平面K型钢管板节点受压极限承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,钢管结构体系得到了迅速发展。钢管板节点是钢管结构体系经常采用的(?)种节点形式。以往对管板节点承载力的研究主要集中在主管与板两侧相交的角点处破坏模式的研究,而对板的破坏模式研究较少。为了深入了解管板节点中节点板的受力性能、破坏形态及其受压极限承载能力等,本文以某超大直径凿井井架中的一个典型节点为基础,进行了相应的简化,以平面K型钢管板节点为研究对象,主要完成了以下工作:
     首先设计了节点试件,进行了节点的材性试验,为节点试验和数值模拟提供了相关参数。通过对节点的试验,研究了节点在荷载作用下应力的分布和发展规律:节点的塑性区首先出现在受压支管端部的两个角点,随后向受压支管两侧及端部发展,形成三个塑性区,最终在节点破坏前,三个塑性区连接为一体。节点的破坏形态为现三折线破坏形式。
     利用ANSYS完成了平面K型钢管板节点的有限元模拟分析,模拟结果与试验结果在极限承载力数值上有一定差异,但应力的发展变化规律基本是一致的。
     根据目前既有的节点板受压极限承载力公式对节点的极限承载力做出计算,发现节点板破坏均为失稳破坏,但计算结果与试验结果均相差较大,计算值分别是实验值的63%,68%,51%。本文根据轴心受压矩形板的弹性屈曲理论,利用我国钢结构设计规范(GB50017-2003)中的计算模型,提出等效长细比的概念,并使用等效长细比查取稳定系数来计算节点板的受压极限承载力,计算结果与试验结果比较接近,为试验值的88%。
In recent years, steel tubular structures have been developing rapidly. Steel tube-gusset K joints are usually used in steel tubular structures. The previous studies mainly focused on the failure mode in which joints failed in the corner of the intersection of main tube and gusset, while gusset failure modes have seldom been studied. In the dissertation, a typical joint in a super large diameter sinking derrick was studied in order to get an in-depth investigation of the mechanical behavior, failure modes and the ultimate compressive strength of gusset-plate K joints. The joint was simplied under some assumptions. The main works in the dissertation are as follows:
     Firstly, a typical joint was designed and the material test offered the relevant parameters. for test and numerical simulation. Based on the test, the law of stress distribution and stress development in the joint was studied:The plastic zone was initially emerged in the two corners of the end of compressive web. Subsequently, the plastic zone spreaded to the end of the compressive web and then to both sides of the compressive web. Ultimately, three plastic zones were formed and these three plastic zones connected as an unity before the joint failed. There were three obvious broken line in the failed joint.
     The simulation of gusset-plate K joint was completed by using the finite element program of ANSYS. There were some differences between simulation and test in the value of ultimate strength, but the laws of stress distribution in two situations are basically consistent.
     According to the existing calculation models, the failures of the testing joint are all stability failure. The ultimate strengths derived from these models were different from the experimental result obviously. The calculated results were 63%,68% and 51% of experimental result respectively. Based on the elastic buckling theory of rectangle plate under axial compression and the code for design of steel structures (GB50017-2003), the dissertation proposed a new way for estimating the ultimate compressive strength. In the new method, a concept of equivalent slenderness ratio was proposed and it was employed when checking the stability factor to calculate the.ultimate compressive strength. The ultimate strength from the new method was 88% of experimental result.
引文
[1]贺东哲,王元清,李少甫.管节点承载力的非线性有限元分析.工程力学,2000年第17卷第4期.
    [2]陈志华,吴锋,闫翔宇.国内空间结构节点综述.建筑科学,2007年第9期.
    [3]丁芸孙.圆管结构相贯节点几个设计问题的讨论.空间结构,2002,8(2).
    [4]日本铁塔協会.送电用铜管铁塔裂作基准.1995.
    [5]东京电力株式会社.送燮电建设本部:送电铁塔裂作标准(铜管铁塔编).1997.
    [6]Saeko S. Experimental study on strength of tubular steel structures. Japanese Society of Steel Construction 1974,10(102):37-68.
    [7]岡本舜三.鋼构造の研究—奥村敏惠教授还暦记念.东京:技报堂出版株式会社,1977:520-525.
    [8]Kurobane Y. New developments and practices in tubular joint design. Int Inst Welding,An-nual Assembly, Doc ⅩⅤ-488-81,1981.
    [9]Wardeneir J. Hollow section joints. Delft:Delft University Press,1982.
    [10]Packer J A, Henderson J E. Design guide for hollow structural section connections. Cana-dian Inst Steel Construct, Markham, Ontario,1992.
    [11]Ariyoshi M,Makino Y,Choo YS. Introduction to the database of gusset-plate to CHS tube joints. Proceedings of 8th International Symposium on Tubular structures,Singapore, 1998,4(13).
    [12]Kim W B. Ultimate strength of tube-gusset plate connections considering eccentricity. Engineering Structures,2001 (23):1418-1426.
    [13]Willibald S,Packer J A,Voth A P,et. Through-plate joints to elliptical and circular hollow Sections. Proceedings of 11th International Symposium on Tubular Structures,Quebec city,Canada,2006:221-228.
    [14]Whitmore RE. Experimental investigation of stresses in gusset plates. Bulletin No.16, En-gineering Experiment Station, University of Tennessee,1952.
    [15]Thornton WA. Bracing connections for heavy construction. Engineering Journal AISC 1984,3rd quarter:139-48.
    [16]S.Z.Hu, J. J.R.Cheng. Compressive behavior of gusset plate connections. Structural Engi-neering Report No.153,University of Alberta,1987.
    [17]Yam MCH, Cheng JJR. Analytical investigation of the compressive behavior and strength of steel gusset plate connections. Structural Engineering Report No.207, University of Al-berta,1994.
    [18]M.C.H.Yam,J.J.R.Cheng.Behavior and design of gusset plate connections in compression. Journal of Constructional Steel Research,2002,58:1143-1159.
    [19]Sheng N,Yam C H,Iu V P. Analytical investigation and design of the compressive strength of steel gusset plate connections. Journal of Construction Steel Research,2002,58:1473-1493.
    [20]D.G.Lutz,R.A.LaBoube. Behavior of thin gusset plates in compression. Thin-Wall structu-ctures,2005,43:861-875.
    [21]刘建平,郭彦林.广州新体育馆大型钢板节点极限承载力分析.青海大学学报,2001,19(2):11-13.
    [22]郭健,孙炳楠,叶尹.高耸钢管塔的节点应力分析.钢结构,2002,17(6):63-65.
    [23]郭勇,孙炳楠,郭健.节点板连接K型钢管节点的应力集中.建筑结构,2004,34(6): 51-54.
    [24]余世策,孙炳楠,叶尹等.高耸钢管塔的结点极限承载力的试验研究与理论析.工程力学,2004,21(3):155-161.
    [25]付俊涛.大跨越钢管塔节点强度理论与试验研究.上海:同济大学硕士学位论文,2009.
    [26]吴静.大跨越输电塔线体系静动力研究.上海:同济大学博士学位论文,2007.
    [27]王槐福.K型钢管-板连接节点受力性能与极限承载力研究.重庆:重庆大学硕士学位论文,2009.
    [28]沈泽渊,赵熙元.焊接钢桁架外加式节点板静力性能的研究.工业建筑,1987,(8):19-27.
    [29]李光照.钢桁架节点板弹塑性工作过程及破坏机理试验研究.建筑结构学报,1987(2):10-22.
    [30]中华人民共和国国家标准(GB50017-2003).钢结构设计规范. 中国建筑工业出版社,2003.
    [31]肖又箐.K型管板节点极限承载力研究.长沙:湖南大学硕士学位论文,2008·
    [32]Yura JA,Howell L E, Frank K H. Ulitmate load tests on tubular connections. Civil Engi-neering Structural Research Laboratory, Univ.of Texas, Report No.78-1,1978:702-710.
    [33]彭欢佳.平面K型管板节点抗弯刚度及节点板稳定承载力研究.长沙:湖南大学硕士学位论文,2008.
    [34][荷]J.沃登尼尔著,张其林,刘大康译.钢管截面的结构应用.上海:同济大学出版社,2004,1-6.
    [35]Lu LH, de Winkel GD, Yu Y, Wardenier J. Deformation limit for the ultimate strength of hollow section joints. Proceedings of 6th International Symposium on Tubular Structures, Melbourne, Australia,1994:341-347.
    [36]International Institute of Welding (IIW). Design recommendations for hollow section joi- nts-predominantly statically loaded.IIW Doc.XV-701-89,2nd ed,IIW Subcommission XV-E,Helsinki,Finland,1989.
    [37]李同林,殷绥域.弹塑性力学.武汉:中国地质大学出版社,2006:67-69.
    [38]陈明祥.弹塑性力学.北京:科学出版社,2007:71-75.
    [39]‘夏志皋.塑性力学.上海:同济大学出版社,1991:51-52.
    [40]方敏勇.方管平面X型和空间XX型相贯节点理论和实验研究.陕西:西安建筑科技大学博士学位论文,2004.
    [41]王勖成,邵敏.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社,1997.
    [42]美国ANSYS公司北京办事处ANSYS用户使用手册.北京:机械出版社,1998.
    [43]龚曙光.ANSYS基础应用及范例解析.北京:机械工业出版社,2004.
    [44]尚晓江.ANSYS结构有限元高级分析方法与范例应用.北京:中国水利水电出版社.
    [45]B.G.Johson(Editor).Guide to Stability Design Criterion for Metal Structures.3rd Edition. New York:John Wiley & Sons,Inc,1976.
    [46]陈绍蕃.钢结构稳定设计指南(第二),2004.
    [47]周旭红,郑宏.钢结构稳定.中国建筑工业出版社,2004年.
    [48]夏志斌,姚谏.钢结构—原理与设计.中国建筑工业出版社,2004年.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.