NDRG2在大鼠睾丸发育中的表达及其与生精细胞凋亡的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     NDRG2与NDRG1,NDRG3和NDRG4共同组成NDRG家族,该家族成员可能与细胞的增殖和分化相关,但其具体的生物学功能有待于进一步研究。在前期的研究中我们通过免疫组织化学染色观察到NDRG2在成年人和小鼠睾丸内均表达定位于睾丸间质细胞,而在生精细胞内未见明显的阳性着色,推测其可能参与睾丸间质细胞睾酮的分泌与调节,进而调控精子的发生,因此本实验的目的在于探讨NDRG2在睾丸发育与精子发生过程中的作用及其机制。0
     方法
     1.利用RT-PCR、蛋白质免疫印迹杂交及免疫组织化学等方法对比研究出生后大鼠睾丸发育不同阶段(1、5、15、21、35和75 d)中NDRG2的表达与定位;并分离21、35和75 d大鼠睾丸间质细胞和生精细胞,利用RT-PCR和蛋白质免疫印迹杂交分析和验证NDRG2在大鼠睾丸不同发育阶段中表达的差异性。
     2.建立成年大鼠单剂量MAA(650 mg/kg)腹腔注射诱导精母细胞凋亡模型,采用TUNEL、RT-PCR、蛋白质免疫印迹杂交、免疫组织化学、间接免疫荧光和激光显微切割技术分析NDRG2在生精细胞凋亡过程中表达的变化,探讨NDRG2与生精细胞凋亡之间的关系。
     3.青春期大鼠睾丸内生精细胞自发性凋亡达到顶峰,建立青春期(21 d)大鼠隐睾模型,通过TUNEL染色验证该模型、运用免疫组织化学和间接免疫荧光等方法分析NDRG2在隐睾和对照侧睾丸表达的差异,并且分离术后不同时间点的间质细胞和生精细胞,运用免疫印迹杂交检测NDRG2和p53的表达变化。
     结果
     1.RT-PCR和Western blot结果均显示NDRG2在出生后1 d大鼠睾丸内即有表达,随后逐渐升高,至青春期达到顶峰(21和35 d),在成年期其表达反而下降。免疫组织化学结果显示NDRG2持续表达于睾丸间质细胞,但在睾丸发育不同阶段,其在生精小管内的表达却存在明显的差异。在新生期(1和5 d)主要表达于原始生殖细胞,而不表达于支持细胞;在15和21 d大鼠睾丸,NDRG2在生精小管内主要表达于精母细胞,而精原细胞和支持细胞未见阳性着色;在35 d大鼠睾丸,NDRG2在生精小管内主要表达于精母细胞和圆形精子细胞;在成年(75 d)大鼠,生精小管内几乎未见NDRG2阳性着色。分离纯化21,35和75 d大鼠睾丸生精细胞,采用RT-PCR和Western blot进一步验证了NDRG2在青春期大鼠生精细胞内高表达,而在成年大鼠生精细胞内几乎不表达。分离纯化21,35和75 d大鼠睾丸间质细胞,结果显示NDRG2在这三个时间点间质细胞内均有较强的表达,但相互间无明显差异。
     2.MAA腹腔注射3和6 h与对照组相比未见显著性差异,但MAA诱导12 h后,成年大鼠睾丸内出现大量初级精母细胞的凋亡,主要集中在生精周期的第X-XIII期,通过分离生精细胞和激光显微切割技术均检测到NDRG2在MAA诱导12 h后在生精细胞的表达上调,免疫组织化学和间接免疫荧光结果均显示NDRG2在自发性和MAA诱导凋亡的生精细胞中均高表达。
     3.建立21 d大鼠单侧隐睾模型,术后7 d和14 d,隐睾侧睾丸重量明显减轻,凋亡生精细胞数明显升高,免疫组织化学与间接免疫荧光结果显示NDRG2在自发性和热刺激诱导凋亡的生精细胞内表达均明显上调,但在一些正常的精母细胞和圆形精子内仍存在一定量的表达,并且NDRG2在隐睾侧间质细胞的表达强度明显降低。分离纯化术后不同时间点隐睾侧和对照侧睾丸生精细胞,发现NDRG2和p53在术后7 d隐睾侧生精细胞的表达量明显上调,而在隐睾后14 d未见明显差异,可能与生精细胞的凋亡与脱落有关;分离纯化术后不同时间点隐睾侧和对照侧睾丸间质细胞,进一步证实了NDRG2在术后7和14 d隐睾侧间质细胞的表达量减少。
     结论
     1. NDRG2在大鼠睾丸发育不同阶段持续表达于间质细胞,可能参与睾丸早期发育和睾酮的分泌与调节。
     2. NDRG2在大鼠睾丸发育过程中在生精细胞的表达存在较大差异,在青春期前在生精细胞有较高水平的表达,但在成年期表达量很低,提示NDRG2可能参与睾丸发育早期生精细胞增殖与分化的调节。
     3. NDRG2在MAA和热刺激诱导的生精细胞凋亡中表达均明显上调,并且在青春期和成年期大鼠睾丸自发性生精细胞凋亡中均存在较强的表达,提示NDRG2可能参与了生精细胞凋亡的调控。
Objective
     N-myc downstream regulated gene 2 (NDRG2), together with NDRG1, NDRG3 and NDRG4, constitute the NDRG family. Although NDRG family is possibly related to cell proliferation and differentiation, the exactly biological function has not yet been completely elucidated. Our previous study has shown that NDRG2 was expressed in the interstitial cells of adult human and mouse testis, but not in the seminiferous tubule, which suggested the potential role of NDRG2 in the regulation and secretion of testosterone, thereby regulating spermatogenesis. Therefore, the aim of the present study was to explore the roles of NDRG2 play in testicular development and spermatogenesis
     Methods
     1. RT-PCR, Western blot and immunohistochemistry were used to observe the expression and location of NDRG2 in the rat testes at different stages of development (1, 5, 15, 21, 35 and 75 days). Then Leydig cells and spermatogenic cells were isolated from 21, 35 and 75 days old rats respectively, the relative levels of NDRG2 mRNA and protein were detected by RT-PCR and Western blot.
     2. Groups of adult SD rats were treated intraperitoneally with MAA (650 mg/kg) in saline to induce spermatocyte apoptosis. To explore the relationship between NDRG2 and apoptosis, the expression of NDRG2 in apoptotic spermatogenic cells was observed by RT-PCR, Western blot, immunohistochemistry, indirect immunofluorescence and Laser Capture Microdissection (LCM).
     3. The spontaneous apoptosis of spermatogenic cells reach the peak during adolescence in rat testis. Therefore, in this study, we generated the experimental model of cryptorchidism in pubertal male Sprague-Dawley rats, characterized the apoptotic testicular cells by the TUNEL assay and compared the expression of NDRG2 in the abdominal and contralateral scrotal testes longitudinally by immunohistochemistry and immunofluorescent analyses. Furthermore, we purified the Leydig and germ cells from the cryptorchid and control testes at different time points post surgery and analysed the expression of NDRG2 and p53 by western blot assays.
     Results
     1. The NDRG2 gene in the testis was transcribed at all rat ages. The level of NDRG2 mRNA and protein increased during the testicular development, reaching a peak in the adolescence period of rats occurring between 21 and 35 days of age. Levels then significantly decreased in adult rat testis. Anti-NDRG2 staining was positively detected in Leydig cells in the testis of rats at different ages. In the infantile period, the seminiferous tubule is mainly comprised of Sertoli cells and gonocytes. Positive staining of anti-NDRG2 was found predominately in the cytoplasm of gonocytes, but not in the Sertoli cells of the seminiferous tubule. On day 15 and 21, the expression of NDRG2 was detected as accumulated in the lumen of spermetocytes, but was not found in spermatogonial or Sertoli cells. On day 35, the expression of NDRG2 was found in the cytoplasma of spermatocytes and also in the round spermatids. In contrast, NDRG2 appeared to be expressed predominately by Leydig cells in the testis of 75 days old rats, but almost not observed in the seminiferous tubule. Analysis of the NDRG2 expression in the spermatogenic cells isolated from 21, 35, and 75 day old rats revealed high levels of NDRG2 mRNA transcripts and proteins in spermatogenic cells isolated from 21 and 35 days old rats, but little in spermatogenic cells from adult rats. The expression of NDRG2 in Leydig cells isolated from 21, 35, and 75 day old rats was observed by RT-PCR and Western blot. There was no significant difference in the levels of NDRG2 mRNA transcripts and proteins among these periods of Leydig cells.
     2. Three and six hours post treatment with MAA, the number of apoptotic cells was slightly but insignificantly increased in the seminiferous tubules as compared with that in the control. However, dramatically increased number of apoptotic cells were observed 12 h after MAA treatment and identified as the pachytene spermatocytes. Interestingly, although apoptotic cells spread near all stages of the seminiferous epithelial cycle, apoptotic spermatocytes particularly displayed predominately at stages X-XIII of the seminiferous epithelial cycle in the rat testis. Up-regulated of NDRG2 expression was deteced in the isolated spermatogenic cells from 12 h after MAA treatment rats and in the seminiferous tubule of X-XIII stages obtained by LCM. Furthermore, high levels of NDRG2 expression were observed in both spontaneous and induced apoptotic spermatogenic cells in the testis of SD rats by immunohistochemistry and immunofluorescent analyses.
     3. The experimental model of cryptorchidism was generated in pubertal male Sprague-Dawley rats (21 days). 7 and 14 days post surgery, the mean weight of cryptorchid testes was reduced significantly as compared with that of control, and significantly increased numbers of apoptotic cells were detected in the seminiferous tubules of cryptorchid testes, as compared with that of controls. A strong immunostaining of NDRG2 was observed in both spontaneous and heat-induced apoptotic spermatogenic cells by immunohistochemistry and immunofluorescent analyses. However, immunostaining of NDRG2 was still observed in many healthy spermatocytes and round spermids. Notably, lower density of NDRG2 staining in the cytoplasma of Leydig cells was obviously in the cryptorchid testes, as compared with that in control testes at 7 and 14 days post surgery. Further investigation of the expression of NDRG2 and p53 in spermatogenic cells purified from the cryptorchid and control testes showed that both levels of NDRG2 and p53 increased significantly in the cryptorchid testes at 7 days post surgery. In addition, significantly decreased levels of NDRG2 expression were detected in Leydig cells purified from the cryptorchid testes at 7 and 14 days post surgery, consistent with the observations of immunohistochemistry and immunofluorescence.
     Conclusions
     1. NDRG2 was expressed in the cytoplasm of Leydig cells in the testes of rats at all ages. It may be involved in the early testicular development as well as the secretion and regulation of testosterone.
     2. NDRG2 was highly expressed in spermatogenic cells of immature rats, but not in spermatogenic cells of adult rats. It is possible that NDRG2 may be a regulatory factor for cellular proliferation and differentiation during spermatogenesis.
     3. The expression of NDRG2 was up-regulated in both MAA-induced and heat-induced apoptosis of spermatogenic cells. Furthermore, it was also strong expressed in the spontaneous apoptosis of spermatogenic cells in both adolescent and adult rat testis. These results suggested that NDRG2 may be involved in the regulation of spermatogenic cell apoptosis.
引文
1. Deng YC, Yao LB, Liu XP. Exploring a new gene containing ACP like domain in human brain and expression it in E.colo. Prog Bichem Biophys. 2001;28:72-76
    2. Hu XL, Liu XP, Deng YC, Lin SX, Wu L, Zhang J, Wang LF, Wang XB, Li X, Shen L, Zhang YQ, Yao LB. Expression analysis of the NDRG2 gene in mouse embryonic and adult tissues. Cell Tissue Res. 2006;325:67-76
    3.李剑,药立波,林树新,刘新平,邓艳春,聂晓燕. NDR2 mRNA在肿瘤组织中的差异表达.基础医学与临床. 2002;22:117-120
    4.刘娜,刘新平,王立峰,张健,王晓斌,药立波.抑癌候选基因NDRG2在乳腺肿瘤组织及乳腺癌细胞系中的表达分析.第四军医大学学报. 2004;25:1065-1069
    5. Liu XP, Hu XL, Zhang J, Wang LF, Zhang WH, Liu XS, Li FY, Zhang YQ, Yao LB. Preparation and Application of Monoclonal Antibody Against hNDRG2. Appl Biochem Biotechnol. 2009;152:306-315
    6. Boulkroun S, Le Moellic C, Blot-Chabaud M, Farman N, Courtois-Coutry N. Expression of androgen receptor and androgen regulation of NDRG2 in the rat renal collecting duct. Pflugers Arch. 2005;451:388–394
    7. Liu N, Wang LF, Li X, Yang Q, Liu XP, Zhang J, Zhang J, Wu YS, Ji SP, Zhang YQ, Yang AG, Han H, Yao LB. N-Myc downstream-regulated gene
    2 is involved in p53-mediated apoptosis. Nucleic Acids Res. 2008; 36:5335-5349
    8. Shimono A, Okuda T, Kondoh H. N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech Dev. 1999;83:39-52
    9. Okuda T, Kondoh H. Identification of new genes ndr2 and ndr3 which are related to Ndr1/RTP/Drg1 but show distinct tissue specificity and response to N-myc. Biochem Biophys Res Commun. 1999;266:208-215
    10. Zhao W, Tang R, Huang Y, Wang W, Zhou ZX, Gu SH, Dai JL, Ying K, Xie Y, Mao YM. Clong and expression pattern of the human NDRG3 gene. Biochem Biophys Acta. 2001;1519:134-138
    11. Qu X, Zhai Y, Wei H, Zhang C, Xing G, Yu Y, He F. Characterization and expression of three novel differentiation-related genes belong to the human NDRG gene family. Mol Cell Biochem. 2002;229:35-44
    12. Zhou RH, Kokmae K, Tskumaoto Y, Yutnai C, Kato H, Miyata T. Characterization of the human NDRG gene family: a newly ideniified member, NDRG4, is specifically expressed in brain and heart. Genomics. 2001;73:86-97
    13. Yamauchi Y, Hongo S, Ohashi T, Zhou C, Nakai Y, Nishinaka N, Takahashi R, Takeda F, Takeda M. Molecular cloning and characterization of a novel developmentally regulated gene, Bdm1, showing predominant expression on postnatal rat brain. Brain Res Mol Brain Res. 1999;68:149-158
    14. Nishinaka N, Hongo S, Zhou CJ, Shioda S, Takahashi R, Yamauchi Y, Ohashi T, Ohki T, Takeda F, Takeda M. Identification of the novel developmentally regulated gene, Bdm2, which is highly expressed in fatal rat brain. Brain Res Dev Brain Res. 2000;120:57-64
    15. Shaw E, MeCue LA, Lawrenee CE, DordiekJS. Identification of a novel class in the alPha/beta hydrolase fold superafmily: the N-mye differentiation-related proteins. Proteins. 2002;47:163-168
    16. Kr?uter-Canham R, Bronner R, Evrard J-L, Hahne G, Friedt W, Steinmetz A. A transmitting tissue- and pollen-expressed protein from sunflower with sequence similarity to the human RTP protein. Plant Science. 1997;129:191 202
    17.王震,王国英,王芳.分化相关基因NDRG1与肿瘤.中华病理杂志. 2003;32:162-164
    18. Okuda T, Kondoh H. Identification of new genes ndr2 and ndr3 which are related to Ndrl/TRP/Drgl but show distinct tissue specificity and response to N-mye. Biochem BioPhys Res Commun. 1999;266:208-215
    19. Wakisaka Y, Furuta A, Masuda K, Morikawa W, Kuwano M, Iwaki T. Cellular distribution of NDRG1 protein in the rat kidney and brain during normal postnatal development. J Histochem Cytochem. 2003;51:1515-1525
    20. Deng Y, Yao L, Chau L, Ng SS, Peng Y, Liu X, Au WS, Wang J, Li F, Ji S, Han H, Nie X, Li Q, Kung HF, Leung SY, Lin MC. N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int J Cancer. 2003;106:342–347
    21. Wang L, Liu N, Yao L, Li F, Zhang J, Deng Y, Liu J, Ji S, Yang A, Han H, Zhang J, Han W, Liu X. NDRG2 is a new HIF-1 target gene necessary for hypoxia-induced apoptosis in A549 cells. Cell Physiol Biochem. 2008;21:239-250
    22. Zhang J, Liu J, Li X, Li F, Wang L, Zhang J, Liu X, Shen L, Liu N, Deng Y, Yang A, Han H, Zhao M, Yao L. The physical and functional interaction of NDRG2 with MSP58 in cells. Biochem Biophys Res Commun. 2007; 352:6-11
    23. Kurdistani SK, Arizti P, Reimer CL, Sugrue MM, Aaronson SA, Lee SW. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res. 1998;58:4439-4444
    24. Van Belzen N, Dinjens WN, Diesveld MP, Goren NA, van der Made AC, Nozawa Y, Vlietstra R, Trapman J, Bosman FT. A novel gene Which is up-regulated during colon epithelial cell differentiation and down-regulatedin colorectal neoplasms. Lab Invest. 1997;77:85-92
    25. Guan RJ, Ford HL, Fu Y, Li Y, Shaw LM, Pardee AB. Drg-1 as a differentiation-related putative metastatic suppressor gene in human colon cancer. Cancer Res. 2000;60:749-755
    26. Kovacevic Z, Richardson DR. The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis. 2006;27:2355?2366
    27. Ellen TP, Ke Q, Zhang P, Costa M. NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis. 2008;29:2?8
    28. Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, Reifenberger G, Gutmann DH, Perry A. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res. 2005;65: 7121?7126
    29. Lorentzen A, Vogel LK, Lewinsky RH, Saebo M, Skjelbred CF, Godiksen S, Hoff G, Tveit KM, Lothe IM, Ikdahl T, Kure EH, Mitchelmore C. Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma. BMC Cancer. 2007;7:192?198
    30. Choi SC, Yoon SR, Park YP, Song EY, Kim JW, Kim WH, Yang Y, Lim JS, Lee HG. Expression of NDRG2 is related to tumor progression and survival of gastric cancer patients through Fas-mediated cell death. Exp Mol Med. 2007;39:705?714
    31. Liu N, Wang L, Liu X, Yang Q, Zhang J, Zhang W, Wu Y, Shen L, Zhang Y, Yang A, Han H, Yao L. Promoter methylation, mutation, and genomic deletion are involved in the decreased NDRG2 expression levels in several cancer cell lines. Biochem Biophys Res Commun. 2007;358:164?169
    32. Hu XL, Liu XP, Lin SX, Deng YC, Liu N, Li X, Yao LB. NDRG2 expression and mutation in human liver and pancreatic cancers. World JGastroenterol. 2004;10: 3518?3521
    33. Assamaki R, Sarlomo-Rikala M, Lopez-Guerrero JA, Lasota J, Andersson LC, Llombart-Bosch A, Miettinen M, Knuutila S. Array comparative genomic hybridization analysis of chromosomal imbalances and their target genes in gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2007;46:564?576
    34. Felsberg J, Yan PS, Huang TH, Milde U, Schramm J, Wiestler OD, Reifenberger G, Pietsch T, Waha A. DNA methylation and allelic losses on chromosome arm 14q in oligodendroglial tumours. Neuropathol Appl Neurobiol. 2006;32:517?524
    35. Hummerich L, Müller R, Hess J, Kokocinski F, Hahn M, Fürstenberger G, Mauch C, Lichter P, Anqel P. Identification of novel tumourassociated genes differentially expressed in the process of squamous cell cancer development. Oncogene. 2006;25:111?121
    36.刘娜,刘新平,王立峰,张健,王晓斌,药立波.抑癌候选基因NDRG2在乳腺肿瘤组织及乳腺癌细胞系中的表达分析.第四军医大学学报. 2004;25:1065-1069
    37.刘新平,邓燕春,韩炯,李剑,王吉村,李莹,药立波. NDRG2基因表达对胃癌细胞增殖调控及其机理的研究.生物化学与生物物理进展. 2003;30:116-121
    38.吴国强,刘新平,王立峰,张文红,张健,李开宗,窦科峰,张雪峰,药立波. NDRG2对肝癌细胞HepG2凋亡的诱导作用.细胞与分子免疫学杂志. 2003;19:357-360
    39.李树钧,王华,戚好文,张健,何鹏,张文红,季少平,刘新平,药立波. Ndr2基因在肺腺癌细胞GLC-82中的诱导表达.第四军医大学学报. 2002;23:1209-1213
    40. Malette B, Cherry E, Lagace M, Bernard M, Gosselin D, Hugo P, ShazandK. Large scale validation of human N-myc downstream-regulated gene (NDRG)-1 expression in endometrium during the menstrual cycle. Mol Hum Reprod. 2003;9:671-679
    41. Choi SC, Kim KD, Kim JT, Kim JW, Yoon DY, Choe YK, ChangYS, Paik SG, Lim JS. Expression and regulation of NDRG2 (N-myc downstream regulated gene 2) during the differentiation of dendritic cells. FEBS Lett. 2003;553:413-418
    42. Yamauchi Y, Hongo S, Ohashi T, Shioda S, Zhou C, Nakai Y, Nishinaka N, Takahashi R, Takeda F, Takeda M. Molecular cloning characterization of a novel developmentally regulated gene, Bdml, showing predominant expression in postnatal rat brain. Brain Res Mol Brain Res. 1999; 68:149-158
    43. Kyuno J, Fukui A, Michiue T, Asashima M. Identification and characterization of Xenopus NDRG1. Biochem Biophys Res Commun. 2003; 309:52-57
    44.何静,周柔丽. NDRG1基因与肝组织分化及癌变的相关性.北京大学学报. 2003;35:471-476
    45. Zhang J, Wang JC, Han YH, Wang LF, Ji SP, Liu SX, Liu XP, Yao LB. High expression of bcl-x(L) in K562 cells and its role in the low sensitivity of K562 to realgar-induced apoptosis. Acta Haematol. 2005;113:247-254
    46. Zhang J, Li F, Liu X, Shen L, Liu J, Su J, Zhang W, Deng Y, Wang L, Liu N, Han W, Zhang J, Ji S, Yang A, Han H, Yao L. The repression of human differentiation-related gene NDRG2 expression by Myc via Miz-1-dependent interaction with the NDRG2 core protomer. J Biol Chem. 2006;281:39159-39168
    47. Park H, Adams MA, Lachat P. Hypoxia induces the expression of a 43-KD protein (PROXY-l) in normal and malignant cells. Biochem BioPhys ResCommun. 2000;27:321-328
    48. Salnikow K, Kluz T, Costa M, Piquemal D, Demidenko ZN, Xie K, Blagosklonny MV. The regulation of hypoxic genes by calcium involves c-Jun/AP-l, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol. 2002;22:1734-1741
    49. Konstantin Salnikow, Tomasz Kiuz, Max Costa. Role of Ca2+ in the regulation of nickel-inducible Cap43 gene expression. Toxicology and Applied Pharmacology. 1999;160:127-132
    50. Agarwala KL, Kokame K, Kato H, Miyata T. Phosphorylation of RTP, an ER stress-responsive cytoplasmic portein. Biochem Biophys Res Commun. 2000;272:641-647
    51. Piquemal D, Joulia D, Balaguer P, Basset A, Marti J, Commes T. Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells. Biochim Biophys Acta. 1999;1450:364?373
    52. Stein S, Thomas EK, Herzog B, Westfall MD, Rocheleau JV, Jackson RS, Wang M, Liang P. NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem. 2004;279: 48930?48940
    53. Ulrix W, Swinnen JV, Heyns W, Verhoeven G. The differentiation-related gene l, Dgrl,is markedly upregulated by androgens in LNCaP prostatic adenocarcinoma cells. FEBS Lett. 1999;455:23-26
    54. Lin TM, Chang C. Cloning and characterization of TDD5, an androgen target gene that is differentially repressed by testosterone and dihydrotestosterone. Proc Natl Acad Sci USA. 1997;94:4988-4993
    55. Burchfield JG, Lennard AJ, Narasimhan S, Hughes WE, Wasinger VC, Corthals GL, Okuda T, Kondoh H, Biden TJ, Schmitz-Peiffer C. Akt mediates insulin-stimulated phosphorylation of Ndrg2: evidence for cross-talk with protein kinase C theta. J Biol Chem. 2004;279:18623-18632
    56. Nichols NR. Ndrg2, a novel gene regulated by adrenal steroids and antidepressants, is highly expressed in astrocytes. Ann N Y Acad Sci. 2003;1007:349-356
    57. Boulkroun S, Fay M, Zennaro MC, Escoubet B, Jaisser F, Blot-Chabaud M, Farman N, Courtois-Coutry N. Characterization of rat NDRG2 (N-Myc downstream regulated gene 2), a novel early mineralocorticoid-specific induced gene. J Biol Chem. 2002; 277: 31506?31515
    58. Kalaydjieva L, Gresham D, King RH, Thomas PK. N-myc downstream- regulated gene 1 is mutated in hereditary motor and sensory neuropathy- Lom. Am J Hum Genet. 2000;67:47-58
    59. Ohki T, Hongo S, Nakada N, Maeda A, and Takeda M. Molecular characterization of NDRG4/Bdm1 protein isoforms that are differentially regulated during rat brain development. Brain Res Dev Brain Res. 2002;135: 55-63
    60. Mitchelmore C, Buchmann-Moller S, Rask L, West MJ, Troncoso JC, Jensen NA. NDRG2: a novel Alzheimer's disease associated protein. Neurobiol Dis, 2004; 16: 48-58
    61. Takahashi K, Yamada M, Ohata H, Momose K, Higuchi T, Honda K, Yamada M. Expression of Ndrg2 in the rat frontal cortex after antidepressant and electroconvulsive treatment. Int J Neuropsychopharmacol. 2005;8:381-389
    62. Takahashi K, Yamada M, Ohata H, Hond K, Yamad M. Ndrg2 promotes neurite outgrowth of NGF-differentiated PC12 cells. Neuroscience Letters. 2005;388:157-162
    63. Kokame K, Kato H, Miyata T. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis GRP78/BiP andnovel genes. J Biol Chem. 1996;271:29659-29665
    64. Sato N, Kokame K, Shimokado K, Kato H, Miyata T. Changes of gene expression by lysophosphatidylcholine in vascular endothelial cells: 12 up-regulated distinct genes including 5 cell growth-related, 3 thrombosis-related, and 4 others. J Biochem. 1998;123:1119-1126
    65. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239-257
    66. Tapanainen JS, Tilly JL, Vihko KK, Hsueh AJ. Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol Endocrinol. 1993;7:643-650
    67. Kilinc F, Guvel S, Kayaselcuk F, Ayqun C, Eqilmez T, Ozkardes H. p53 expression and apoptosis in varicocele in the rat testis. J Urol. 2004;172:2475-22478
    68. J Moretti E, Di Cairano G, Capitani S, Scapigliati G, Baccetti B, Collodel G. Cryptorchidism and semen quality: a TEM and molecular study. Andrology. 2007;28:194-199
    69. Hikim AP, Lue Y, Yamamoto CM, Vera Y, Rodriquez S, Yen PH, Soeng K, Wang C, Swerdloff RS. Key apoptotic pathways for heat-induced programmed-germ cell death in the testis. Endocrinology. 2003; 144:3167-3175
    70. Frankenhuis MT, Wensing CJ. Induction of spermatogenesis in the naturally cryptorchid pig. Fertil Steril. 1979;31:428–433
    71. Zhang ZH, Jin X, Zhang XS, Hu ZY, Zou RJ, Han CS, Liu YX. Bcl-2 and Bax are involved in experimental cryptorchidism-induced testicular germ cell apoptosis in rhesus monkey. Contraception. 2003;68:297–301.
    72. Hou DX, Uto T, Tong X, Takeshita T, Tanigawa S, Imamura I, Ose T,Fujii M. Involvement of reactive oxygen species-independent mitochondrial pathway in gossypol-induced apoptosis. Arch Biochem Biophys. 2004;428:179-187
    73. Hu JH, Jiang J, MaYH, Yang N, Zhang MH, Wu M, Fei J, Guo LH. Enhacement of germ cell apoptosis induced by ethanolin transgenic mice overexpressing Fas ligand. Cell Res. 2003;13:361-367
    74.陈雪雁,陈实平,金淑敏,程凯,董红燕,陈克铨.雄激素受体和卵泡刺激素受体在成年大鼠睾丸中的期依赖性表达.解剖学报. 2001;32: 365-370
    75. Vigier M, Weiss M, Perrard MH, Godet M, Durand P. The effects of FSH and of testosterone on the completion of meiosis and the very early steps of spermiogenesis of the rat: an in vitro study. J Mol Endocrinol. 2004;33:729-742
    76. Lei ZM, Mishra S, Ponnuru P, Li X, Yang ZW, Rao CV. Testicular phenotype in luteinizing hormone receptor knockout animals and the effect of testosterone replacement therapy. Biol Reprod. 2004;71:1605-1613
    77.崔毓桂,陈子庆,沙家豪.激素对精子发生的调控.中华男科学.2004;10: 465-467
    78. Tengowski MW, Sutovsky P, Hedlund LW, Guyot DJ, Burkhardt JE, Thompson WE, Sutovsky M, Johnson GA. Reproductive cytotoxicity is predicted by magnetic resonance microscopy and confirmed by ubiquitin-proteasome immunohistochemistry in a theophylline-induced model of rat testicular and epididymal toxicity. Microsc Microanal. 2005;11:300-312
    79. Gancarczyk M, Paziewska-Hejmej A, Carreau S, Tabarowski Z, BiliNska B. Dose-and photoperiod-dependent effects of 17 beta-estradiol and the anti-estrogen ICI 182, 780 on testicular structure, acceleration ofspermatogenesis, and aromatase immunoexp ression in immature bank voles. Acta Histochem. 2004;106: 269-278
    80. Nair R, Shaha C. Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. J Biol Chem. 2003;278:6470-6481
    81.朱华萍,张远强,齐宇红,赵洁,赵勇,马静,侯武刚. X射线全身照射对成年小鼠睾丸Smad4表达的影响.辐射研究与辐射工艺学报. 2005;23:302-306
    82.侯武刚,赵洁,张远强,曾丽华,郭国桢.电磁脉冲辐射对小鼠血—睾屏障的影响.辐射研究与辐射工艺学报. 2005;23:366-370
    83.纪欣欣,侯武刚,赵洁,赵勇,李伟,张远强.电磁脉冲辐射对小鼠睾丸Smads表达的影晌.辐射研究与辐射工艺学报. 2006;24:362-364
    84.纪欣欣,侯武刚,赵洁,赵勇,李伟,张远强.电磁脉冲照射后小鼠睾丸生精细胞凋亡与Smad4表达变化的关系.辐射研究与辐射工艺学报. 2007;25:124-128
    85. Koji T. Male germ cell death in mouse testes: possible involvement of Fas and Fas ligand. Med Electron Microsc. 2001;34:213-222
    86. Bhardwaj A and Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23:317-332
    87. Philchenkov AA. Caspases as regulators of apoptosis and other cell functions. Biochemistry. 2003;68:365-376
    88. Eguchi J, Koji T, NomataK, Yoshii A, Shin M, Kanetake H. Fas-Fas ligand system as a possible mediator of spermatogenic cell apoptosis in human maturation-arreseted testes. Hum Cell. 2002;15:61-68
    89. Oldereid NB, AngelisPD,Wiger R, Clausen PF. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis. Mol Hum Reprod. 2001; 7:403-408
    90.杨利丽,李如江,刘长云,郭文军,魏志新.过量饮酒对凋亡相关基因bcl-2、bax在生精细胞表达的影响.中国优生与遗传杂志. 2003;11:25-26
    91. Antonsson B, MontessuitS, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrialmembrane of apoptotic cells. J Biol Chem. 2001;276:11615-11623
    92. Cain K, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM, Cohen GM. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem. 2000;275:6067-6070
    93. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33-42
    94. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell. 2000;101:389-399
    95. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000;7:1166-1173
    96. Yin Y, Hawkins KL, DeWolf WC, Morgentaler A. Heat stress causes testicular germ cell apoptosis in adult mice. J androl. 1997;18:159-165
    97. Kilinc F, Guvel S, Kayaselcuk F, Aygun C, Egilmez T, Ozkardes H. p53 expression and apoptosis in varicocele in the rat tesis. J Urol. 2004;172:2475-2478
    98. Mu XM, Liu YX, Collins LL, Kim E, Chang C. The p53/retinoblastoma- mediated repression of Testicular Orphan Receptor-2 in the rhesus monkeywith cryptorchidism. J Biol Chem. 2000; 275:23877-23883
    99. Mayer F, Stoop H, Scheffer GL, Scheper R, Oosterhuis JW, Looijenga LHJ, Bokemeyer C. Molecular determinants of treatment response in human germ cell tumors. Clin Cancer Res. 2003;9:767-773
    100. Wunderlich M and Berberich SJ. Mdm2 inhibition of p53 induces E2F1 transactivation via p21. Oncogene. 2002;21:4414-4421
    101. Gao CF, Ren S, Zhang L, Nakajima T, Ichinose S, Hara T, Koike K, Tsuchida N. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp Cell Res. 2001; 265:145-151
    102. Singh NP, Muller CH and Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003; 80:1420-1430
    103. Erenpreisa J, Erenpreiss J, Freivalds T, Slaidina M, Krampe R, Butikova J, Ivanov A, Pjanova D. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry. 2003;52:19-27
    104. Jersmann HP, Ross KA, Vivers S, Brown SB, Haslett C, Dransfield I. Phagocytosis of apoptotic cells by human macrophages: analysis by multiparameter flow cytometry. Cytometry. 2003;51:7-15
    105. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16:2262–2270
    106. Zhao Y, Hou WG, Zhu HP, Zhao J, Wang RA, Xu RJ, Zhang YQ. Expression of thyrotropin-releasing hormone receptors in rat testis and their role in isolated Leydig cells. Cell Tissue Res. 2008;334:283-294
    107. Weiss M, Vigier M, Hue D, Perrard-Sapori MH, Marret C, Avallet O, Durand P. Pre- and postmeiotic expression of male germ cell specificgenes throughout 2 week co-cultures of germinal and Sertoli cells. Biol Reprod. 1997;57:68–76
    108. Selva DM, Hogeveen KN, Seguchi K, Tekpetey F, Hammond GL. A human sex hormone-binding globulin isoform accumulates in the acrosome during spermatogenesis. J Biol Chem. 2002;277:45291-45298
    109. Yao L, Zhang J, Liu X. NDRG2: a Myc-repressed gene involved in cancer and cell stress. Acta Biochim Biophys Sin. 2008;40:625-635
    110. Roosen-Runge EC and Anderson D. The development of the interstitial cells in the testis of albino rat. Acta Anat. 1959;37:125-137
    111. Lizama C, Alfaro I, Reyes JG, Moreno RD. Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat. Apoptosis. 2007;12:499–512
    112. Moreno RD, Lizama C, Urzua N, Vergara SP, Reyes JG. Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res. 2006; 325:533–540
    113. Tirado OM, Martinez ED, Rodriguez OC, Danielsen M, Selva DM, Reventós J, Munell F, Suárez-Quian CA. Methoxyacetic acid disregulation of androgen receptor and androgen-binding protein expression in adult rat testis. Biol Reprod. 2003;68:1437–1446
    114. Wade MG, Kawata A, Williams A, Yauk C. Methoxyacetic acid-induced spermatocyte death is associated with histone hyperacetylation in rats. Biol Reprod. 2008;78:822-831
    115. Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod. 2001;65:229-239
    116. Frankenhuis MT and Wensing CJ. Induction of spermatogenesis in the naturally cryptorchid pig. Fertil Steril. 1979;31:428-433
    117. Royere D, Guerif F, Laurent-Cadoret V, Hochereau de Reviers MT. Apoptosis in testicular germ cells. International Congress Series. 2004;1266:170-176
    118. Shikone T, Billiq H, Hsueh AJ. Experimentally induced cryptorchidism increases apoptosis in rat testis. Biol Reprod. 1994;51:865-872
    119. Villumsen AL, Zachau-Christiansen B. Spontaneous alterations in position of the testis. Archives of Disease in Childhood. 1966; 41:198–200
    120. Yin Y, Stahl BC, DeWolf WC, Morgentaler A. p53 and Fas are sequential mechanisms of testicular germ cell apoptosis. Journal of Andrology. 2002;23:64-70
    121. Chaki SP, Misro MM, Ghosh D, Gautam DK, Srinivas M. Apoptosis and cell removal in the cryptorchid rat testis. Apoptosis. 2005;10:395–405
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.