褐飞虱对苯基吡唑类杀虫剂抗性风险评估及交互抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱Nilaparvata lugens(stal)是水稻生产上一种重要害虫,历史上有关其危害的报道有很多。近几年,褐飞虱在我国长江流域频繁爆发,对水稻生产造成了严重的威胁。目前化学防治仍然是控制其危害的主要手段。近年来,防治褐飞虱的主要药剂如苯基吡唑类(氟虫腈),抗性出现快速上升的趋势。因此,继续进行褐飞虱对常用药剂的抗性研究,在褐飞虱抗性治理中有重要的意义。
     本研究监测了褐飞虱对苯基吡唑类等杀虫剂抗性动态变化;通过室内抗性筛选,进行了褐飞虱对氟虫腈的抗性风险评估;对三种苯基吡唑类杀虫剂进行了交互抗性测定;检测了毒死蜱对褐飞虱的生物活性及对其生殖力的影响,为褐飞虱的抗性治理提供科学依据。1水稻褐飞虱的抗药性监(检)测
     为了明确褐飞虱对现用主要药剂的抗性现状,以便于制定科学可持续的防治策略和方法,在2008年-2009年期间,采用稻茎浸渍法监测了我国9省15地褐飞虱种群对苯基吡唑类、新烟碱类及昆虫生长调节剂类杀虫剂的抗药性动态变化。结果表明:田间褐飞虱不同种群对不同药剂的抗性水平存在较大的差异,2008年和2009年对氟虫腈的抗性分别为低到中等水平(RR=9.0-32.5倍)和中等水平到高水平(RR=24.7-44.9倍),抗性随着褐飞虱迁飞路线有不断升高的趋势,而且逐年快速上升。在吡虫啉暂停使用后,继续对褐飞虱田间种群抗性进行监测,吡虫啉基本维持在极高水平抗性(RR=210.1-381.0倍)。2009年6省6地的褐飞虱种群对噻嗪酮(RR=9.0-14.0倍)、噻虫嗪(RR=5.3-8.2倍)为低水平到中等水平抗性,抗性上升缓慢。2褐飞虱对氟虫腈的抗性风险评估
     为了评估氟虫腈对褐飞虱的抗性风险,用氟虫腈对室内饲养的湖北孝感褐飞虱种群进行了连续18代的抗性筛选,对氟虫腈有7.5倍抗性的起始种群,在经过室内抗性选育后,LC50值由0.289 mg a.i./L上升到1.646 mg a.i./L,抗性上升5.70倍,与敏感种群相比抗性倍数为42.8倍达到高水平抗性。根据Tabashnik的方法,计算了筛选前期和后期抗性现实遗传力h2分别为0.0998(1-9代)、0.5370(9-18代),整个筛选期间h2=0.2958(1-18代),表明褐飞虱对氟虫腈具有较高的抗性风险,在连续大面积使用的情况下容易使抗性快速上升,而且抗性上升速度随着选择压的升高而加快。
     3氟虫腈与丁烯氟虫腈、乙虫腈的交互抗性研究
     在乙虫腈和丁烯氟虫腈尚未在我国水稻上大面积使用的情况下,我们采用田间褐飞虱种群对苯基吡唑类三种杀虫剂的抗性监测和室内抗性筛选种群测定交互抗性的两种方法,研究了氟虫腈与乙虫腈和丁烯氟虫腈间的交互抗性,结果表明:对氟虫腈产生中等至高水平抗性(RR=24.7-44.9倍)的6个褐飞虱田间种群对乙虫腈为高水平的抗性(RR=45.1-96.6倍);室内用氟虫腈筛选18代的种群(抗性上升5.6倍)对乙虫腈的抗性上升高达4.0倍,由此证实褐飞虱对氟虫腈产生抗性后,对乙虫腈具有高水平的交互抗性;对氟虫腈产生中等至高水平抗性的6个褐飞虱田间种群对丁烯氟虫腈多数种群为敏感性下降(RR=3.4-4.5倍),个别种群为低水平抗性(RR=8.3倍);室内用氟虫腈筛选18代的种群(抗性上升5.6倍)对丁烯氟虫腈的抗性仅为1.5倍,证实褐飞虱对氟虫腈产生抗性后,对丁烯氟虫腈为低水平交互抗性。
     4毒死蜱对褐飞虱的生物活性及生殖力影响的评价
     由于褐飞虱对吡虫啉、氟虫腈等药剂的抗性不断的上升,毒死蜱已经成为了近几年防治褐飞虱的替代药剂之一,可用于科学合理的轮换使用,以延缓抗性的发展。本研究进行了毒死蜱对褐飞虱生殖力影响的评价以及监测了2008-2009年田间种群的抗性水平。研究结果表明:用毒死蜱亚致死剂量(0.64 mg a.i./L)处理褐飞虱3龄若虫后,褐飞虱的产卵量、卵块数及产卵历期与对照组相比统计分析差异不显著,对短翅型褐飞虱的生殖力没有明显的刺激作用。田间褐飞虱种群对毒死蜱的抗性处在敏感到低水平抗性阶段。
The brown planthopper (BPH) Nilaparvata lugens (stal) has been one kind of the most devastating pests of rice in Asia for a long time. Recently, N. lugens outbreaks have occurred more frequently in Yangtze River Delta areas in China. So far, chemical control is still the major method for suppressing N. lugens. However, there is a rapid increase in resistance of N. lugens to the major insecticides such as phenylpyrazole recently. Therefore, it is important to continue to study the susceptibility or resistance to conventional insecticides in BPH in order to provide accordances for insecticide resistance management of the brown planthopper, N. lugens (stal).
     The aim of this study including:monitoring the insecticides resistance in N. lugens: assessing resistance risk for fipronil by laboratory screen; studying the cross-resistance to three kinds of phenylpyrazole insecticides and testing the toxicity and fertility effects of chlopyrifos to N. lugens.
     1 insecticide resistance detection and monitoring in N. lugens
     In order to establish the strategies of insecticides resistance management, it is necessary to make clear the current situation of resistance of N. lugens to conventional insecticides. The resistance level to several insecticides of 15 populations of N. lugens from nine provinces were examined by dipping methods from 2008 to 2009. The results showed that variation of the resistance level to different insecticides is signifiant in N. lugens. In 2008-2009, the resistance to fipronil were low to medium level (RR=9.0-32.5 -fold) and medium to high level (RR=24.7-44.9 -fold), respectively. And the resistance to fipronil sharply increased with the immigration route variation of N. lugens rapidly. The resistance of imidacloprid was still monitored after prohibition of this medicament. Its resistance level was extremely high (RR=210.1-381.0 -fold). The resistance of N. lugens collected from 6 locations of six provinces in 2009 to thiamethoxam and buprofezin were low to medium level. having rised slowly.
     2 Resistance risk assessment of fipronil resistance in N. lugens
     To assess the resistance risk of fipronil, the resistance selection experiments were conducted in laboratory. Xiaogan population which had been collected in 2007 were selected successively with fipronil in the laboratory. After 18 generations selection, the resistance ratio was increased from 7.5- to 42.8-fold (LC50 value was rised from 0.289 mg a.i./L to 1.646 mg a.i./L), with the resistance ratio increasing by 5.7-fold. The realized heritability (h2) of pre-stage and late stage were calculated by Tabashnik method, the former was 0.0998 (1-9 generation) and the latter was 0.5370 (9-18 generation). h2 was 0.2958 (1-18 generation) in the whole selection process. The result showed that if fipronil was continued to use widely, the resistance to fipronil would rise rapidly;and the speed was increased with the selection pressure positively.
     3 Cross-resistance of fipronil resistance in N. lugens
     When butene-fipronil and ethiprole have not been used in wide regions, the cross-resistance between butene-fipronil. ethiprole and fipronil were detected with two methods—one was monitoring the resistance by field populations, the other is testing the cross-resistance by laboratory populations selected with fipronil. The result showed that those six field populations which have had medium to high resistance to fipronil (RR=24.7-44.9 -fold) had high level resistance to ethiprole (RR=45.1-96.6 -fold) yet the sensitivity decreased (RR=3.4-4.5 -fold). When the resistance level of selected population had rised by 5.7-fold, the resistance level to ethiprole rised by 4.0-fold,1.5-fold to butene-fipronil. These results confirmed that N. lugens would have high level cross-resistance to ethiprole and low level to butene-fipronil after they had having high level resistance to fipronil.
     4 Assessment of biological activity and fertility effect of chlopyrifos against N. lugens
     Because of the increasing resistance to imidacloprid and fipronil, chlopyrifos has became one of the alternative insecticides to control N. lugens. In this study, the biological activity and fertility effects of chlopyrifos were determined. The results showed that when 3rd instar nymphs were treated with the sub-lethal dose (LC5=0.64mg a.i./L) of pesiticides, there was no significant difference between chlopyrifos treatment and CK when compared by those varibles:egg-production amount, the number of egg masses, and spawning duration of N. lugens. The field population of N. lugens from 2008 to 2009 was susceptible or had a low resistance to chlopyrifos.
引文
1 卜峰,包志军,蔡宏芹.2005年中稻褐飞虱爆发原因及治理对策[J].植物保护,2005,12:23-25
    2 曹明章,沈晋良,张金振,等.二化螟抗药性监测和对三唑磷抗性的遗传分析[J].中国水稻科学,2004,18(1):73-79
    3 曹明章.二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估[D].南京:南京农业大学,2004
    4 程家安,孙祥良,等.水稻品种对褐飞虱种群增长的影响[J].植物保护学报,1992,19(2):145-150
    5 程家安,祝增荣.2005年长江流域稻区褐飞虱暴发成灾原因分析明[J].植物保护,2006,32(4):1-4
    6 程遐年,吴进才,马飞.褐飞虱研究与防治[M].北京:中国农业出版社,2003
    7 单正军,朱忠林,蔡道基,等.菊酯类农药在稻田使用初探(二)-拟除虫菊酯类农药在稻田使用的环境安全性研究[J].农药科学与管理,2000,21(6):9-12
    8 单正军,王连生,蔡道基,等.新型杀虫剂锐劲特农药对甲壳类水生生物影响研究[J].中国农业科学.2002,35(8):949-952
    9 丁锦华,苏建亚.农业昆虫学[M].北京:中国农业出版社,2001
    10高辉华,王荫长,谭福杰,等.稻褐飞虱对杀虫剂敏感性水平的研究[J].南京农业大学学报,1987,(4)增:65-71
    11 高希武,彭丽年,梁帝允.对2005年水稻褐飞虱大发生的思考[J].植物保护,2006,32(2):23-25
    12高春先,顾秀慧,贝亚维,等.褐稻虱再猖獗原因的探讨[J].生态学报.1988,8(2):155-162
    13顾中言,韩丽娟,许小龙,等.稻褐飞虱再猖獗研究初报[J].江苏农业科学,1990,1:36-39
    14顾中言,韩丽娟,王强,等.农药导致稻飞虱再猖撅的生态机制及生态调控研究[J].华东昆虫学报,1996,5(2):87-92
    15顾中言.影响杀虫剂药效的因素与科学使用杀虫剂的原理和方法[J].江苏农业科学,2005,3:72-77
    16顾秀慧,贝亚维,王仁民.几种杀虫剂亚致死剂量对稻褐飞虱生殖影响的初报[J].昆虫知识,1984,21(6):276-279
    17郭予元.棉铃虫的研究[M].北京:中国农业出版社,1998
    18郝艳丽GABAA受体非竞争性拮抗剂的3D-QSAR研究[D].武汉工程大学,2006
    19 洪晓月.农业昆虫学[M].北京:中国农业出版社,2007
    20 胡伯海,姜瑞中,邵振润.我国农作物重大病虫发生态势分析[J].植保技术与推广,1994,(3):26-28
    21 胡国文,唐启义,马巨法,等.中国褐飞虱的分布和危害,内部资料汇编,1995,39-42
    22 纪传义.水稻褐飞虱大发生的原因及防治对策[J].农技服务.2007,24(11):51-52
    23 贾变桃,沈晋良,刘永杰.甜菜夜蛾对虫酰肼的抗药性监测及抗性风险评估[J].棉花学报,2006,18(3):164-169
    24姜辉,林荣华.等.稻飞虱的危害及再猖獗机制[J].昆虫知识,2005,42(6):612-615
    25姜卫华,韩召军,张国华.氟虫腈对二化螟抗、感种群的亚致死效应[J].南京农业大学学报,2004,27(2):51-54
    26 李金建.大气背景对褐飞虱灾变性迁入影响的个例研究[D].南京信息工程大学,2008
    27李汝铎,丁锦华,胡国文,等.褐飞虱及其种群管理[M].复旦大学出版社,1996,239-255
    28 李松岗,张宗炳.杀虫剂混用方法—抗性治理的一种策略[J].昆虫学报,1999.33(3):280-287
    29 李文红,高聪芬,王彦华,等.褐飞虱对噻嗪酮的抗药性监测[J].中国水稻科学,2008,22(2):197-202
    30梁天锡,毛立新.水稻飞虱的抗药性监测研究[J].华东昆虫学报,1996,5(1):89-93
    31 林友伟,张晓梅,沈晋良,等.亚洲稻区灰飞虱抗药性研究进展[J].昆虫知识,2005,42(1):28-30
    32凌炎,周国辉,范桂霞,等.褐飞虱对毗虫啉、噻嗪酮和氟虫腈的抗性监测[J].植物保护.2009,35(1):104-107
    33 刘光杰,沈君辉.钱兰花.等.防治水稻二化螟高效、低残毒药剂的筛选[J].植物保护,1999,25(4):17-19
    34刘春茂,吴荣宗.光照强度和氮肥对水稻品种抗褐稻虱的影响[J].华南农业大学学报,1992,13(2):27-33
    35 刘续杆,赵兴华,沈晋良,等.褐飞虱对氟虫腈和新烟碱类药剂的抗性动态变化[J].中国水稻科学,2010,24(1):73-80
    36刘贤进,顾正远.褐飞虱对甲胺磷扑虱灵噻嗪酮的抗药性现状及发展趋势[J].植物保护,1996,22(2):3-6
    37 刘裕强,江玲,孙立宏,等.褐飞虱刺吸诱导的水稻一些防御性酶活性的变化[J].植物生理与分子生物学学报,2005,31(6):643-649
    38刘泽文,张玲春,韩召军,等.褐飞虱对吡虫啉抗性监测方法的研究[J].昆虫知识,2002,39(6):242-247
    39刘泽文,董钊,王荫长,等.安庆地区褐飞虱、白背飞虱抗药性监测[J].安徽农业科学,2002, 30(4):488-489
    40刘泽文,韩召军,王荫长,等.羧酸酯酶和乙酰胆碱酯酶在褐飞虱对甲胺磷抗性发展中的作用[J].农药学学报,2002,4(4):51-55
    41刘泽文,韩召军.褐飞虱对马拉硫磷的抗性遗传和交互抗性研究[J].华东昆虫学报,2003.12(1):19-23
    42刘泽文.褐飞虱对吡虫啉的抗性及其机理研究[D].南京农业大学博士学位论文,2004
    43龙丽萍,邓业成,林明珍,等.水稻褐飞虱的抗药性监测[J].西南农业学报,1997,18(1):96-101
    44吕仲贤.氮肥对褐飞虱的生态适应性及其与水稻和天敌关系的影响[D].浙江大学博士学位论文,2003
    45马崇勇,高聪芬,韦华杰,等.灰飞虱对几类杀虫剂的抗性和敏感性[J].中国水稻科学,2007,21(5):555-558
    46毛立新,梁天锡.水稻飞虱对十三种杀虫剂的抗性监测[J].中国水稻科学,1992,6(2):70-76
    47牛洪涛,闫磊,宗建平,等.氟虫腈和丁烯氟虫腈对小菜蛾幼虫的室内毒力比较[J].农药研究与应用,2007,11(1):28-30
    48潘道一,梁雪明.农药对稻田捕食性天敌蜘蛛的安全性研究[J].湖南农学院学报,1993,19(3):234-239
    49潘文亮,赵善欢.噻嗪酮对褐飞虱作用方式及其田间应用研究[J].华南农业大学学报,1989.10(4):13-18
    50庞雄飞.害虫种群的生态控制[M].北京:高等教育出版社,2001
    51曲明静,韩召军,许新军,等.二化螟对三唑磷的抗性发生动态与风险评估[J].南京农业大学学报,2005,28(3):38-42
    52沈晋良,吴益东.棉铃虫抗药性及其治理[M].中国农业出版社.1995
    53沈晋良,程家安,张志涛.加强病虫抗药性治理[P].农民日报2005,12,15
    54施德,吴增军,董涛海.褐飞虱对主要防控药剂的抗药性分析[J].浙江农业科学,2010,1:111-113
    55孙定炜,苏建亚,沈晋良,等.杀虫剂对褐飞虱捕食性天敌黑肩绿盲蝽的安全性评价[J].中国农业科学,2008,41(7):1995-2002
    56孙建中,方继朝,夏礼如,等.灭虫精的杀虫活性及田间防治褐飞虱的应用研究[J].昆虫学报,1996,39(1):37-45
    57孙俊铭,韦刚,夏赛,等.三化螟、二化螟防治药剂筛选试验研究[J].农药,2001,40(12):29-31
    58汤金仪,胡伯海,王建强.我国水稻迁飞性害虫猖獗成因及其治理对策建议[J].生态学报,1996,16(2):167-173
    59唐振华,孙敏功,徐强.褐飞虱抗药性的初步研究[J].植物保护学报,1982,9(3):205-209
    60唐振华,张朝远.镶嵌式防治对抗性演化影响的论证[J].昆虫学报,1993,36(2):185-189
    61唐振华,吴士雄.昆虫抗药性的遗传与进化[M].上海:上海科学技术出版社,2000:129-156
    62唐振华,陶黎明,李忠.害虫对新烟碱类杀虫剂的抗药性及其治理策略[J].农药学学报,2006.8(3):196-202
    63汪毓才,胡国文.我国白背飞虱和褐飞虱的气流分析.植物保护学报,1982,9(2):73-82
    64王荫长,范加勤,田学志,等.溴氰菊酯和甲胺磷引起稻飞虱再猖獗问题的研究[J].昆虫知识,1994,31(5):257-262
    65王荫长,李国清,丁士银,等.褐飞虱对常用药剂敏感性的年度间变化规律[J].南京农业大学学报,1996,19(增刊):1-8
    66王洪全,严亨梅,杨海明.中国稻田蜘蛛生态与利用研究[J].中国农业科学,1996,29(5):68-75
    67王焕民,张子明.新农药手册[M].北京:中国农业出版社,1989
    68王明勇.褐飞虱发生情况防治现状及可持续治理技术[J].安徽农业科学.2007,35(10):2944-2945
    69王彦华.王鸣华.褐飞虱抗药性及再猖獗研究进展[J].农药,2006,45(4):227-230
    70王彦华,王鸣华.近年来中国水稻褐飞虱的爆发原因及治理对策[J].农药科学与管理,2007,29:49-54
    71王彦华,李永平,陈进,等.褐飞虱对吡虫啉敏感性的时空变化及现实遗传力[J].中国水稻科学,2008,22(4):421-426
    72王彦华,陈进,沈晋良.等.防治褐飞虱的高度农药替代药剂的室内筛选及交互抗抗性研究[J].中国水稻科学,2008,22(5):519-526
    73王彦华,王强,沈晋良,等.褐飞虱抗药性研究现状[J].昆虫知识,2009,46(4):518-524
    74王彦华.褐飞虱对吡虫啉抗性监测及治理与高度农药替代药剂室内筛选[D].南京:南京农业大学,2008
    75王爱蛾.全国农机推广服务中心推荐替代5中高毒农药的17和品种及使用技术[J].农药市场信息,2006,4:29-30
    76巫国瑞,黄次伟,陶林勇,等.影响褐飞虱危害的因素[J].生态学报.1984,4(2):157-165
    77巫国瑞,胡萃,许绍朴.稻飞虱[M].北京:农业出版社,1987
    78吴声敢,王强,赵学平,等.阿维菌素和氟虫腈对家蚕毒性与安全性评价研究[J].浙江农业学报,2004,16(5):309-312
    79吴荣宗,李冠雄,张良佑.褐飞虱生物型研究进展[J].华南农业大学学报,1992.13(4):113-120
    80吴文君.农药学原理[M].北京:中国农业出版社,2000,311-364
    81徐德进,金旻琦,顾中言,等.毒死蜱在水稻害虫防治中的应用概述[J].现代农药,2007, 6(2):6-9
    82徐德进,顾中言,等.杀虫剂18种单剂和10种复配剂对褐飞虱和灰飞虱的活性差异[J].江苏农业学报,2009,25(2):286-291
    83 徐建祥,吴进才,程遐年,等.两种杀虫剂对稻田捕食性天敌集团捕食功能的影响[J].生态学报,2000,20(1):145-149
    84徐广春,顾忠言,杨玉清,等.氟虫腈的应用和风险研究进展[J].现代农药,2008,7(2):1-5
    85姚洪渭,叶恭银,程家安,等,亚洲地区稻飞虱抗药性研究进展[J].农药,1998,37(9):6-11
    86张存政,刘贤进,顾正远,等.褐飞虱生物型监测及抗药性初析[J].江苏农业科学,2002,1:41.43
    87张国生.吡唑类、吡咯类杀虫剂的研发进展[J].农药科学与管理,2004,25(11):23-26
    88张雪燕,何捷.小菜蛾对阿维菌素B 1抗药性选育及交互抗性[J].植物保护学报,2001,28(2):163-168
    89张文吉,韩熹莱,李学锋,等.辛硫磷和溴氰菊酯混剂对家蝇抗性发展的影响[J].昆虫学报,1995,38(1):25-29
    90张夕林.氟虫腈替代高毒农药在水稻主要害虫总体防治中的应用与推广[J].中国农药,2007.6:74-78
    91 赵学平,王强,吴长兴,冯克强.锐劲特防治稻纵卷叶螟与二化螟试验[J].植物保护,1999,(1):37-38
    92朱文达,万中义,郭嗣斌.氟虫腈(锐劲特)对水稻害虫防治效果及增产效应[J].植物保护学报,2002,29(3):265-271
    93朱金文,魏方林.李少男,等.氟虫腈对家蚕的急性毒性与安全评价研究[J].农药学学报,2006,8(1):41-45
    94朱绍先,邬楚中,杜景佑,等.稻飞虱及其防治[M].上海:上海科学技术出版社,1984
    95祝春祥.5%锐劲特悬浮剂对水稻苗期生长刺激作用的试验[J].农药,1999.35(4):30-31
    96束兆林,汪智渊,潘以楼,等.锐劲特对稻田主要蜘蛛的安全性研究[J].江苏农业科学,2000,5:31-33
    97庄永林,沈晋良.稻褐飞虱对噻嗪酮抗性的检测技术[J].南京农业大学学报.2000,23(3):114-117
    98庄永林.褐飞虱对噻嗪酮及吡虫啉的抗药性研究[D].南京农业大学博士学位论文,2000
    99庄永林,沈晋良,陈峥.三唑磷对不同翅型稻褐飞虱繁殖力的影响[J].南京农业大学学报,1999,22(3):21-24
    100庄永林,沈晋良,戴德江,等.褐飞虱对噻嗪酮的抗性遗传分析[J].昆虫学报,2004,47(6):749-753
    101 Alam M S, Huang J. Ozoe F, Matsumura F, et al. Synthesis,3D-QSAR. and docking studies of ]-phenyl-1H-1,2,3-triazoles as selective antagonists for b3 over GABA receptors [J]. Bioorg Med Chem,2007,15:5090-5104
    102 Asai T, Kajihara O. Fukada M, et al. Studies on mode of action of buprofezin II effects reproduction of the brown planthopper. Nilaparvata lugens [J]. Appl Entomol Zool,1985,20:111-117
    103 Bloomquist J R. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to conwvulsants and experimental phenylpyrazole insecticides [J]. Arch Insect Biochem Physiol,1994,26 (L):69-79
    104 Brown T M, Payne G T. Experimental Selection for Insecticide Resistance [J]. J Econ Entomol, 1988,81:49-56
    105 Chellish S, Heinrichs E A. Factors affecting insecticid-induced resurgence of the brown planthopper, Nilaparvata lugens on rice [J]. Enviroa Entomol.1980,9 (6):113-111
    106 Chung T C, Sun C N, et al. Brown planthopper resistance to Several Insecticides in Taiwan [J]. IRRI,1981.6(5):19
    107 Cole L M, Nicholson R A and Casida J E. Action of phenylpyrazole insecticides at the GABA-gated chloride channel [J]. Pestic Biochem Physiol,1993.46 (1):47-54
    108 Cole L M, Roush R T, Casida J E. Drosophila GABA-gated chloride channel:modified [3H] EBOB binding site associated with Ala-Ser or Gly mutants of Rdl subunit [J]. Life Sciences,1995,56 (10): 757-765
    109 Colliot F, Kukorowski K A, Robert D A. Fipronil:a new soil and foliar broad spectrum insecticide[C]. In:Proceedings of the Brighton crop protection conferences-Pests and diseases, 1992:29-34
    110 Dai S M, Sun C N. Pyrethroid resistance and synergism in Nilaparvata lugens (Homoptera:Delphacidae) in Taiwan [J]. J Econ.Entonmol, 1984,77:891-897
    111 Durham E W, Scharf M E. Siegfried B D. Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite on European corn borer larvae(Lepidoptera:Crambidae) [J]. PesriBiochem Physiol,2001,71:97-106
    112 Dyck V A, Misra B C. Alam S, et al. Ecology of the brown planthopper in the tropics. In:Brown planthopper:Threat to rice production in Asia [J]. IRRI,1979:61-98
    113 Endo S, Tsurumachi M. Insecticide susceptibility of the brown planthopper and the white-backed planthopper collected from southeast Asia [J]. J Pestic Sci,2001,26(1):82-86
    114 Femando H E. The brown planthopper problem in Sri Lanka [J]. Rice Entomol Newsl,1975, 2:34-36
    115 F.H. Arthur et al. Efficacy of Ethiprole Applied Alone and in combination with conventional insecticides for protection of stored wheat and stored corn [J]. Journal of Stored Products Research, 2004,40:527-546
    116 Gant D B, Chalmers A E, Wolff M A, Hoffinan H B. Bushey D F. Fipronil:action at the GABA receptor [J]. Rev Toxicol,1998,2:147-156
    117 Georghiou G P. Pesticide Resistance Strategies and Tactics for Management [J]. National Academy Press Washington DC,1986,14
    118 Grant D B, Chalmers A E, Wolff M A, et al. Fipronil:action at the GABA receptor. In:Pesticides and the Future:minimizing chronic exposure of humans and the environment [J]. Rev Toxixol,1998,2:147-156
    119 Grolleau F, Sattelle D B. Single channel analysis of the blocking actions of BIDN and fipronil on a Drosophila melanogaster GABA receptor (Rdl) stably expressed in a Drosophila cell line [J]. J Pharmacol, 2000,130:1833-1842
    120 Gu C J, Chen W L, Sun N. Detoxifying enzymes of the Brown Planthopper(BPH) [J]. IRRN,1993, 18 (3):37
    121 Hainzl D, Casida J E. Fipronil insecticide:novel photochemical desulfinylation with retention of neurotoxicity [J]. Proc Natl Acad Sci U.S.A.,1996,93:12764-12767
    122 Hainzl D, Cole L M, Casida J E. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfmyl photoproduct [J]. Chem. Res.Toxiciol.,1998,11 (12):1529-1535
    123 Hardin M R,Benrey B,Coll M, et al. Arthropod pest resurgence:an overview of potential mechanisms [J]. Crop prot,1995.14 (1):3-18
    124 Heinrichs E S. Impact of insecticides on the resistance and resurgence of rice planthopper[A]. In: Denno R F, Perfect T J. Planthopper:Their ecology and management [M]. New York:Shapman and Hall Press,1994:571-614
    125 Heinrichs E A, L.T. Fabellar, R.P. Basilio, Tu Cheng Wen and F. Medranno. Susceptibility of Planthoppers, Nilaparvata lugens and Sogatells furcifera (Horvath) (Homoptera:Delphacidae) to Insecticide Determined by Level of Resistance in the Host Plant [J]. Environ Entomnl,1984,13: 455-458
    126 Holbrook G L, Roebuck J, Moore C B, Waldvogel M G, Schal C. Origin and extent of resistance to fipronil in the German cockroach, Btattella germanica (L.) (Dictyoptera:Blattellidae)[J]. J Econ Entomol,2003,96 (5):1548-1558
    127 Hosie A M, Baylis H A, Buckingham S D, Sattelle D B. Actions of the insecticide fipronil, on dieldrin-sensitive and resistant GABA receptors of Drosophila melanogaster [J]. Br J Pharmacol, 1995.15 (6):909-912
    128 Hung C F. Kao C H, et al. Detoxifying enzymes of selected insect species with chewing and sucking habits [J]. J Econ Entomol.1990.83 (2):361-365
    129 Ikeda T, Nagata K, Kono Y, Yeh J Z, Narahashi T. Fipronil modulation of GABA receptor single-channel currents [J]. Pest Manag Sci.2004,60 (5):487-492
    130 Keiding J. Prediction of resistance risk assessment. In Pesticide resistance:strategies and tatics for management [J]. National Research Council. National Academy of Sciences, Washington DC,1986, 279-297
    131 Kilin D, Nagata T.Masuda T. Development of Carbarmate Resistance in the brown planthopper. Nilaparvata lugens [J]. Appl Entomo Zool,1981,16 (1):1-6
    132 Kimura Y. Decetion method for resistance to BHC in the smaller brown planthopper, laodelphax striatellus (Fallen) [J]. Chugoku Agr Res,1973,14:119-122
    133 Kolaczinsdi J. Curtis C. Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera:Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi [J]. Pest Manag Sci,2001,57 (1):41-45
    134 Koichi T. Shozo E, Hikaru K. Toxicity of insecticides to predators of rice planthoppers:Spiders, the mirid bug and the dryinid wasp [J]. Appl Entomol Zool,2000.35(1):177-187
    135 Kristensen M, Jespersen J B, Knorr M. Cross-resistance potential of fipronil in Musca domestica [J]. Pest Manag Sci,2004,60 (9):894-900
    136 Kristensen M, Hansen K K, Jensen K M. Cross-resistance between dieldrin and fipronil in German cockroach (Dictyoptera:Blattellidae) [J]. J Econ Entomol.2005,98 (4):1305-1310
    137 Liu Z W, Han Z J, Wang Y C, et al. Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms [J]. Pest Manag Sci,2003,59:1355-1359
    138 Liu Z W, Han Z J. The roles of carboxylesterase and AChE insensitivity in malathion resistance development in brown planthopper [J]. Acta Entomologica Sinica,2003,46 (2):250-253
    139 Lu Z X, Heong K L,Yu X P, Hu C. Effects of plant nitrogen on fitness of the brown planthopper, Nilaparvata lugens In rice [J]. J Asia Pacific Entanmol,2004,7:97-104
    140 Liu Z W, Martin S W, Stuart J L, et al. Identification of a nicotinic acetylcholine receptor pointmutation conferring target-site resistance to imidacloprid in the brown planthopper Nilaparvata lugens [J]. Proc Nat Acad Sci USA,2005,102 (24):8420-8425
    141 Lalah J O, Ondieki D, Wangdiga S O. et al. Dissipation, distribution and uptake of 14C-chlorpyrifos in a model tropical seawater/sediment/fish ecosystem [J]. Bulletin of Environmental Contamination and toxicology,2003,70:883-890
    142 Lyga J W, Ali S F, Kinne L P, Marek F L, Wusaty M A, Staetz C A, Willut J. Discovery of 3-arylpyrimidin-2,4-diones as GABA-gated chloride channel insecticides:translation from target site to field. In:Lyga J W, Theodoridis G (eds) Synthesis and chemistry of agrochemicals Ⅶ. ACS Symposium Series 948 [J]. American Chemical Society, Washington DC,2007,153-166
    143 Maienfisch P, Angst M, Brandl F, et al. Chemistry and biology of thiamethoxam:a second generation neonicotinoid [J]. Pest Manag Sci,2001,57(10):906-913
    144 Maienfisch P, Huerlimann H, Rindlishbacher A, et al. The discobery of thiamethoxam:a second-generation neonicotinoid [J]. Pest Manag Sci,2001,57(2):165-176
    145 Matsumra F. Penetration, binding and target insensitivity as causes of resistance to chlorinated hydrocarbon insecticides Pest Resistance to Pesticides[M]. Plenumpress New York and London, 1983,367-386
    146 Mochida O, Suryana T, Wahyu A. Recent outbreaks of the brown planthopper in Southeast Asia (with special reference to Indonesia):The Rice Brown Planthopper, Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan, China [M]. International ride research institute,1979:170-191
    147 Mohan M, Gujar G T. Local variation in susceptibility of the diamondback moth Pultella xylostella (Linnaeus) to insecticides and role of detoxification enzymes [J]. Crop protection,2003.22: 495-504
    148 Mulrooney J E, Goli D. Efficacy and degradation of fipronil applied to cotton for control of Anthonomus grandis (Coleoptera:Curculionidae) [J]. Econ Entomol,1999,92 (6):1364-1368
    149 Nagata T and S. Moriya. Resistance in the Brown Planthopper, Nilaparvata lugens to Lindane [J]. Jap Appl Entomol Zool,1974,18:73-80
    150 Nagata T, Masuda T, Moriya S. Development of insecticide resistance in the brown planthopper, Nilaparvata lugens(Homoptera:Delphacidae) [J]. Appl Entomol Zool,1979,14 (3):264-269
    151 Nagata, T. and T. Masuda. Insecticide Susceptibility and Wing Form ratio of the Brown Planthopper, Nilaparvata lugens and the White Backed Planthopper, Sogatella furclfera (Horvath) of Southeast Asia [J]. Appl Entomol Zool,1980,15:10-19
    152 Nagata T. Insecticide resistance and chemical control of the brown planthopper, Nilaparvata lugens(Homoptera:Delphacidae) [J]. Bull Kyushu Nat Agric Exp Sta,1982,22:49-164
    153 Nagata T. Monitoring on Insecticide Resistance of the Brown Planthopper and the White Backed Planthopper in Asia [J]. J Asia-Pacific Entomol,2002,5(1):103-111
    154 Ozaki K, et al. Development of insecticide resistance by the Brown planthopper, Nilaparvata lugens, and resistance pattern of field populations [J]. J Appl Ent Zool,1982,26:249-255
    155 Ozaki K. Kassai T. The insecticidal activity of pyrethroids against insecticide-resistant-strains of planthoppers, leafhoppers and housefly [J]. J Pestic Sci,1984,9 (1):61-66
    156 Ozoe Y, Yagi K, Nakamura M. Akamatsu M, Miyake T, and Fumio Matsumura. Fipronil-Related Heterocyclic Compounds:Structure activity relationships for interaction with r-Aminobutyric acid and Voltage-Gatedion channels and insecticidal action [J]. Pestic Biochem Physiol,2000,66: 92-104
    157 Oppennoorth F J. Biochemistry and genetics of insecticide resistance. In G. A. Kerkut and L. I. Gilbert (eds) Comprehensive insect Physiology, Biochemistry, and Pharmacology [M]. Pergamon Oxford,1985.12:731-773
    158 Oppenoorth F J, Welling W. Biochemistry and physiology of resistance. Insecticide Biochemistry and Physiology [M]. Wilkinson, C. F. eds, Plenum Press, New York.,1976,507-551
    159 Pierluigi C, Robert E, Sammelson and Jone E C. Phenylpyrazole insecticide photochemistry. metabolism, and GABAergic action:Ethiprole compared with Fipronil [J]. J. Agric Food Chem. 2003,51:7055-7061.7055
    160 Pollmeier M, Pengo G, Longo M, Jeannin P, Soll M. Evaluation of the efficacy of fipronil formulations in the treatment and control of biting lice, Trichodectes canis(De Geer,1778) on dogs [J]. Vet Parasitol,2002,107 (1-2):127-136
    161 Pollmeier M, Pengo G, Longo M, Jeannin P. Effective treatment and control of biting lice. Felicola subrostratus (Nitzsch in Burmeister,1838), on cats using fipronil formulations [J]. Vet Parasitol, 2004,121 (1-2):157-165
    162 Prabhaker N, Toscano N C. Perring T M, et al. Resistance monitoring of the sweetpotato whitefly (Homoptera:Aleyrodidae) in the Imperial Valley of California [J]. J Econ Entomol,1992,18: 265-267
    163 Preap V, Meron P Z, Harry J N, et al. Effect of fertilizer, pesticide treatment and plant variety on the realized fecundity and survival rates of brown planthopper, Nilaparvata lugens generating outbreaks in Cambodia. Journal of Asia-Pacific Entomology [J]. J of Asia-Pacific Entomology, 2001.4(1):75-84
    164 Pulman D A, Smith I H, Larkin J P, Casida J E. Heterocyclic insecticides acting at the GABA-gated chloride channel:5-ary-1,2-arylpyrimidines and-1,3-thiazines [J]. Pestic Sci,1996,46:237-245
    165 Qu M J, Han Z J, Xu X J, Yue L N. Triazophos resistance mechanism in the rice stem borer (Chilo suppressalis Walker) [J]. Pesticide Biochemistry and Physiology,2003,77:99-105
    166 Raymond V, Sattelle D B. Novel animal-health drug targets from ligand-gated chloride channels [J]. Nature Drug Discover,2002,1:427-436
    167 Ressig W H, Heinrichs E A. Valencia S L. Insecticide-induced resurgence of the brown planthopper,Nilaparvata lugens, on rice varieties with different levels of resistance [J]. Environ Entomol,1982,11(1):165-168
    168 Roderick G K. Genetics of host plant adaptation in Dephacid planthoppers[M]. In Robert F.Denno and T. John perfect, eds. Planthoppersaheir ecology&management.Chapman&Hall, New York, 1994:551-570
    169 Roush R T, Mckenzie J A. Ecological genetics of insecticide and acaricide resistance [J]. Ann Rev Entomol,1987,32:361-380
    170 Sayyed A H, Wright D J. Fipronil resistance in the diamondback moth (Lepidoptera:Plutellidae): inheritance and number of genes involved [J]. Journal of Economic Entomology,2004.97(6): 2043-2050
    171 Sayyed A H, Attique M N, Khaliq A, Wright D. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera:Plutellidae) from Pakistan [J]. J Pest Manag Sci, 2005,61 (7):636-642
    172 Scharf M E. Siegfried B D, Meinke L J, et al. Fipronil metabolism.oxidative sulfone formation and toxicity among organophosphate and carbamate resistant and susceptible western corn rootworm populations [J]. Pest Manag Sci.2000.56:757-766
    173 Scott J G. Investigating mechanisms of insecticide resistance:method, strategies and pitfalls [A]. In Roush R T, Tabashnik B E (eds.). Pesticide Resistance in Arthropods[M]. New York&London: Chapman and Hall,1990,39-57
    174 Scott J G, Wen Z M. Toxicity of fipronil to susceptible and resistant strains of German cockroaches (Dictyoptera:Blattellidae) and house flies (Diptera:Muscidae) [J]. J Econ Entomol,1997,90: 1152-1156
    175 Shibuye M. Applaud, a new selective insecticide [J]. J Pesti Inf,1984,44:17-22
    176 Siegler M V, Pankhaniya R R, Jia X X. Pattern of expression of engrailed in relation to gamma-amino butyric acid immunoreactivity in the central nervous system of the adult grasshopper [J]. Journal of Comparative Neurology,2001,440 (1):85-96
    177 Sone S, Hattori Y, Tsuboi S, et al. Difference in susceptibility to imidaclprid of the population of the small brown planthopper, Laodelphax stiatellus Fallen, from various localities in Japan [J]. Japan J Pestic Sci,1995,20:541-542
    178 Tilak R,Tilak V W, Yadav J D, Gupta K K. Efficacy of Fipronil and Propoxur in the control of German cockroaches (Dictyoptera:Blatellidae) [J]. J Commun Dis,2002,34 (1):65-69
    179 Uchida M, Alai T, Sugimoto T. Inhibition of chitin deposition and chitin biosynthesis by a new growth regulator, buprofezin, in Nilaparvata lugens [J]. Agric Biol Chem 1985.49:1233-1234
    180 Vontas J G, Small G J, Hemingway J. et al. Glutathion-s-transter aees as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens [J]. Biochem J,2001.357 (1):65-72
    181 Wang Y H, Gao C F, Xu Z P, et al. Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper. Nilaparvata lugens(Homoptera:Delphacidae) [J]. Pest Manag Sci,2008,64:1278-1284
    182 Wei Y, Appel A G, Moan W J, Liu N. Pyrethroid resistance and cross-resistance in the German cockroach. Blattella germanica (L) [J]. Pest Manag. Sci.,2001,57 (11):1055-1059
    183 Whalon M E, H. E.Van de Baan K. Untung et. al. Pest Management in Rice[M]. Elsevier Applied Science, London,1990,155-165
    184 Zhao X, Yeh J Z, Salgado V L. et al. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons [J]. J Pharm Exp Ther,2004,310: 192-201
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.