medintz IL, Pons T, Trammell SA, Grimes AF, English DS, Blanco-Canosa JB, Dawson PE, Mattoussi H. Interactions between redox complexes and semiconductor quantum dots coupled via apeptide bridge. J. Am. Chem. Soc.2008,130:16745-16756.
    [253]Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998,281,2016-2018.
    [254]Medintz IL, Tetsuouyeda H. Goldman ER. Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.2005.4:435-446.
    [255]Clarke SJ, Hollmann CA, Zhang Z, Suffern D. Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat. Mater.2006,5:409-417.
    [256]Cooper D, Suffern D, Carlini L, Clarke SJ. Parbhoo R, Bradforth SE, Nadeau JL Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates. Phys. Chem. Chem. Phys.2009,11:4298-4310.
    [257]Burda C, Green TC, Link S, El-Sayed MA. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy. J. Phys. Chem. B 1999, 103:1783-1788.
    [258]Qin LX, Ma W, Li DW, Li Y, Chen X, Kraatz H-B. James TD, Long Y-T. Coenzyme Q Functionalized CdTe/ZnS Quantum Dots for Reactive Oxygen Species (ROS) Imaging. Chem. Eur. J.2011,19:5262-5271.
    [259]Li DW, Qin LX, Li Y, Nia RP, Long Y-T, Chen H-Y. CdSe/ZnS quantum dot-Cytochrome c bioconjugates for selective intracellular 02 sensing. Chem. Commun. 2011,47:8539-8541.
    [260]Mathew AE, Zee-Cheng RKY, Cheng CC. Amino-substituted p-benzoquinones. J. Med. Chem.1986,29:1792-1795.
    [261]Porter-Peden L, Kamper SG, Wal MV, Blankespoor R, Sinniah K. Estimating Kinetic and Thermodynamic Parameters from Single Molecule Enzyme-Inhibitor Interactions. Langmuir 2008,24:11556-11561
    [262]Sommer WJ, Week M. Facile functionalization of gold nanoparticles via microwave-assisted 1,3 dipolar cycloaddition. Langmuir 2007,23:11991-11995.
    [263]Chan TR, Hilgraf R, Sharpless KB, Fokin VV. Polytriazoles as copper (Ⅰ)-stabilizing ligands in catalysis. Org. Lett.2004,6:2853-2855.
    [264]Shen R, Shen X, Zhang Z, Li Y, Liu S, Liu H. Multifunctional Conjugates To Prepare Nucleolar-Targeting CdS Quantum Dots. J. Am. Chem. Soc.2010,132:8627-8634.
    [265]Yan P, Holman MW, Robustelli P, Chowdhury A, Ishak FI, Adams DM. Molecular switch based on a biologically important redox reaction. J. Phys. Chem. B 2005,109: 130-137.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.