涂层缺陷下X70管线钢腐蚀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为添补管线钢在内蒙古地区典型土壤环境的腐蚀性研究的空白。在包头土壤模拟溶液中,研究了X70管线钢带有涂层缺陷及楔形缝隙的腐蚀行为。
     研究了X70钢在包头土壤模拟溶液中的基本电化学性质。X70钢在实验溶液中极化曲线的测定结果表明:在敞开体系中,随着溶液中HCO_3~-离子浓度的升高,钢的腐蚀程度增加;固定Cl-和HCO_3~-浓度时,随着溶液中SO_4~(2-)的加入,钢的腐蚀程度增加;模拟溶液比土壤浸出液腐蚀电流密度大,腐蚀速度快。
     X70管线钢为基体,用环氧煤沥青制成不同种类和不同破损尺寸的涂层缺陷,浸泡在包头土壤模拟溶液中,腐蚀在缺陷处发生。自腐蚀电位和交流阻抗的测定结果表明,不同种类涂层缺陷的X70管线钢中剥离与破损涂层缺陷腐蚀最轻微,剥离次之,破损腐蚀最严重。随着破损涂层缺陷直径的增大,X70管线钢的腐蚀越来越严重。腐蚀介质顺着涂层与基体金属的接触处向涂层下扩散。
     为了研究金属缝隙腐蚀的溶液化学和金属的电化学成行为,本文使用了一种楔形模拟缝隙构型。测试模拟缝隙自腐蚀状态下,X70管线钢的电极电位和实验结束时缝内溶液的pH值。测试对模拟缝隙构型施加不同程度阴极极化时,缝隙内X70管线钢的电极电位、电流密度以及实验结束时缝隙内溶液的pH值。
     结果表明,自腐蚀状态下,模拟溶液中X70管线钢试样在缝隙中从缝口向缝尖电极电位越来越负,pH值越来越小,总体趋势是腐蚀敏感性越来越强。
     外加阴极极化时,随极化电位降低,缝隙内电位相应降低,极化电流逐渐增大,pH值上升;极化电位小于-925mVSCE时,缝隙内各试样都能得到保护,不发生缝隙腐蚀;极化电位为-775mVSCE时,未达到保护电位,产生缝隙腐蚀。
Studying the corrosion behaviors of X70 pipeline steel with coating defects and wedge-shaped simulated crevice in the simulated solutions that are base on the Baotou area soil in order to replenish the blank of pipeline steels causticity investigation in Inner Mongolia Autonomous Region .
     Electrochemical behaviors of X70 steel were studied in the simulated solutions.X70 steel’s polarization curves of measurement result indicate : in open system, the corrosion degree of X70 steel increases with the increasing of HCO_3~- concentration in the solution. Fixed the Cl- and HCO_3~- concentration, with the SO_4~(2-) joining, the corrosion degree of the steel increases. comparing in the simulate solutions and the soil lixivium, corrosion degree of X70 steel is bad in the simulate solutions.
     The X70 pipeline steel as the body, The samples with the different sort and the different size circle defect which was made with epoxy coal pitch were immerged in the simulated solution, corrosion happened in the defects. Result of Ecorr and EIS diagram indicate the corrosion degree of X70 steel’s samples with disbonded and broken coating defects was most slight, disbond take second place, it is worst that the corrosion degree of X70 steel’s samples with broken coating defect.In the several different sizes of circle broken defects, following the diameter of defects increasing, the corrosion degree worse and worse. Corrosion medium was diffused from the joint between coating and base metal.
     A self-made wedge-shaped simulated crevice was used to investigate the solution chemistry and the electrochemical behavior of the metal in the crevice. Measured distribution of pole potential and pH value of the solution in the crevice under the natural corrosive state. Measured distribution of pole potential, current and pH value of the solution in the crevice forcing different cathodic polarization potential.
     The result shows: in all of simulated solutions, the electrode potential turned more and more negative , the pH value turned more and more small from the mouth of the crevice to the tip of the crevice under the natural corrosive state. the total trend is to the sensitivity of decay more and more strong.
     Under cathodic polarization condition,following the polarization potential negative, the electrode potential corresponds to negative , the current density gradual enlarge and pH value rise in the crevice. When the polarization potential is less than -925mVSCE, the every sample in the crevice can get protection, don't take place the gap corrosion; While the polarization potential is -775mVSCE, miss to the protective potential, bring the gap decay.
引文
[1] 黄中强.金属的电化学腐蚀和金属的电化学保护[J].玉林师专学报(自然科学),1998,19(3):62-64.
    [2] 柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:10-11.
    [3] API Specification 5L, Forty-first Edition, April 1, 1995, API. 231.
    [4] 吴长春,杨莜蘅,俞蓉蓉.世界天然气管道发展水平 [J].石油规划设计,1995, (3): 10-14.
    [5] 李鹤林.天然气输送钢管研究与应用中的几个热点问题[J]. 焊管,2000, 23(3): 10-28.
    [6] 潘家华.西气东输工程[J].焊管,2000,23(3):21-25.
    [7] 王周成,张瀛洲,周绍民等.A3 钢在离子选择性涂层下的腐蚀电化学行为[J].厦门大学学报(自然科学版), 36 (3): 388-392.
    [8] 佐藤清.金属表面技术[M].北京:科技出版社, 1981: 199-206.
    [9] 郑光明,杨宏伟.管道外防腐的三层 PE 覆盖系统[J].国外油田工程,2000, 6:41-46.
    [10] Morcillo.M.Simancas, J. Effects of soluble salts on coating life in atmospheric services[J]. Journal of Protective Coatings & Linings. 1997, 14(9): 40-52.
    [11] Johnson,James R.Primary cause of coating failure[J].Materials Performance.1999, 38(6): 48-49.
    [12] 龚树鸣.长输天然气管道外防腐涂层选择[J].天然气与石油,2001, 19(1): 24-30.
    [13] 董旭,胡士信.西气东输工程及其管道防腐蚀概况[J].西气东输工程及其管道防腐蚀概况,2001, 34(12): 1-3.
    [14] 刘海.长输油管道牺牲阳极保护的设计[J].管道与设备,1999, (2): 1-3.
    [15] 杨道武,李景禄,朱志平.接地网防腐工程中的阴极保护设计[J].电瓷避雷器,2004(1): 36-38.
    [16] Deflorian. F, Fedrizzi. L. Characterization of protective organic coatings by electrochemical impedance spectroscopy[J]. Journal of Adhesion Science and Technology. 1999, 13(5): 629-645.
    [17] Roy.D,simon.G.P,Forsyth.M Blends of maleic-anhydride-grafted polyethylene with polyethylene for improved cathodic disbondment performance[J].Polymer International. 50(10): 1115-1123.
    [18] 潘肇基. 有机涂层湿附着力的研究[J].材料保护,1994, 27(2): 9-12.
    [19] 徐云海,万小山,宋诗哲.碳钢表面有机涂层破损程度的模拟研究[J].腐蚀科学与防护技术,2002,14(4):215-217.
    [20] 宋诗哲,靳世久,宋小平,等.土壤中钢铁表面防护层缺陷的电化学检测 [J]. 电化学, 1999, 5(2): 162-165.
    [21] 骆素珍,郑玉贵,李劲,等.环氧粉末涂层中介质传输的交流阻抗谱特征[J].腐蚀科学与防护技术, 2001, 13(4): 199-202.
    [22] 窦贤飞,孟宪林,庞国友等.交流阻抗技术在有机涂层研究中的应用.A 集[C].全国腐蚀电化学进展与应用学术研讨会论文集,2000.11:167-170.
    [23] 刘小平.涂层防腐蚀的电化学研究[J].涂料工业,1999, 2: 37-41.
    [24] 朱日彰.金属腐蚀学[M].北京:冶金工业出版社,1993:111.
    [25] Evans U.R., The Corrosion and Oxidation of Metal Edward Arnold Ltd., London,1960
    [26] Myers J. L., Deposits and Corrosion Problems in Potable Water Systems of Buildings Paper no.90, 27th NACE, Chicago, 1971.
    [27] Pickering H.W. The Significance of the Local Electrode Potential with Pits, Crevices and Cracks[J]. Corr.Sci,1989,29(2/3 ):325-341.
    [28] 刘幼平,迟芳,左景伊. 1Cr13 不锈钢应力腐蚀裂缝内的电化学机制研究[J]. 化工学报, 1993, 44(5): 617-621.
    [29] Ellis O.B, LaQue F.L. Crevice corrosion in stainless steels [J]. Corrosion,1951,7:362.
    [30] Sharland S.M. Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304ss [J]. Corr.Sci, 1991, 32(9): 183.
    [31] 过家驹,李辉勤,陈小平. 不锈钢缝隙腐蚀的微区电化学行为及缝内钝化膜厚度的变化[J].中国腐蚀与防护学报,1985,5(2):92-99.
    [32] 杨武,Pourbaix A.铬和钼对钢的局部腐蚀发展过程的影响[J].中国腐蚀与防护学报,1983,3(1):22-33.
    [33] 左景伊,金志强.腐蚀裂缝内化学和电化学状态之探索[J].化工学报,1982,33(4):291-301.
    [34] Tumbull A. The Solution Composion and Electrode Potential in Pits, Crevice and Cracks[J]. Corrosion. Science, 1983, 23(8): 833-870.
    [35] 刘幼平,周培君, 张洁,等.外部电位对蚀孔或裂缝扩展阶段闭塞区腐蚀行为的影响[J].中国腐蚀与防护学报,1995, 15(1): 43-48.
    [36] 左景伊,张树霞,徐玉宝等. 腐蚀裂缝内化学和电化学状态之探索——外部电位和缝内电位及溶液pH 的关系[J].化工学报,1982, 33(4): 302-309.
    [37] Kurov O.V, Vasilenko I.I. [J].Protection of Metals, 1982,18(2):210-215.
    [38] Yang W, Ni R, Hua H, Pourbaix A. The Effect of Chromium and Molybdenum on Developing Process of Local Corrosion of steels[J]. Corrosion Science., 1992,24(8):365-369.
    [39] Watson M, Postlethwaite J. Numerical Simulation of Crevice Corrosion Stainless Steels and Nickel Alloys in Chloride Solutions [J].Corrosion ,1990 ,46 (7):522-530.
    [40] Brousseau R, Qian S, Gummow B. Final Research Report Submitted to Corrosion Service Company, Ltd. and Alyeska Pipeline Service Company, March 30 ,1992.
    [41] R. F. A. Jargelius Pettersson, Application of the Pitting Resistance Equivalent Concept to Some Highty Alloyed Austenitic Stainless Steels, Corrosion,1998,50(2):330-336.
    [42] Goetz R, Landolt D. Influence of chromium content and potential on the surface composition of Fe-Cr-Mo alloys studied by AES[J]. Electrochimica Acta. 1984, (5): 667-676.
    [43] Sedrik A.J., Corrosion of Stainless Steels, John Wile & Sons., Inc. 1979:88-109.
    [44] Mankowski J, Szklarska-Smialowska Z. Studies on Accumulation of Chloride Ions in Pits Growing During Anodic Polarization[J]. Corr. Sci.,1975,15(2):453.
    [45] Peterson M.H, Lennox T,J, Jr. A Study of cathodic Polarization and pH Changes in Metal Crevices [J].Corrosion,1973,29(10):406-410.
    [46] Suzuki T, Yamabe M, Ktamura Y. An Electrochemical Testing Method for Stress Corrosion Cracking by Separating Crack Anode from Cathode [J].Corrosion,1973,29(1):70-74.
    [47] Sharland S.M. Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304ss [J].Corr.Sci,1991,32(9):183.
    [48] 左景伊,王光耀,徐玉宝.在含 Cl-体系中 LC-4 铝合金腐蚀裂缝内溶液的化学变化及临界 pH 值[J].北京化工学院学报,1985,92(4):1-9.
    [49] Peterson M.H, Lennox T,J, Jr. A Study of cathodic Polarization and pH Changes in Metal Crevices [J].Corrosion,1973,29(10):406-410.
    [50] Tumbull A, Gandner M.K. The Solution Electrochemistry of Crevice Corrosion of Carbon Steels in both Seawater and 3.5% NaCl Aqueous Solution [J]. Corrosion, 1981, 16(3): 140-148.
    [51] Tumbull A, Gandner M.K. The Solution Electrochemistry of Crevice Corrosion of Carbon Steels in both Seawater and 3.5% NaCl Aqueous Solution[J].Corrosion,1981,16(3):140-148.
    [52] 刘永辉,电化学测试技术〔M〕,北京:北京航天航空大学出版社,1987:368.
    [53] 李荻,电化学原理[M],北京:北京航天航空大学出版社, 1989: 365.
    [54] 全国土壤腐蚀试验网站编,材料土壤腐蚀试验方法[M],北京:科学出版社,1992.
    [55] 王卫东,刘洪浩.阴极保护技术在城市燃气中的推广与应用.A 集[C].29-33.
    [56] 中科院南京土壤所编. 中国土壤图集[M].北京:地图出版社,1986. 1-10.
    [57] 韩兴平.埋地管线腐蚀涂层缺陷检测技术[J].天然气工业,2001,21(1):108-111.
    [58] 宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988:167.
    [59] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2004:45,156,158.
    [60] Chin D T, Sabde G M. Current Distribution and Electrochemical Environment in a Cathodically Protected Crevice. Corrosion, 1999, 55(3): 29.
    [61] 朱日彰.北京市天然气土壤腐蚀性埋地挂片实验及分析总结报告[D].北京科技大学腐蚀与防护中心,1996. 38-54.
    [62] 王远志.16Mn 钢在土壤中的腐蚀及阴极极化行为研究[R].青岛:中国海洋大学,2004.
    [63] 崔晓莉.等效电路中元件参数数值对交流阻抗谱的影响[J].河北师范大学学报(自然科学版),2002, 26(4): 376-380.
    [64] 宋小平,王文魁,宋诗哲.缺陷缠带防护层下碳钢的电化学行为[J].中国腐蚀与防护学报,2001,21(2):65-67.
    [65] 唐红雁, 宋光铃, 曹楚南,等.土壤腐蚀体系后插参比测量法研究[J].腐蚀科学与防护技术, 1994, 6 (4): 352.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.