等高绿篱—农业复合系统土壤CO_2和N_2O排放特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2和N2O等温室气体引起气候变暖和臭氧层破坏是当今全球性的环境问题。农田土壤CO2和N2O排放及其对环境的影响越来越受到人们的重视。目前农林复合系统已被IPCC列为温室气体减排措施,但有关土壤CO2和N2O排放的研究主要集中在森林、草地及农田生态系统,农林复合系统土壤CO2和N2O排放的研究不多。本文采用静态箱-气相色谱法,以豆科紫穗槐和禾木科香根草绿篱复合系统为研究对象,研究了不同绿篱刈割枝叶管理方式下冬小麦—夏玉米轮作全生育期土壤CO2和N2O排放特征,分析评价了影响排放的主要因子,并初步估算了绿篱复合种植、作物单作及绿篱单作各系统的碳平衡,旨在进一步认识等高绿篱—农业复合系统生态环境效应,为合理估算我国陆地生态系统土壤CO2和N2O生成量、编制我国温室气体排放清单及制定相关管理政策提供科学依据。经过为期1年的研究,取得的主要结论如下:
     (1)绿篱复合系统及作物、绿篱单作系统土壤CO2和N2O排放通量均呈明显的季节变化规律,表现为夏季排放量最高、春秋季次之、冬季最低。各处理土壤C02排放通量的变化范围为3.77~213.88 mg m-2 h-1,排放总量介于3417.59~6435.91kg C hm-2a-1之间;土壤N2O排放通量的变化范围为-3.84~92.11μg m-2h-1,排放总量介于0.49~1.33 kg N hm-2a-1之间。
     (2)绿篱刈割枝叶还田显著增加了土壤CO2和N2O排放。冬小麦和夏玉米生育期,绿篱复合系统土壤CO2排放通量大小顺序均为:枝叶翻施还田>表施还田>移出小区,且紫穗槐复合系统的排放量高于香根草复合系统。冬小麦生育期,绿篱枝叶表施还田方式下的土壤N2O排放通量大于翻施还田;夏玉米生育期,枝叶翻施还田的排放通量要高于表施还田。农田转变为紫穗槐林地和香根草草地也显著增加了土壤CO2和N2O排放。
     (3)土壤水热因子对土壤CO2和N2O排放的影响具有明显地季节性差异。冬小麦生育期土壤CO2和N2O排放通量与土壤温度呈显著或极显著正相关,土壤水分的影响居于次要地位;夏玉米生育期土壤CO2和N2O排放则主要受土壤水分的影响。
     (4)土壤CO2平均排放通量与土壤有机碳、MBC均值和全氮含量呈显著正相关;但同一处理不同观测时期的CO2排放通量与对应的MBC之间的相关性较低。绿篱复合系统土壤N2O排放通量与土壤全氮和NO3--N含量呈显著正相关,与NH4+-N含量呈负相关,与土壤有机碳、C/N比及MBN的相关性较低;绿篱单作系统土壤无机氮与N2O排放通量无明显相关关系。
     (5)土壤CO2和N2O排放与植物生长密切相关。冬小麦生育期,土壤CO2排放主要受小麦生长的影响,夏玉米生育期则受玉米和绿篱生长的共同作用。土壤N2O排放通量与作物生物量呈显著线性相关,同时绿篱种类显著影响了土壤N2O的排放。
     (6)绿篱复合系统及作物、绿篱单作系统表层土壤CO2排放通量与土壤N2O排放通量呈显著或极显著的正相关关系。
     (7)生态系统碳平衡计算结果表明:各系统碳汇源的强度范围介于-493.28~2380.23 kg C hm-2之间,冬小麦和夏玉米生育期的NPP/Rs范围分别为0.70~2.40和0.85~2.83。作物单作系统表现为大气CO2的“源”。绿篱进入农田改变了系统碳的“汇源”特征。香根草复合系统在冬小麦生育期为大气碳的“源”,夏玉米生育期则表现为大气碳的“汇”;紫穗槐复合系统在冬小麦和夏玉米生育期均为大气碳的“汇”,且其汇的强度大于香根草复合系统。农田转变为绿篱样地后有利于大气碳的固定,且香根草单作系统的碳汇强度大于紫穗槐单作系统。
CO2 and N2O has been paid great attention due to their substantial contribution to global warming and ozone depletion. It has suggested that agricultural soil is an important source of CO2 and N2O. Nowadays, many researchers have focused on demonstrating the soil CO2 and N2O fluxes of forests, grassland and farmland ecosystems, few report was found on trace CO2 and N2O fluxes from contour hedgerow intercropping system, one of the agroforestry patterns. We examined the effects of hedge prunings returning to field on the fluxes of soil N2O and CO2 under wheat-maize rotation in Amorpha fruticosa and Vetiveria zizanioides intercropping systems on a loamy clay soil, at Xianning, Hubei province, China. Soil CO2 and N2O fluxes were determined using the closed chamber-gas chromatography method. Some potential factors such as soil temperature, soil water, soil carbon, soil nitrogen, soil microbial biomass and plant growth were also measured during winter wheat-summer maize growth period in 2008-2009. The main results were as follows:
     (1) Soil CO2 and N2O fluxes from different plots had obvious seasonal variation, with the highest in summer, higher in spring and autumn, and the lowest in winter. With the annual flux from 3417.59 to 6435.91 kg C hm-2 a-1, soil CO2 flux under different systems ranged from 3.77 to 213.88 mg m-2h-1. Soil N2O flux under different systems ranged from-3.84 to 92.11μg m-2 h-1, with the annual flux from 0.49 to 1.33 kg N hm-2 a-1.
     (2) As expected, hedge prunings returning to field enhanced the release of soil CO2 and N2O. Significant difference in soil CO2 flux was observed among different hedge species prunings management practice, following the order of Incorporated-pruning> Surface-applied pruning> Removal of pruning, and the effect of A.fruticosa system was more obvious. The soil N2O flux of Incorporated-pruning was higher than Surface-applied pruning in winter wheat growing season, whereas the opposite trend was found during summer maize growth period. Furthermore, conversion from cropland to A.fruticosa forestland and/or Vetiver grassland might increase the release of soil CO2 and N2O to what extent.
     (3) The influence of soil temperature and moisture on soil CO2 and N2O fluxes is significantly different with seasonal variation. During winter wheat growth period, soil CO2 and N2O fluxes were strongly exponentially correlated with soil temperature among all treatments, and the influence of soil moisture was of minor status. However, soil CO2 and N2O fluxes were significantly affected by soil moisture in summer maize growing season.
     (4) Correlation analysis indicated that the average of CO2 flux was significantly positively correlated with soil organic carbon, average microbial biomass carbon and total nitrogen, but the relationship between soil microbial biomass carbon and soil CO2 flux under different growth stages was lower. Under hedgerow intercropping systems, the total nitrogen and soil NO3--N were significantly positive correlative with production of soil N2O flux, the opposite trend was observed for soil NH4+-N. However, no clear relationship existed between soil inorganic nitrogen and N2O flux in A.fruticosa forestland and/or Vetiver grassland. No significant dependence of N2O flux on the soil organic carbon, soil C/N ratio and soil microbial biomass nitrogen was observed among treatments.
     (5) Correlation analysis showed that soil CO2 flux was mainly affected by wheat growth during winter wheat growth period. However, it was commonly influenced by the growth of maize and hedges in summer maize season. Soil N2O flux was well correlated with wheat biomass and maize biomass. It indicated that crop growth was one of the important factors influencing soil CO2 and N2O fluxes. In addition, different hedge species also remarkably influenced soil N2O flux.
     (6) In A.fruticosa and/or Vetiver intercropping system, monoculture crop and monoculture hedge systems, there were significant linear relationships between soil CO2 flux and soil N2O flux.
     (7) Analysis of carbon budget showed that the intensity of carbon sequestration or source ranged from-493.28 to 2380.23 kg C hm-2 in different systems. The ratio of NPP/Rs for winter wheat and summer maize growing season ranged from 0.70 to 2.40 and from 0.85 to 2.83, respectively. Hedger intervening farmland system changed its feature of carbon sink and source. Vetiver intercropping system acted as carbon source of the atmosphere CO2 over winter wheat growing season, whereas the opposite trend during summer maize growth stage. A.fruticosa intercropping system, which carbon sink strength was bigger than Vetiver intercropping system, was a carbon pool of the atmosphere CO2 throughout the year. Furthermore, the land use conversion from cropland to A.fruticosa forestland and/or Vetiver grassland might increase the carbon sequestration to a great extent, and the carbon pool was greater in Vetiver grassland than that in A.fruticosa forestland.
引文
1. 白红英.土壤N2O排放的影响因子及其定量模型研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2003
    2. 鲍士旦.土壤农化分析.北京:中国农业出版社,2000,22-24,25-38
    3. 卜崇峰,蔡强国,袁再建.三峡库区等高植物篱的控蚀效益及其机制.中国水土保持科学,2006,4(4):14-18
    4. 蔡崇法,丁树文,张光远,等.三峡库区紫色土坡地养分状况与养分流失.地理研究.1996,15(3):77-84
    5. 蔡崇法,王峰,丁树文,等.间作及农林复合系统中植物组分间养分竞争机理分析.水土保持研究,2000,7(3):219-221
    6. 蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响.水土保持通报,1998,18(2):1-9
    7. 蔡强国,卜崇峰.植物篱复合业技术措施效益分析.资源科学,2004,26(增刊):8-12
    8. 陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征.应用生态学报,2004,15(9):1552-1560
    9. 陈旸,李忠佩,周李祥,等.不同施肥处理对红壤水稻土微生物生物量及呼吸强度的影响.土壤,2008,40(3):437-442
    10.丁琦,白红英,李西祥,等.作物对黄土性土壤氧化亚氮排放的影响—根系与土壤氧化亚氮排放.生态学报,2007,27(7):2823-2831
    11.丁树文,王峰,蔡崇法,等.两种绿篱植物对作物养分吸收的影响.资源科学,2004,26(增刊):156-160
    12.杜炳新.农林复合经营研究进展.河北林业科技,2008,6:42-44
    13.杜丽君,金涛,阮雷雷,等.鄂南4种典型土地利用方式红壤CO2排放及其影响因素.环境科学,2007,28(7):1607-1613
    14.杜睿,黄建辉,万小伟,等.北京地区暖温带森林土壤温室气体排放规律.环境科学,2004,25(2):12-16
    15.封克,殷士学.影响氧化亚氮形成与排放的土壤因素.土壤学进展,1995,23(6):35-40
    16.高会议,郭胜利,刘文兆,等.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态.生态学报,2009,29(5):2551-2559
    17.高志岭.冬小麦厦玉米轮作体系农田土壤N2O排放和CH4吸收特征.[博士学位论文].北京,中国农业大学图书馆,2004
    18.耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,2001,56(1):44-53
    19.关松荫.土壤酶及研究方法.北京:中国农业出版社,1986,105
    20.郭忠录.等高绿篱一坡地农业复合系统氮素循环研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    21.韩广轩,朱波,张中杰,等.川中丘陵水旱轮作土壤—小麦系统CO2排放及其影响因素.地球科学进展,2004,19(增刊):496-501
    22.韩广轩,朱波,江长胜.川中丘陵区水稻田土壤呼吸及其影响因素.植物生态学报,2006,30(3):450-456
    23.韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望.植物生态学报,2008,32(3):719-733
    24.郝庆菊,王跃思,宋长春,等.三江平原湿地土壤CO2和CH4排放的初步研究.农业环境科学报,2004,23(5):846-851
    25.侯琳,雷瑞德,王得祥,等.森林生态系统土壤呼吸研究进展.土壤通报,2006,37(3):589-594
    26.黄斌,王敬国,龚元石,等.冬小麦夏玉米农田土壤呼吸与碳平衡的研究.农业环境科学学报,2006,25(1):156-160
    27.黄国宏,陈冠雄,韩冰.土壤含水量与N2O产生途径研究.应用生态学报,1999,10(1):53-56
    28.黄耀,蒋静艳,宗良纲,等.种植密度和降水对冬小麦田N2O排放的影响.环境科学,2001,22(6):20-23
    29.黄耀,焦燕,宗良纲,等.土壤理化特性对麦田N2O排放影响的研究.环境科学学报,2002,22(5):598-602
    30.李海防,夏汉平,熊燕梅,等.土壤温室气体产生与排放影响因素研究进展.生态环境,2007,16(6):1781-1788
    31.李俊,于沪宁,于强,等.农田N2O通量测定方法分析.地学前缘,2002,9(2):377-385
    32.李明峰,董云社,耿元波,等.草原土壤的碳氮分布与CO2排放通量的相关性分析.环境科学,2004,25(2):7-11
    33.李楠,陈冠雄.植物释放N20速率及施肥的影响.应用生态学报,1993,4(3):295-98
    34.李文华,赖世登,罗菊春,等.中国农林复合经营.1994,北京北京科学出版社
    35.李新举,张志国,李贻学.土壤深度对还田秸秆腐解速度的影响.土壤学报,2001,38(1):135-138
    36.梁东丽,同延安,Ove Emteryd,等.灌溉和降水对旱地土壤N2O气态损失的影响.植物营养与肥料学报,2002,8(3):298-302
    37.梁旺国.秸秆还田对典型盐碱地土壤温室气体及NO排放的影响研究.[硕士学位论文].重庆:西南大学图书馆,2009
    38.廖利平,高洪,汪思龙,等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响.植物生态学报,2000,24(1):34-39
    39.林杉,冯明磊,阮雷雷,等.三峡库区不同土地利用方式下土壤氧化亚氮排放及其影响因素.应用生态学报,2008,19(6):1269.1276
    40.刘惠,赵平,林永标,等.华南丘陵区农林复合生态系统晚稻田甲烷和氧化亚氮排放.热带亚热带植物学报,2006a,14(4):269-274
    41.刘惠,赵平,王跃思,等.华南丘陵区农林复合生态系统稻田二氧化碳排放及其影响因素.生态学杂志,2006b,25(5):471-476
    42.刘巧辉,黄耀,郑循华.基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨.环境科学学报,2005,25(8):1105-1111
    43.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17(5):469-476
    44.刘杏认,董云社,齐玉.土壤排放研究进展.地理科学进展,2005,24(6):50-58
    45.柳敏,宇万太,姜子绍,等.土壤活性有机碳.生态学杂志,2006,25(11):1412-1417
    46.娄运生,李忠佩,张桃林.不同利用方式对红壤CO2排放的影响.生态学报,2004,24(5):978-983
    47.马二登,马静,徐华.稻秆还田方式对麦田N2O排放的影响.土壤,2007,39(6):870-873
    48.孟凡乔.高产农田生态系统土壤有机碳研究.[博士学位论文].北京:中国农业大学图书馆,1999
    49.孟磊,丁维新,何秋香,等.长期施肥对冬小麦/夏玉米轮作下土壤呼吸及其组分的影响.土壤,2008,40(5):725-731
    50.孟平,宋兆民,张劲松,等.农林复合系统对环境质量调控作用研究.林业科学研究.2000,13(1):1-7
    51.强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响.应用生态学报,2004,15(3):469-472
    52.阮雷雷.湖北咸宁地区几种土地利用类型的温室气体排放及其增温潜势.[硕士学位论文].武汉:华中农业大学图书馆,2007
    53.宋文质,王少彬,曾江海,等.华北地区旱田土壤氧化亚氮的排放.环境科学进展,1997,5(4):49-55
    54.孙辉,唐亚,何永华,等.高固氮植物篱模式对坡耕地土壤养分的影响.中国生态农业学报,2002,10(2):79-82
    55.孙辉,唐亚,谢嘉穗.植物篱种植模式及其在我国的研究和应用.水土保持学报,2004,18(2):114-117
    56.孙艳丽.华北平原典型农田土壤N20通量及其影响因素的研究.[硕士学位论文].北京林业大学图书馆,2007
    57.唐亚,谢嘉穗,陈克明,等.高固氮植物篱技术在坡耕地可持续耕作中的应用.水土保持研究,2001,8(1):104-109
    58.王爱玲,高旺盛,黄进勇.秸杆直接还田的生态效应.中国农业资源与区划,2000,21(2):41-45
    59.王国兵,郝岩松,王兵,等.土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响.北京林业大学学报,2006,28(增刊2):72-79
    60.王鹤松,张劲松,孟平,等.测柏人工林地土壤呼吸及其影响因子的研究.土壤通报,2009,40(5):1031-1035
    61.王敬国.农业生态系统和大气间的温室效应气体交换.环境科学,1993,14(2):49-53
    62.王立刚.黄淮海平原地区农业生态系统土壤碳氮循环规律的初步研究.[硕士学位论文].北京:中国农业大学图书馆,2002
    63.王连峰,蔡延江,解宏图.冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系.应用生态学报,2007,18(10):2361-2366
    64.王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究.[博士学位论文].中国农业科学院,2009
    65.王智平.中国农田N20排放量的估算.农村生态环境,1997,13(2):51-55
    66.王重阳,郑靖,顾江新,等.下辽河平原几种旱作农田N2O排放通量及相关影响因素的研究.农业环境科学学报,2006,25(3):657-663
    67.吴金水.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006,54-65
    68.吴雅琼,刘国华,傅伯杰,等.中国森林生态系统土壤CO2释放分布规律及其影响因素.生态学报,2007,27(5):2126-2135
    69.许峰,蔡强国,吴淑安,等.坡地等高植物篱带间距对表土养分流失影响.土壤侵蚀与水土保持学报,1999,5(2):23-29
    70.徐文彬,刘维屏,刘广深.温度对早田土壤N2O排放的影响研究.土壤学报,2002,39(1):1-8
    71.杨兰芳,蔡祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响.应用生态学报,2005,16(1):100-104
    72.杨兰芳,蔡祖明,祁士华.大豆和玉米生长对土壤N2O排放的影响.作物学报,2007,33(5):861-865
    73.姚志生,郑循华,周再兴,等.太湖地区冬小麦田与蔬菜地N2O排放对比观测研究.气候与环境研究,2006,11(6):691-701
    74.叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征.农业环境科学学报,2005,24(6):1186-1191
    75.易志刚,蚁伟民,周国逸,等.鼎湖山三种主要植被类型土壤碳释放研究.生态学报,2003,23(8):1673-1678
    76.于克伟,陈冠雄,杨思河,等.几种旱地农作物在农田N2O释放中的作用及环境因素的影响.应用生态学报,1995,6(4):387-391
    77.张宇,张海林,陈继康,等.耕作措施对华北农田CO2排放影响及水热关系分析.农业工程学报,2009a,25(4):47-53
    78.张宇,张海林,陈继康,等.耕作方式对冬小麦田土壤呼吸及各组分贡献的影响.中国农业 科学,2009b,42(9):3354-3360
    79.张振贤.垃圾堆肥及其复合肥对农田N2O排放通量的影响.[硕士学位论文].首都师范大学图书馆,2006
    80.郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响.应用生态学报,1996,7(3):273-279
    81.郑循华,王明星,王跃思,等.温度对农田N2O产生与排放的影响.环境科学,1997,18(5):1-5
    82.周文能,林而达.小麦地氧化亚氮排放特征研究.中国农业气象,1994,15(1):6-8
    83.朱祖祥.土壤学.北京:农业出版社,1983
    84.邹建文,黄耀,宗良纲.稻CO2、CH4和N2O排放及其影响因素.环境科学学报,2003,23(6):758-764
    85. Agus F, Garrity P, Cassel D K. Soil fertility in contour hedgerow systems on sloping oxisols in Mindanao Philippines. Soil and Tillage Research,1999,50(2):159-157
    86. Angima S D, Stott D E, Neill M K O, et al. Use of calliandra-napier grass contour hedges to control erosion in central Kenya. Agriculture, Ecosystems & Environment,2003,91(1-3):15-23
    87. Badia D V, Aleaniz J M. Basal and specific microbial respiration in semiarid agricultural soils: Organic amendment and irrigation management effects. Journal of Geomicrobiology,1993,11(3): 261-274
    88. Baggs E M, Rees R M, Smith K A, et al. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage,2000,16:82-87
    89. Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In:Bouwman AF. (Ed.), Soils and the Greenhouse Effect. Wiley, New York. USA.1990:61-127
    90. Bouwman A F, Fung I, Matthews E, et al. Global analysis of the potential for N2O production in natural soils. Global Biogeochemical Cycles,1993,7(3):557-597
    91. Bowden R D, Boone R D, Melillo J M, et al. Contributions of above ground litter, below ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research,1993,23:1402-1407
    92. Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest Bowden. Forest Ecology and Management,2004,196:43-56
    93. Chapman S J, Thurlow M. The influence of climate on CO2 and CH4 emissions from organic soils. Agricultural and Forest Meteorology,1996,79:205-217
    94. Davidson E A, Belk E, Boone R D. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonian. Biochemistry,2000, (48):53-69
    95. Dinesh R, Suryanarayana M A, Chaudhuri S G, et al. Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. European Journal of Soil Biology,2006,42:147-157
    96. Erickson H E, Keller M, Davidson E A. Nitrogen oxide fluxes and nitrogen cycling during post agricultural succession and forest fertilization in the humid tropics. Ecosystems,2001,4:67-84
    97. Fang C, Moncrieff J B, Gholz H L, et al. Soil CO2 efflux and its spatial variation in a Florida slash pine plantations. Plant and Soil,1998,205(2):135-146
    98. Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry,2001,33(2):155-165
    99. Galbally I E. Biosphere-atmosphere exchange of trace gases over Australia. In Australia's Renewable Resources:Sustainability and Global Change. Eds. R M Gifford and M M Barson. Bureau of Rural Resources, Canberra Australia,1992,117-149
    100. Gerald E S. Risks and returns from soil conservation:evidence from low-income farms in the Philippines. Agricultural Economics,1999,21(1):53-67
    101. Guo Z L, Cai C F, Li Z X, et al. Crop residue effect on crop performance, soil N2O and CO2 emissions in alley cropping systems in subtropical China. Agroforest Systems,2009,76(1):67-80
    102. Hall A J, Connor D J, Whitfield D M. Root respiration during grain filling in sunflower:the effects of water stress. Plant Soil,1990,121:57-66
    103. Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration:a review of methods and observations. Biogeochemistry,2000,48:115-146
    104.Hongton J T, Jenkins G J, Ephraums J J. IPCC climate change, The IPCC scientific assessment. Cambridge, UK:Cambridge University Press,1990,365
    105. Intergovernmental Panel on Climate Change (IPCC). Climate change 2001—synthesis report: third assessment report of the intergovernmental panel on climate change. New York:Cambridge University Press,2001
    106. Isaac L, Dennis A S, Wood C W. Hedgerow pruning management effects on maize yield and nitrogen uptake in an alley cropping system in Haiti. American Society of Agronomy,2004,96: 1632-1640
    107. Javed I, Hu R G, Du L J, et al. Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biology and Biochemistry,2008,40(9):2324-2333
    108. Jia B, Zhou Q Wang Y, et al. Effects of temperature and soil water content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 2006,67(1):60-76
    109. Jones S K, Rees R M, Skiba U M, et al. Greenhouse gas emissions from amanaged grassland. Global and Planetary Change,2005,47(2-4):201-211
    110.Kessel C, Pennock D J, Farrell R E. Seasonal variations in denitrification and nitrous oxide evolution at the landscape scale. Soil Science Society of America Journal,1993,57:988-995
    111. King K F S. Agri-silvieuuter Bulletin(1), Department of Forestry, University of Ibadan, Nigeria, 1978
    112. Koskinen W C, Keeney D R. Effect of pH on the rate of gaseous products of denitrification in a silt loam soil. Soil Science Society of America journal,1982,46:1165-1167
    113.Kuzyakov Y. Separating microbial respiration of exudates from root respiration in non-sterile soil: a comparison of four methods. Soil Biology and Biochemistry,2002, (34):1621-1631
    114.Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry,2006,38:425-448
    115.Larionova A A, Yermolayev A M, Blagodatsky S A. Soil respiration and carbon balance gray forest soil as affected by land use. Biology and Fertility of Soils,1998,27:251-257
    116. Lou Y, Li Z, Zhang T, et al. CO2 emissions from subtropical arable soils of China. Soil Biology and Biochemistry,2004,36(11):1835-1842
    117.Lundgren B O. ICRAF into 1990s. Agroforestry Today,1990,2(4):14-16
    118.Maier C A, Kress L W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine plantations as affected by moisture and nutrient availability. Canadian Journal of forest research, 2000,30(3):347-359
    119. Mosier A R, Delgado J A, Keller M. Methane and nitrous oxide fluxes in an acid Oxisol in western Puerto Rico:effects of tillage, liming and fertilization. Soil Biology and Biochemistry, 1998,30(14):2087-2098
    120. Mutuo P K, Cadisch G, Albrecht A, et al. Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems,2005,71(1):43-54
    121. Palm C A, Alegre J C, Arevalo L, et al. Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Global Biogeochem Cycles.2002,16:1073, doi:10.1029/ 2001GB001855
    122.Pangle R E, Seiler J. Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinustaeda L.) plantation in the Virginia Piedmont. Environmental Pollution,2002,116:85-96
    123. Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of Trace Gas Fluxes and N Availability to Experimentally Elevated Soil Temperatures. Ecological Applications,1994,4(3):617-625
    124. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44:81-99
    125. Reid R, Wilson G. Agroforestry in Australia and New Zealand. Goddard and Dobson Victoria, MF. 1985
    126.Rochette P, Flanagan L B, Gregorich E G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of America journal,1999,63:1207-1213
    127.Roehette P, Angers D A, Belanger Q, et al. Emissions of N2O from Alfalfa and Soybean crops in Eastern Canada. Soil Science Society of America Journal,2004,68:493-50
    128.Rustad L E, Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux a low elevation spruce-fir forest soil in Maine, USA. Global Change Biology,1998,4:597-605
    129.Schoeneberger M M. Agroforestry:working trees for sequestering carbon on agricultural lands. Agroforest Systems,2009,75(1):27-37
    130. Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems. The Botantical Review,1977,43:449-528
    131.Skopp J, Jawson M D, Doran D W. Steady state aerobic microbial activity as function of soil-water content. Soil Science Society of American Journal,1990,54:1619-1625
    132. Sun H, Tang Y, Xie J S. Contour hedgerow intercropping in the mountains of China:a review. Agroforest Systems,2008,73(1):65-76
    133. Verchot L V, Noordwijk M V, Kandji S, et al. Climate change:linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change,2007,12(5): 901-918
    134. Wang Y S, Hu Y Q, Ji B M, et al. An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences,2003,20(1):119-127
    135. Weier K L, Doran J W, Power J F, el al. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America journal, 1993,57(1):66-72
    136. Xu W B, Hong Y T, Chen X H, et al. N2O emissions from regional agricultural lands:A case study of Guizhou province, southwestern China. Science in China.2000,43(1):103-112
    137. Yang L F, Cai Z C. The effect of growing soybean (Glysine max L.) on N2O emission from soil. Soil Biology and Biochemistry,2005,37:1205-1209
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.