自噬在心衰小鼠中的时序性变化、机制及干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     心力衰竭是各种心血管疾病发展的终末阶段,具有较高的发病率和死亡率。近年来各种药物治疗使心力衰竭患者的生活质量大大提高,但其生存率仍无明显改善。究其原因,主要是其发病机制还不十分清楚。自噬是广泛存在于真核细胞内的一种溶酶体依赖性的降解途径,细胞通过单层或双层膜包裹待降解物形成自噬小体,然后运送到溶酶体形成自噬溶酶体并进行多种酶的消化及降解,以实现细胞自身的代谢和细胞器的更新,自噬对维持细胞的自身稳态具有重要意义。最近的研究表明自噬在心血管疾病的发生、发展过程中发挥着重要作用。因此阐明自噬在心衰中的确切作用,有助于进一步了解心衰的发病机制,为心衰的有效防治提供新的思路和策略。然而,目前自噬在心衰中的具体作用尚不明了,自噬在心衰中的时序性表达变化和对心肌的产生有利或有害作用值得进一步探讨。
     目的
     建立小鼠主动脉弓缩窄(Transverse aortic arch constriction, TAC)模型,观察TAC小鼠心衰进展过程中自噬功能的时序性变化,并探讨心衰过程中自噬功能紊乱的可能机制。
     实验Ⅰ
     方法
     1.实验分组
     170只雄性C57BL/6小鼠随机分为正常组(50只),假手术组(50只)和心衰组(70只)。各组分别于0天、3天、7天、14天、28天处死8-11只小鼠。
     2.动物模型的建立
     小鼠腹腔注射0.08%戊巴比妥钠麻醉、固定后,在大体显微镜下行TAC术。在颈部中心位置作一纵行10mm切口,钝性分离左、右颈总动脉,于双侧颈总动脉分支处盲穿并结扎主动脉弓,27号针头与主动脉弓一同结扎后,抽出针头,以控制主动脉弓狭窄率(60±5%)。假手术组的手术步骤同上,但不结扎主动脉弓。
     3.存活率分析
     保留存活记录并绘制曲线图。
     4.超声心动图检测
     所有小鼠于处死前行经胸壁超声心动图检测,计算左室射血分数(Ejection fraction, EF%)、左室重量(Left ventricular mass weight, LVMW)。
     5.组织病理学及免疫组织化学染色检查
     留取小鼠心脏标本,行苏木素-伊红染色(Haematoxylin eosin, HE)、Masson染色,观察心脏大体形态学改变;行免疫组织化学染色检测心肌内各指标的表达:
     (1)自噬指标:微管相关蛋白1轻链3(Microtubule-associate protein1light chain3, LC3)、Bcl-2相互作用蛋白(Bcl-2interacting coiled-coil protein-1, Beclin-1)、Beclin-1相互作用蛋白(RUN domain protein as Beclin1-interacting and cysteine-rich containing, Rubicon)、P62(Sequestosome1/SQSTM1);
     (2)炎症指标:单核细胞趋化蛋白-1(Monocyte chemoattractant protein-1, MCP-1).细胞间粘附分子-1(Intercellular adhesion molecule-1, ICAM-1)、Toll样受体4(Toll-like receptor4, TLR4)、髓样分化因子88(Myeloid differentiation factor88, Myd88)、基质金属蛋白酶-9(Matrix metalloproteinase-9, MMP-9)、基质金属蛋白酶抑制剂-1(Tissue inhibitor of matrix metalloprotease-1, TIMP-1);
     (3)氧化应激指标:4-羟基壬烯醛(4-hydroxynonenal,4-HNE)、8-羟基-2’-脱氧鸟苷(8-hydroxy-2'-deoxyguanosine,80HdG)。
     6.实时定量聚合酶链反应(Real-time quantitative polymerase chain reaction, Real-time PCR):检测心肌内LC3a、LC3b、自噬相关基因(Autophagy-related gene, Atg) Atg5、Atg7、Rubicon、Beclin-1的表达。
     7.统计学分析
     统计学处理计量资料以均数±标准差(x±s)表示,所有数据用SPSS11.5软件进行统计学分析。两组数据间比较采用两独立样本t检验,多组间均数比较采用包含Bonferroni post-hoc检验的单因素或双因素方差分析。多组间的两两比较采用费希尔的LSD法。P<0.05为差异有统计学意义。
     结果
     1.实验动物的一般情况
     本研究共120只小鼠进行了手术,50只为假手术组,只挂线不结扎主动脉弓,1只死于麻醉意外,其余全部存活;70只为心衰组,TAC手术当天存活小鼠56只,手术成功率为80%。
     2.心脏超声学检测结果
     心脏超声图像显示术后28天心衰组小鼠左心室室壁变薄,心腔明显扩大,心肌收缩力减退。与正常组和假手术组相比,心衰组小鼠术后EF%明显下降,术后第3天由术前的73.4±3.5%降至41±10.4%(P<0.01);术后7天至28天EF%下降较缓慢,术后28天小鼠EF%为36.2±5.7%(P<0.01)。心衰组小鼠术后LVMW较正常组和假手术组显著增高(P<0.05),术后3天LVMW由42.2±10.2增至52.5±12.7,术后28天增至58.2±11.0。
     3.病理学检测
     (1)病理学染色
     HE染色和Masson染色均显示随着心衰时间的延长,心衰组小鼠心肌细胞直径增大,心脏横径和左心室腔不断增大。术后28天心肌纤维化明显,与正常组和假手术组比较具有显著性差异(P<0.05或P<0.01)。
     (2)自噬因子表达变化
     与正常组和假手术组相比,心衰组小鼠心肌LC3表达明显增高,呈双峰分布,在3天和7天表达持续升高,在7天达到第一个峰值(P<0.01);在14天略有降低(P<0.05或P<0.01);在28天表达明显增强,达到第二个峰值(P<0.01)。
     与正常组和假手术组相比,心衰组小鼠心肌Beclin-1表达在术后3天和7天,明显升高(P<0.01)。
     与正常组和假手术组相比,心衰组小鼠心肌P62表达在7天和28天显著升高(P<0.05或P<0.01)。
     与正常组和假手术组相,心衰组小鼠心肌Rubicon的表达在术后3天、7天、14天、28天均显著升高(P<0.05或P<0.01)。
     (3)炎症因子表达变化
     与正常组和假手术组相比,心衰组小鼠心肌MCP-1表达明显升高,呈双峰分布,在3天表达较高(P<0.01),在7天表达略有减低(P<0.05或P<0.01),在14天和28天又持续升高(P<0.01)。
     与正常组和假手术组相比,心衰组小鼠心肌ICAM-1表达在各时间点均显著升高,在7天、28天表达较高(P<0.01),3天、14天表达略低(P<0.05)。
     与正常组和假手术组相比,心衰组小鼠心肌MMP-9表达在14天、28天表达略有升高(P<0.05)。
     与正常组和假手术组相比,心衰组TIMP-1表达在28天显著升高(P<0.05或P<0.01),余无显著性差异。
     与正常组和假手术组相比,心衰组TLR4表达在各时间点均显著升高,并随时间不断增强,与正常组和假手术组比较差异具有统计学意义(P<0.05或P<0.01)。
     与正常组和假手术组相比,心衰组小鼠Myd88表达在14天显著升高(P<0.05),余无显著性差异。
     (4)氧化应激因子表达变化
     心衰组小鼠心肌80HdG的表达明显增强,术后3天阳性率为24.18±6.63%,较假手术组(10.40±4.54%)和正常组(3.13±1.33%)显著增强(P<0.05或P<0.01);术后7天略下降至11.58±3.05%;术后14天、28天又持续上升(分别为28.56±7.31%,P<0.05:30.79±7.47%,P<0.01)。
     心衰组小鼠心肌4-HNE表达也显著增强,在术后3天升高至正常组的6-7倍,7天略下降至3-4倍,14天、28天又升高至4-6倍,与正常组和假手术组比较具有统计学意义(P<0.01)。
     4. Real-time PCR结果
     与正常组和假手术组比较,心衰组小鼠心肌LC3a mRNA的水平随时间呈单峰分布,在7天达到最高(P<0.01),余时间点无显著性差异;
     与正常组和假手术组比较,心衰组LC3b的mRNA表达水平也呈单峰分布,在3天、7天表达最高(P<0.05),28天恢复到正常水平;
     与正常组和假手术组比较,心衰组小鼠心肌Atg5mRNA表达水平在3天、7天、14天明显增高(P<0.01),在28天基本降至基础水平;
     与正常组和假手术组比较,心衰组小鼠心肌Atg7mRNA表达水平在3天明显升高(P<0.01),达到高峰,在28天基本降至基础水平,余时间点差异无统计学意义(P>0.05)。
     与正常组和假手术组比较,心衰组小鼠心肌Beclin-1mRNA表达水平表现为在第3天显著升高(P<0.01),在7天、14天迅速降至基础水平,在28天略有升高,但无统计学意义(P>0.05)。
     与正常组和假手术组比较,心衰组小鼠心肌Rubicon的mRNA表达水平随时间呈双峰分布,在7天、28天达到最高值(P<0.01),14天略有降低(P<0.05)。
     实验Ⅱ
     方法
     1.实验动物
     180只雄性C57BL/6小鼠随机分为正常组(50只),假手术组(50只)和心衰组(80只)。以上各组组内又随机分为3个亚组:雷帕霉素组、雷帕霉素加氯喹组和生理盐水组,共9个亚组。各亚组分别于TAC术后7天、28天处死8-10只小鼠,小鼠处死前4h分别给予腹腔注射雷帕霉素(30mg/kg)或(和)氯喹(2mg/kg)或生理盐水(0.2ml)。
     2.动物模型的建立
     动物模型的建立方法同实验Ⅰ。
     3.病理学检测
     LC3免疫组化检测各组心肌LC3的蛋白表达水平。
     4. Real-time PCR检测
     检测各组LC3a、LC3b的mRNA表达水平。
     结果
     1.病理学染色
     在不应用雷帕霉素和氯喹干预情况下,术后7天心衰组小鼠心肌LC3表达阳性率为21.43±2.9%,术后28天达28.20±3.24%,与正常组和假手术组比较均具有显著性差异(P<0.01)。
     术后7天,雷帕霉素均可以引起正常组、假手术组和心衰组小鼠心肌LC3表达水平的升高(P<0.05);雷帕霉素和氯喹联合应用可以引起正常组、假手术组小鼠心肌LC3表达的进一步升高(P<0.01)。在心衰组中,雷帕霉素和氯喹组的LC3表达与雷帕霉素组相比无显著性差异(P>0.05)。
     术后28天,在正常组和假手术组中,雷帕霉素可以引起LC3蛋白表达的升高(P<0.05或P<0.01),雷帕霉素和氯喹联合应用可以引起LC3蛋白表达的进一步升高(P<0.05或P<0.01)。在心衰组中,雷帕霉素组LC3表达较生理盐水组略有升高,但无统计学意义(P>0.05);雷帕霉素和氯喹组LC3表达与雷帕霉素组相比显著下降(P>0.05)。
     2. Real-time PCR结果
     与正常组和假手术组相比,心衰组小鼠心肌LC3a的mRNA水平在术后7天明显升高,达正常组的100-120倍(P<0.01);术后28天降至接近正常水平(P>0.05)。
     TAC术后7天,雷帕霉素可以引起正常组和假手术组LC3a的mRNA水平的升高(P<0.05),心衰组LC3a mRNA水平略有升高,但无显著性差异(P>0.05)。雷帕霉素和氯喹联合应用均可以进一步升高各组LC3a的mRNA水平。(P<0.05或P<0.01)。
     TAC术后28天,雷帕霉素可以引起正常组、假手术组和心衰组的LC3a的mRNA水平的升高(P<0.05或P<0.01),雷帕霉素和氯喹联合应用可以进一步升高正常组和假手术组LC3a的mRNA水平(P<0.05或P<0.01)。但在心衰组中,雷帕霉素和氯喹组与雷帕霉素组相比,LC3a的mRNA水平没有进一步升高,反而迅速降低(P<0.01)。
     与正常组和假手术组相比,心衰组小鼠心肌LC3b的mRNA水平在术后7天明显升高,达正常组的3-5倍(P<0.05);在术后28天略有升高,无显著性差异(P>0.05)。
     TAC术后7天,雷帕霉素均可诱导正常组、假手术组和心衰组LC3b的mRNA水平的升高(P<0.05或P<0.01);雷帕霉素与氯喹联合应用均引起各组LC3b的mRNA水平的进一步升高(P<0.05或P<0.0])。
     TAC术后28天,雷帕霉素均可诱导正常组、假手术组和心衰组LC3b的mRNA表达(P<0.05或P<0.01);雷帕霉素与氯喹联合应用可进一步诱导正常组、假手术组LC3b的mRNA表达(P<0.01),但在心衰组中,雷帕霉素和氯喹组LC3b表达与雷帕霉素组相比有所升高,但无显著性差异(P>0.05)。
     3.自噬流的改变
     免疫组化及PCR结果均显示:心衰组小鼠在TAC术后7天,心肌自噬功能正常;与正常组和假手术组比较,心衰组雷帕霉素诱导的自噬流无显著性差异(P>0.05)。术后28天,心衰组小鼠心肌自噬功能异常,与正常组和假手术组比,心衰组雷帕霉素诱导的自噬流明显减少甚至消失(P<0.01)。
     结论
     1.在TAC小鼠模型中,心脏压力超负荷的早期,心功能代偿,雷帕霉素诱导的自噬流正常,自噬功能正常;在心脏压力超负荷晚期,心功能失代偿,雷帕霉素诱导的自噬流减弱甚至消失,自噬小体清除阶段的自噬功能发生紊乱。
     2.在小鼠TAC模型中,在心衰的不同时期自噬基因的发生动态变化,自噬、炎症、氧化应激三种机制相互影响,共同促进TAC小鼠心衰的进展和心功能的降低。
     背景
     心力衰竭是严重危害人类健康的常见心血管疾病之一。随着人口老龄化日益加重,心衰的发病率逐年提高。有效防治心衰已成为医学界亟待解决的重要问题。自噬是细胞内物质代谢的重要途径,是降解再循环系统的重要组成部分。研究发现,自噬参与了心血管疾病的发生、发展过程。大量基础与临床研究已证实芪苈强心胶囊具有强心、利尿、扩血管、抑制神经内分泌激活等作用,能有效改善心衰症状,缓解心肌损伤和心功能的恶化。但其对心衰发生发展过程中自噬功能的作用尚不明了。
     目的
     1.明确芪苈强心胶囊改善心衰小鼠心功能代偿期和失代偿期的作用。
     2.探讨芪苈强心胶囊对心衰小鼠心功能代偿期和失代偿期自噬功能的影响及其相关机制。
     方法:
     1.实验动物
     300只雄性C57BL/6小鼠随机分为假手术组(60只)和横向主动脉弓缩窄术(Transverse aortic arch constriction, TAC)组(240只)。假手术组给予生理盐水灌胃;TAC组又随机分为芪苈强心组,培哚普利组和生理盐水组(心衰组),分别给予芪苈强心、培哚普利、生理盐水灌胃。
     假手术组、芪苈强心组、培哚普利组和心衰组组内又随机分为生理盐水组、雷帕霉素组、雷帕霉素加氯喹组3个亚组,处死前4h分别给予腹腔注射生理盐水、雷帕霉素、雷帕霉素加氯喹,共12个亚组,分别于14天,28天处死各亚组内8-14只小鼠。
     2.模型的建立
     模型建立方法同论文Ⅰ。
     3.存活率分析
     保留存活记录并绘制图表。
     4.超声心动图检测
     所有小鼠于处死前行超声心动图检测左室射血分数(Ejection fraction,EF%),左室重量(Left ventricular mass weight, LVMW)。
     5.组织病理学及免疫组织化学染色检查
     留取小鼠心脏标本,行苏木素-伊红染色(Haematoxylin eosin, HE)、Masson染色心脏大体形态学改变;行免疫组织化学染色检测雷帕霉素和雷帕霉素加氯喹干预组的小鼠心肌内的微管相关蛋白1轻链3(Microtubule-associate protein1light chain3, LC3)的表达,检测内未经雷帕霉素或氯喹干预的小鼠心肌内LC3和如下各指标的表达:
     (1)自噬指标:Bcl-2相互作用蛋白(Bcl-2interacting coiled-coil protein-1, Beclin-1)、Beclin-1相互作用蛋白(RUN domain protein as Beclin1-interacting and cysteine-rich containing, Rubicon)、P62(Sequestosome1/SQSTM1);
     (2)炎症指标:基质金属蛋白酶-9(Matrix metalloproteinase-9, MMP-9)、基质金属蛋白酶抑制剂-1(Tissue inhibitor of matrix metalloprotease-1, TIMP-1);
     (3)氧化应激指标:4-羟基壬烯醛(4-hydroxynonenal,4-HNE)、8-羟基-2’-脱氧鸟苷(8-hydroxy-2'-deoxyguanosine,8OHdG)。
     6.实时定量聚合酶链反应(Real-time quantitative polymerase chain reaction, Real-time PCR)
     检测雷帕霉素组、雷帕霉素加氯喹干预组的小鼠心肌内的LC3a、LC3b的mRNA表达。检测未经雷帕霉素或氯喹干预组小鼠心肌内自噬相关基因(Autophagy-related gene, Atg)Atg5、Atg7、LC3a、LC3b、Rubicon Beclin-1的表达。
     7.统计学分析
     统计学处理计量资料以均数±标准差(x±s)表示,所有数据用SPSS11.5软件进行统计学分析。两组数据间比较采用两独立样本t检验,其他数据多组间均数比较采用包含Bonferroni post-hoc检验的单因素或双因素方差分析。多组间的两两比较采用费希尔的LSD法。P<0.05为差异有统计学意义。
     结果:
     1.动物的一般情况
     与假手术组比较,心衰组小鼠生存率显著降低(P<0.01),培哚普利和芪苈强心胶囊均能有效改善心衰小鼠的生存率(P<0.05)。
     2.心脏超声学检测
     在术后14天心功能代偿期,心衰组小鼠EF%明显下降,LVMW明显增大,与假手术相比具有统计学意义(P<0.01)。培哚普利和芪苈强心胶囊均能显著提高心衰小鼠的EF%(P<0.05或P<0.01),缓解LVMW的增高(P<0.05或P<0.01)。
     在术后28天心功能失代偿期,心衰组小鼠EF%进一步降低,而LVMW进一步升高,与假手术组相比具有统计学意义(P<0.01)。与心衰组相比,培哚普利组和芪苈强心组的EF%显著增高(P<0.01),LVMW显著降低(P<0.05);两药物组之间EF%和LVMW无显著性差异。
     3.病理学和免疫组织化学检测
     (1)病理学染色
     HE染色显示:术后14天、28天,心衰组小鼠心肌细胞直径明显增大,心脏横径明显增大,左心室腔显著增大,以28天更为显著;培哚普利组和芪苈强心组小鼠心肌肥大及左心室腔扩大程度较心衰组显著降低。
     Masson染色显示:术后14天各组心肌胶原含量无显著性差异。术后28天,与假手术组相比,心衰组、培哚普利组和芪苈强心组小鼠心肌胶原含量明显增多(P<0.01);与心衰组相比,培哚普利组和芪苈强心组小鼠心肌胶原含量显著降低(P<0.01)。
     (2)自噬功能检测
     在不使用雷帕霉素或氯喹干预情况下,术后14天、28天,与假手术组相比,心衰组、培哚普利组、芪苈强心组小鼠心肌LC3表达阳性率明显增高(P<0.01);与心衰组相比,培哚普利组和芪苈强心组小鼠心肌LC3表达降低(P<0.05或P<0.01)。
     术后14天,雷帕霉素均可以引起各组的LC3表达的升高(P<0.05或P<0.01);雷帕霉素和氯喹联合应用后,假手术组、芪苈强心组、培哚普利组LC3表达进一步升高(P<0.05或P<0.01);在心衰组中,雷帕霉素和氯喹联合应用后LC3表达略有升高,但与应用雷帕霉素相比没有显著性差异(P>0.05)。
     术后28天,在除心衰组外的各组中,雷帕霉素可以诱导LC3蛋白表达升高(P<0.05或P<0.01),雷帕霉素和氯喹联合应用可引起LC3蛋白表达的进一步升高(P<0.05或P<0.01)。在心衰组中,应用雷帕霉素后,LC3表达稍有升高,但无统计学意义(P>0.05)。联合应用雷帕霉素和氯喹后,与单独应用雷帕霉素相比,LC3表达无显著性差异(P>0.05)。
     (3)自噬基因的表达
     术后14天,各组P62蛋白表达水平较低,无显著性差异(P>0.05)。术后28天,与假手术组相比,心衰组P62蛋白表达水平显著升高(P<0.01),芪苈强心组、培哚普利组P62蛋白表达水平无显著性差异(P>0.05)。
     术后14天、28天,心衰组、芪苈强心组、培哚普利组Beclin-1表达与假手术组相比均显著增高(P<0.01)。术后14天,芪苈强心组、培哚普利组Beclin-1表达较心衰组显著增高(P<0.05或P<0.01),术后28天,芪苈强心组、培哚普利组Beclin-1表达较心衰组显著降低(P<0.05)。
     术后14天、28天,与假手术组相比,心衰组、芪苈强心组、培哚普利组Rubicon表达均显著增高(P<0.01);与心衰组相比,芪苈强心组、培哚普利组Rubicon表达均显著降低(P<0.05或P<0.01)。
     (4)氧化应激
     术后14天、28天,与假手术组比较,心衰组、培哚普利组和芪苈强心组小鼠心肌的4-HNE、8OHdG表达进一步增强(P<0.01);与心衰组相比,培哚普利组和芪苈强心组小鼠心肌的4-HNE、8OHdG表达显著降低(P<0.05或P<0.01)。
     (5) MMPs/TIMPs表达
     术后14天,与假手术组和培哚普利组相比,心衰组和芪苈强心组小鼠心肌MMP-9表达增多(P<0.01)。术后28天,与假手术组相比,心衰组、芪苈强心组、培哚普利组小鼠心肌的MMP-9表达显著增多(P<0.01);与心衰组相比,芪苈强心组和培哚普利组MMP-9表达显著降低(P<0.05)。
     术后14天,各组小鼠心肌TIMP-1表达无显著性差异(P>0.05)。术后28天,与假手术组相比,心衰组、芪苈强心组、培哚普利组小鼠心肌TIMP-1表达较显著增多(P<0.01);与心衰组相比,培哚普利组和芪苈强心组TIMP-1表达显著增多(P<0.01)。
     4. Real-time PCR结果
     (1)LC3的表达
     TAC术后14天,与假手术组相比,心衰组、培哚普利组和芪苈强心组小鼠LC3a mRNA水平均升高(P<0.05或P<0.01)。与心衰组相比,培哚普利组和芪苈强心组LC3a mRNA水平明显升高(P<0.01)。术后28天,培哚普利组和芪苈强心组LC3a mRNA水平较假手术组和心衰组显著升高(P<0.05),而心衰组LC3amRNA水平与假手术比较差异无统计学意义。
     TAC术后14天,培哚普利组和芪苈强心组小鼠心肌LC3b mRNA表达较假手术组和心衰组升高(P<0.01),心衰组与假手术组LC3b mRNA表达水平无显著性差异(P>0.05)。术后28天,培哚普利组和芪苈强心组小鼠心肌LC3b的mRNA水平较假手术组升高(P<0.05或P<0.01),培哚普利组较心衰组显著升高(P<0.05),其余各组间无显著性差异。
     (2)自噬流的检测
     TAC术后14天,雷帕霉素可以显著引起各组LC3a mRNA水平的升高(P<0.01),雷帕霉素和氯喹联合应用引起LC3a mRNA水平的进一步升高(P<0.01)。芪苈强心组和培哚普利组LC3a升高水平显著大于心衰组和假手术组(P<0.01)。
     TAC术后28天,雷帕霉素可显著引起各组LC3a的mRNA水平的升高(P<0.01)。与雷帕霉素组相比,雷帕霉素和氯喹联合应用均可以进一步升高培哚普利组、芪苈强心组和假手术组LC3a的mRNA水平(P<0.01),而心衰组LC3a的mRNA水平不升反降,呈低水平表达(P<0.01)。
     TAC术后14天,雷帕霉素可以显著引起各组LC3b mRNA水平的升高(P<0.01),雷帕霉素和氯喹联合应用可促进LC3b mRNA水平的进一步升高(P<0.01)。TAC组雷帕霉素诱导的自噬流较其余各组略有降低,但无显著性差异(P>0.05),其余各组间无显著性差异(P>0.05)。
     TAC术后28天,雷帕霉素均可引起各组LC3b的mRNA水平升高(P<0.05或P<0.01)。在培哚普利组、芪苈强心组和假手术组中,与雷帕霉素组相比,雷帕霉素加氯喹组LC3b的mRNA水平显著升高(P<0.01);在心衰组中,与雷帕霉素组相比,雷帕霉素加氯喹组LC3b的mRNA水平无显著性变化(P>0.05)。与假手术组相比,芪苈强心组和培哚普利组雷帕霉素诱导的自噬流显著降低(P<0.05),心衰组雷帕霉素诱导的自噬流消失,自噬功能紊乱。
     (3)自噬基因的表达
     TAC术后14天,与假手术组相比,心衰组、培哚普利组和芪苈强心组小鼠心肌Atg5mRNA表达显著增高(P<0.01),培哚普利组较心衰组显著降低(P<0.05),其余各组间无显著性差异。术后28天,芪苈强心组和培哚普利组较假手术组和心衰组Atg5mRNA表达显著增高(P<0.01)。
     TAC术后14天、28天,芪苈强心组和培哚普利组Atg7mRNA表达水平显著高于假手术组和心衰组(P<0.05或P<0.01)。
     TAC术后14天,芪苈强心组和培哚普利组小鼠心肌Beclin-1mRNA表达水平较假手术组和心衰组显著升高(P<0.05或P<0.01)。术后28天心衰组Beclin-1mRNA表达水平较其余各组显著升高(P<0.01)。
     TAC术后14天、28天,心衰组、培哚普利组和芪苈强心组小鼠心肌Rubicon的1mRNA表达较假手术组显著升高(P<0.01)。术后14天,培哚普利组和芪苈强心组Rubicon的mRNA表达较心衰组显著升高(P<0.01);术后28天,培哚普利组和芪苈强心组Rubicon的mRNA表达较心衰组显著降低(P<0.01)。
     结论
     1.芪苈强心胶囊能够改善TAC小鼠心衰代偿期、失代偿期心功能,有效改善心肌重构,且与培哚普利疗效相当。
     2.芪苈强心胶囊能够抑制心肌氧化应激、改善心肌自噬功能是其改善心衰的重要机制。
     背景
     在心衰患者中普遍存在抑郁、焦虑等心理应激症状,心理应激不仅会引起患者的精神和行为障碍,而且可以影响患者的神经内分泌系统和机体功能,进而加重心衰。此外,心衰在其发生发展过程中也可引起或加重心理应激。两者互为因果,形成恶性循环,最终影响预后。由此可见,心理应激在心衰的发生、发展中发挥着重要作用。然而,目前对于心理应激与心衰的研究多集中于临床观察性研究,对于心理应激对心衰的具体作用机制尚不清楚。
     抑郁、焦虑等心理应激可促进肾素-血管紧张素系统(renin-angiotensin system, RAS)的激活和血管紧张素Ⅱ(AngiotensinⅡ, AngⅡ)的生成。而AngⅡ参与了心衰的发生、发展过程。最近的研究表明,AngⅡ参与了心肌细胞的自噬。自噬是是广泛存在于大部分真核细胞中的一种生命现象。自噬作用主要是清除和降解细胞内受损伤的细胞结构、衰老的细胞器、生物大分子等,同时为细胞内细胞器的构建提供原料,即细胞结构的再循环。自噬在正常情况下呈低水平表达,而自噬功能的缺陷可导致心功能的异常和心衰的发生。自噬功能异常是心衰发生、发展的重要机制。然而,心理应激对心衰过程中自噬功能的研究未见报道。
     目的
     1.观察心理应激对心衰早期自噬功能的影响;
     2.探讨心理应激对心衰自噬功能的作用机制。
     实验一
     方法
     1.实验动物
     雄性C57BL/6小鼠随机分为假手术组(30只)和横向主动脉弓缩窄术(Transverse aortic arch constriction, TAC)组(120只)。TAC组内又随机分为应激组(40只)、应激加卡托普利组(卡托普利组,40只)、心衰对照组(心衰组,40只)。各组于TAC术后3天,分别给予心理应激和药物干预7天,为排除灌胃影响,除卡托普利组外各组分别给予生理盐水(0.2ml/day)。术后11天处死小鼠,为了检测自噬流,各组于处死前4h分别随机分为三个亚组并给予腹腔注射雷帕霉素(30mg/kg)或氯喹(2mg/kg)或生理盐水(0.2m1)。
     2.动物模型的建立:同论文Ⅰ。
     3.心理应激方法
     TAC术后3天,对应激组和卡托普利组进行应激,应激时间为1周。心理应激方法采用幽闭应激和噪音应激。将小鼠放入管壁带孔的50ml针管中2个h,同时进行噪音刺激(110DB、间隔3min、持续5s)。刺激周期为7天。
     4.自我修饰行为检测
     将10%的蔗糖水喷洒在小鼠背部,进行飞溅测试,观察并记录小鼠自我修饰行为。
     5存活率分析:记录小鼠生存状况并绘制曲线图。
     6.血流动力学及心脏超声检测
     在TAC术后第3天和第10天,应用小动物血压测定仪检测小鼠舒张压(Diastolic blood pressure, DBP)、收缩压(Systolic blood pressure, SBP)和心率(Heart rate, HR),心脏超声检测左室射血分数(Ejection fraction, EF%)和左室重量(Left ventricular muscle weight, LVMW)。
     7.血清学检测
     心理应激7天后,所有小鼠处死,并收集血清,酶联免疫吸附试验(Enzyme-linked immunosorbent assay, ELISA)检测血清皮质醇水平和Ang Ⅱ含量。
     8.病理学和免疫组化染色
     留取小鼠心脏标本,行苏木素-伊红染色(Hematoxylin and eosin, HE)、Masson染色;行免疫组织化学染色检测未经氯喹和雷帕霉素干预组的小鼠心肌内的自噬指标:微管相关蛋白1轻链3(Microtubule-associate protein1light chain3, LC3)、Bcl-2相互作用蛋白(Bcl-2interacting coiled-coil protein-1, Beclin-1)、Beclin-1相互作用蛋白(RUN domain protein as Beclin1-interacting and cysteine-rich containing, Rubicon)、P62(Sequestosome1/SQSTM1)和氧化应激指标:4-羟基壬烯醛(4-hydroxynonenal,4-HNE)、8-羟基-2’-脱氧鸟苷(8-hydroxy-2'-deoxyguanosine,8OHdG)的表达。检测雷帕霉素和氯喹干预组小鼠心肌内LC3的表达。
     9.实时定量聚合酶链反应(Real-time quantitative polymerase chain reaction, Real-time PCR)
     Real-time PCR检测未经雷帕霉素和氯喹干预组的LC3a、LC3b、Beclin-1、 Rubicon、自噬相关基因(Autophagy-related gene, Atg) Atg5和Atg7的mRNA表达。检测雷帕霉素和氯喹干预组的LC3a、LC3b的mRNA表达。
     10.统计学分析:统计学处理计量资料以均数±标准差(x±s)表示,所有数据用SPSS11.5软件进行统计学分析。Kaplan-Meier法制作生存率曲线,生存率比较采用log rank检验。两组数据间比较采用t检验,其他数据多组间均数比较采用包含Bonferroni post-hoc检验的单因素或双因素方差分析。多组间的两两比较采用费希尔的LSD法。P<0.05为差异有统计学意义。
     结果
     1.自我修饰行为
     应激组和卡托普利组小鼠自我修饰行为较心衰组和假手术组显著较低(P<0.01)。
     2.生存率
     应激组小鼠生存率(75%)较心衰组(91%)明显降低(P<0.05);卡托普利组生存率(89%)较应激组有所升高,但无统计学意义。
     3.血清学检测
     应激组和卡托普利组小鼠血清皮质醇水平较心衰组和假手术组明显升高5-6倍(P<0.01)。应激组小鼠血清AngⅡ水平比心衰组和卡托普利组小鼠明显升高(P<0.01),心衰组与卡托普利组比较差异无统计学意义(P>0.05)。与假手术组相比,卡托普利组小鼠血清AngⅡ水平升高(P<0.05)。
     4.血流动力学和心脏超声学检测
     应激显著增加了应激组和卡托普利组小鼠的SBP、DBP和HR(P<0.01),卡托普利组的SBP、DBP和HR较应激组降低(P<0.01)。与心衰组相比,应激组小鼠心肌肥厚明显,LVMW (P<.01)和HW/BW (P<0.01)显著增加,EF%明显下降(P<0.01)。卡托普利明显改善了应激引起的心肌肥厚(P<0.01),卡托普利组小鼠LVMW和心脏重量指数(Heart weight/body weight, HW/BW)较应激组显著降低(P<0.01),EF%显著增高(P<0.01)。
     5.病理学染色
     HE和Masson染色显示应激组心肌肥厚,与心衰组相比,心肌胶原纤维含量增多(P<0.05),卡托普利组心肌胶原含量较应激组有所降低,但无统计学意义(P>0.05)。
     在不应用雷帕霉素或氯喹干预情况下,与假手术组相比,其余各组小鼠心肌LC3b表达明显增高(P<0.01);与心衰组相比,应激组和卡托普利组LC3b表达明显升高(P<0.05或P<0.01);与应激组相比,卡托普利组LC3b表达明显降低(P<0.01)。
     雷帕霉素可以显著诱导假手术组、心衰组、卡托普利组和应激组LC3b表达的升高(P<0.05或P<0.01)。氯喹可以显著诱导假手术组、心衰组、卡托普利组LC3b表达的升高(P<0.01)。但在应激组,氯喹仅引起LC3b表达的轻微升高,无统计学意义(P>0.05)。
     在假手术组心肌上有极少量Beclin-1和Rubicon的阳性表达,与假手术组相比,其余各组表达明显增强(P<0.01);与应激组相比,心衰组和卡托普利组Beclin-1和Rubicon表达明显减弱(P<0.01)。
     在假手术组小鼠心肌基本没有4-HNE、OHdG的阳性表达,其余各组表达比假手术组明显增强(P<0.01);与应激组相比,心衰组和卡托普利组4-HNE和80HdG表达明显减弱(P<0.01),心衰组和卡托普利组4-HNE、8OHdG表达相当,差异无统计学意义(P>0.05)。
     6. Real-time PCR结果
     在不应用雷帕霉素或氯喹干预情况下,假手术组LC3a mRNA呈低水平表达,其余各组小鼠心肌LC3a mRNA表达较假手术组明显增高(P<0.01);与心衰组相比,卡托普利组LC3a mRNA表达明显升高(P<0.05),应激组LC3a mRNA表达升高,但无统计学意义(P>0.05)。与假手术组相比,其余各组LC3b mRNA表达明显增高(P<0.01);应激组LC3b mRNA表达水平较心衰组和卡托普利组明显增高(P<0.05或P<0.01)。
     雷帕霉素可以显著诱导各组LC3b mRNA表达水平的升高。雷帕霉素干预后,应激组LC3b mRNA表达较假手术组升高(P<0.05),其余各组间无显著差异(P>0.05)。氯喹可以显著诱导假手术组、心衰组、卡托普利组LC3b mRNA表达的升高(P<0.01),但仅引起应激组LC3b mRNA表达的轻微升高,无统计学意义(P>0.05)。氯喹干预后,卡托普利组LC3b mRNA表达较假手术组(P<0.01)和应激组(P<0.05)明显升高。
     在不应用雷帕霉素和氯喹干预的情况下,假手术组小鼠心肌Beclin-1、 Rubicon、Atg5、Atg7mRNA呈低水平表达,其余各组Beclin-1、Rubicon、Atg5、 Atg7mRNA表达较假手术组明显升高(P<0.01);与心衰组相比,应激组Beclin-1、 Rubicon、Atg5、Atg7mRNA表达显著增高(P<0.01);与应激组相比,卡托普利组Beclin-1、Rubicon mRNA表达均显著降低(P<0.01)。
     实验二
     方法
     1.刺激细胞
     对细胞进行AngⅡ刺激,刺激浓度分别为0μM和0.1μM,置于37℃细胞培养箱孵育22h,然后在各孔中分别加入雷帕霉素(1μM)或巴弗洛霉素(50nM)继续孵育2h,进行下一步检测。为检测氧化应激在AngⅡ通路中的作用,对细胞进行AngⅡ刺激,刺激浓度分别为0μM和0.1μM,同时加入或不加入N-乙酰半胱氨酸(N-acetylcysteine, NAC)50μM,置于37℃细胞培养箱孵育22h。然后在各孔中分别加入雷帕霉素(1μM)或巴弗洛霉素(50nM)继续孵育2h。
     2.免疫荧光
     免疫荧光检测H9c2细胞LC3b和4-HNE表达水平。
     3. Western blot检测
     通过细胞蛋白的提取、蛋白浓度测定、凝胶电泳、转膜、标记一抗和二抗、曝光等步骤检测LC3b、Rubicon、Beclin-1、β-action的表达水平。
     4. Real-time PCR
     通过提取细胞RNA, Real-time PCR检测LC3a、LC3b、Atg5、Atg7、Beclin-1、 Rubicon表达变化。
     结果
     1. AngⅡ对H9c2细胞自噬的作用
     对细胞进行AngⅡ (0.1μM)刺激24h,免疫荧光染色检测LC3b的表达,显示AngⅡ刺激后,LC3b的表达明显升高(P<0.01);雷帕霉素和巴弗洛霉素均可进一步诱导LC3b的表达(P<0.01)。
     2.NAC能够抑制AngⅡ引起的自噬和氧化应激的升高
     在AngⅡ (0.1μM)刺激24h的同时,加入氧化应激的抑制剂NAC,免疫荧光染色发现:Ang Ⅱ能够显著升高H9c2细胞LC3b的蛋白表达(P<0.01);与AngⅡ组相比,NAC能够显著抑制H9c2细胞LC3b的蛋白表达(P<0.01)。PCR结果显示:AngⅡ能够显著升高H9c2细胞的LC3a、LC3b mRNA表达水平(P<0.05或P<0.01);与AngⅡ组相比AngⅡ和NAC共培养能够显著降低LC3b mRNA表达水平(P<0.05)。Western blot对LC3b的检测也进一步证实了该结果。同时,与AngⅡ组相比,AngⅡ和NAC共培养后,雷帕霉素或巴佛洛霉素诱导的LC3b水平显著降低(P<0.01)。
     免疫荧光染色发现:Ang Ⅱ能够显著升高H9c2细胞4-HNE的蛋白表达(P<0.01);与AngⅡ组相比,AngⅡ和NAC共培养能够显著抑制H9c2细胞4-HNE的蛋白表达(P<0.01)。
     3.NAC对AngⅡ诱导的自噬基因表达的影响
     在AngⅡ (0.1μM)刺激24h的同时,加入氧化应激的抑制剂NAC, PCR检测Atg5、Atg7、Beclin-1、Rubicon mRNA表达水平的改变;Western blot检测Beclin-1、Rubicon的蛋白表达。结果显示AngⅡ可以引起Atg5、Atg7、Beclin-1、 Rubicon mRNA表达水平的升高(P<0.01);与AngⅡ组相比,AngⅡ和NAC共培养能够显著抑制H9c2细胞Atg5、Beclin-1、Rubicon mRNA表达水平(P<0.05或P<0.01)。Western blot显示AngⅡ可以引起Beclin-1、Rubicon蛋白表达水平升高(P<0.01);与AngⅡ组相比,AngⅡ和NAC共培养能够显著降低H9c2细胞Beclin-1、Rubicon蛋白表达水平(P<0.05或P<0.01)。
     结论
     1.心理应激可以导致心衰小鼠自噬小体清除阶段的功能紊乱;
     2. AngⅡ诱导的氧化应激通路的激活是心理应激导致的自噬功能紊乱的重要机制。
Background
     Heart failure (HF) is a chronic, progressive illness that is highly prevalent in the worldwide. Despite its place among the leading causes of morbidity, pharmacological and mechanic remedies have only been able to slow the progression of the disease. There is a critical need to further understand its underlying mechanisms. Autophagy is a major catabolic pathway by which mammalian cells degrade and recycle macromolecules and organelles. It plays a critical role in removing protein aggregates, as well as damaged or excess organelles, to maintain intracellular homeostasis and to keep the cell healthy. Recnetly, Autophagic vacuoles are found in cardiomyocytes in ischemic hearts, and in human and hamster cardiomyopathic failing hearts. However, the precise role of autophagy in the HF is still unclear and remains to be elucidated.
     Objectives
     Establish the transverse aortic arch constriction (TAC) model, investigate the autophagic flux and autophagic gene expression in the progression of HF, and thus discuss the underlying mechanisms.
     Experiment I
     Methods
     1. Animals
     170male C57BL/6mice were divided into three groups:the normal group (n=50), the sham group (n=50) and the TAC group (n=70).8-11mice were sacrificed at0,3,7,14or28days after surgery in each group.
     2. Pressure-overload HF
     The use of a horizontal incision at the level of the suprasternal notch allows direct visualization of the transverse aorta without entering the pleural space and thus obviates the need for mechanical ventilation. The transverse aorta was banded between the right innominate and left carotid arteries to the diameter of a27-gauge needle using a7-0silk suture. Sham operations were served as a control for the TAC group.
     3. Echocardiography Analysis
     Left ventricular mass weight (LVMW) and Ejection fraction (EF%) were detected to evaluate cardiac function.
     4. Histological and Immunochemical Analysis
     Haematoxylin eosin (HE) and Masson staining were preformed to investigate cardiac hypertrophy myocardial fibrosis. Specific immunohistochemical staining was also performed with antibodies against microtubule-associated protein light chain3(LC3), Bcl-2interacting coiled-coil protein-1(Beclin-1), RUN domain protein as Beclin1-interacting and cysteine-rich containing (Rubicon), monocyte chemotactic protein-1(MCP-1), intercellular adhesion molecule (ICAM-1), toll-like receptor4(TLR4), myeloid differentiation factor88(Myd88), matrix metallo proteinase-9(MMP-9), tissue inhibitor of metalloproteinase-1(TIMP-1),4-hydroxy-2-Nonenal (4-HNE),8-hydroxydeoxyguanosine (8OHdG).
     5. Real-time quantitative polymerase chain reaction (Real-time PCR)
     Real-time PCR was used to analyze the mRNA levels of LC3a, LC3b, Rubicon, Beclin-1, Autophagy5(Atg5) and Atg7.a-Actin was a normalization control.
     6. Statistical analysis
     Statistical analysis involved use of SPSS11.5for Windows. Normally distributed data were analyzed by one-way ANOVA and non-normally distributed data by Kruskal-Wallis one-way ANOVA. Student t test was used to compare data for two groups. Data are expressed as mean±SD. P<0.05was considered statistically significant.
     Results
     1. Survival rate
     Survival probability in the TAC group is lower than the normal group and the sham group (P<0.01).
     2. Echocardiography analysis
     Compared to the sham group, the TAC group showed enhanced cardiac hypertrophy, EF%was significantly decreased from73.4±3.5%to41±10.4%on the3rd day (P<0.01) and further decreased to36.2±5.7%on the28th day (P<0.01); LVMW was significantly increased, it increased from42.2±10.2to52.5±12.7on the3rd day after surgery (P<0.05) and further increased to58.2±11.0on the28th day (P<0.05).
     3. Histological and Immunochemical Analysis
     Histology staining:HE and Masson staining revealed increased myocardium cross-sectional area and more cardiac fibrosis in hearts of the TAC group than the normal group and the sham group especially on the28th day (P<0.05or P<0.01).
     Autophagosomal marker assay:We analyzed the expression of autophagosomal markers such as LC3, P62, Beclin-1, Rubicon, Compared with the normal group and the sham group, the protein expression levels of LC3, P62significantly increased and peaked on the7th day and the28th day (P<0.05or P<0.01); The expression level of Beclin-1was increased on the3rd day and the7th day (P<0.01) and Rubicon expression level markedly increase on the3rd day, the7th day, the14th day and the28th day(P<0.05or P<0.01).
     Inflammation assay:The protein expression level of inflammation markers such as MCP-1, ICAM-1, TLR4, Myd88, MMP-9, TIMP-1were significantly increased in the TAC group at different time point after TAC surgery (P<0.05or P<0.01).
     Oxidative stress assay
     Both4-HNE and8OHdG protein levels were increased in TAC mice on the3rd day, the14th day and the28th day (P<0.05or P<0.01).
     4. Real-time PCR
     Compared to the normal group and the sham group, the mRNA level of LC3a was markedly increased in TAC mice on the7th day (P<0.01), it showed no significant difference at other time points. The mRNA level of LC3b was increased on the3rd day (P<0.01) and the7th day (P<0.05) compared to the normal group and the sham group. Compared to the normal group and sham group, the mRNA level of Atg5were significantly increased on the3rd day, the7th day and the14th day while the expression of Atg7and Beclin-1increased on the3rd day (P<0.01). The mRNA level of Rubicon was higher at the7rd,14th and28th day than the normal group and the sham group (P<0.05or P<0.01). There's no significant different between the normal group and the sham group (P>0.05).
     Experiment Ⅱ
     Methods
     1. Animal
     180male C57BL/6mice were divided into three groups:the normal group (n=50), the sham group (n=50) and the TAC group (n=80). To investigate autophagic flux, mice in each group were randomly assigned to treatment with physiological saline or chloroquine or rapamycin by intraperitoneal injection4h before being killed.8-10mice were killed at the7th day and the28th day after surgery in each subgroup.
     2. Pressure-overload HF
     TAC model was produced by the method in experiment Ⅰ.
     3. Autophagic flux assay
     To detect autophagic flux in the heart, we measured expression of LC3by immunohistochemistry and Real-time PCR.
     Results
     1. Histological and Immunochemical Analysis
     The protein level of LC3was markedly increased in TAC mice on the7th day (21.43±2.9%, P<0.01) and the28th day (28.2±03.24%, P<0.01) compared with the normal group and the sham group. Rapamycin significantly increased the expression of LC3in all conditions (P<0.05), and combination with rapamycin and chloroquine further increased the expression LC3except the TAC group on the7th day (P<0.01). Rapamycin significantly increased the expression of LC3(P<0.05or P<0.01), and combination with rapamycin and chloroquine further increased the expression LC3in the normal group and the sham group on the28th day (P<0.05or P<0.01). Rapamycin slightly increased the expression of LC3(P>0.05) and combination with rapamycin and chloroquine couldn't further increase the expression LC3in TAC mice on the28th day (P>0.05).
     2. Real-time PCR
     The mRNA expression of LC3a and LC3b was significant increased at the end of the7th day compared with the normal group and the sham group (P<0.05or P<0.01).
     On the7th day, rapamycin significantly increased the mRNA expression of LC3a except the TAC group (P<0.05), and increased the mRNA expression of LC3b in every group (P<0.05or P<0.01); combination with rapamycin and chloroquine further increased the expression LC3a and LC3b in every group (P<0.05or P<0.01). On the28th day, rapamycin significantly increased the mRNA expression of LC3a and LC3b in every group (P<0.05or P<0.01). Combination with rapamycin and chloroquine further increased the expression of LC3a and LC3b in every group except the TAC group.
     3. Autophagic flux assay
     Autophagic flux induced by rapamycin made no significant difference in every groups on the7th day. But it significantly decreased on the28th day in the TAC group compared with the normal group and the sham group.
     Conclusions
     1. Autophagy was compensatory enhanced at early stage of pathological pressure overload and showd normal autophagic flux induced by rapamycin in the TAC group. At the late stage, it showed autophagy dysfunciton and lower autophagic flux induced by rapamycin.
     2. Autophagy genes change dynamically and play an important role in the progression of cardiac remodeling in TAC mice.
     3. Autophagy and inflammation/oxidative stress are closely related in the progression of cardiac remodeling in TAC mice, and TLR4-Myd88pathway may be involved in the underlying mechanisms.
     Background
     Heart failure (HF) is the leading cause of morbidity and mortality worldwide. There is a critical need to explore new therapeutic approaches in heart failure. Autophagy is a cellular response to starvation as well as a quality-control system that can deliver damaged organelles and long-lived proteins from the cytoplasm to lysosomes for clearance. Autophagy helps clear intracellular protozoa, bacteria and viruses and functions in antigen presentation. Growing evidence suggested that autophagy took part in the development and progression of heart diseases. Traditional Chinese drug has been used in the treatment of HF. Basic and clinical research showed that Qiliqiangxin could up-regulation the contents of ATP, improve the hemodynamics, inhibit neurohormonal activation, thus effectively improve cardiac function and the prognosis in patients. But the role of Qiliqiangxin in the autophagic mechanisms is still unclear in the progression of HF.
     Objectives
     1. To test the hypotheses that the traditional Chinese medicine Qiliqiangxin can improve cardiac function in the compensated stage and the decompensated stage of HF in transverse aortic arch constriction (TAC) mice.
     2. To elucidate the autophagic mechanism of the traditional Chinese medicine Qiliqiangxin in the compensated stage and the decompensated stage of HF in TAC mice.
     Methods
     1. Animal
     C57BL/6mice underwent TAC surgery (n=300), a model of pressure-overload heart failure, or sham surgery (n=60). We randomly divided the TAC mice into3groups for treatment (n=80each):the perindopril group, the Qiliqiangxin group and the TAC group. Mice were killed on the14th and28th day, to investigate autophagic flux, mice in each group were randomly assigned to treatment with physiological saline (0.2ml), chloroquine (30mg/kg) or rapamycin (2mg/kg) by intraperitoneal injection4h before being killed.
     2. Pressure-overload HF:TAC model was produced by the method in Part I
     3. Echocardiography Analysis
     Left ventricular mass weight (LVMW) and LV ejection fraction (EF%) were detected to evaluate cardiac function.
     4.Histological and Immunochemical Analysis
     Haematoxylin eosin (HE) and Masson were preformed to investigate cardiac hypertrophy myocardial fibrosis. Specific immunohistochemical staining was also performed to detect the expression of microtubule-associated protein light chain3(LC3) in every subgroups, and detect the expression of Bcl-2interacting coiled-coil protein-1(Beclin-1), RUN domain protein as Beclin1-interacting and cysteine-rich containing (Rubicon), matrix metallo proteinase-9(MMP-9), tissue inhibitor of metalloproteinase-1(TIMP-1),4-hydroxy-2-Nonenal (4-HNE),8-hydroxy-2'-deoxyguanosine (8OHdG) in mice that were injection with physiological saline.
     5. Real-time quantitative polymerase chain reaction (Real-time PCR)
     Real-time PCR was used to analyze the mRNA levels of LC3a, LC3b in every subgroups, and the levels of Rubicon, Beclin-1, Autophagy5(Atg5), and Atg7in in mice that were injection with physiological saline. a-Actin was a normalization control.
     6. Statistical analysis
     Statistical analysis involved use of SPSS11.5for Windows. Normally distributed data were analyzed by one-way ANOVA and non-normally distributed data by Kruskal-Wallis one-way ANOVA. Student t test was used to compare data for2groups. Data are expressed as mean±SD. P<0.05was considered statistically significant.
     Results
     1. Echocardiography Analysis
     On the14th day after surgery, acute pressure overload significantly decreased EF%and increased LVMW compared to the sham group (P<0.01). Both the perindopril group and the Qiliqiangxin group showed higher EF%and lower LVMW compared to the TAC group (P<0.05or P<0.01).
     On the28th day after surgery, chronic pressure overload further decreased EF%and increased LVMW in the TAC group compared to the sham group (P<0.01). Either perindopril or Qiliqiangxin could improve EF%(P<0.01) and LVMW (P<0.05) in the TAC mice. There is no significant difference between the perindopril group and the Qiliqiangxin group.
     2. Histological and Immunochemical Analysis
     (1) Histology staining
     HE and Masson staining revealed increased myocyte cross-sectional area and more cardiac fibrosis in hearts of TAC mice than sham mice especially on the28th day (P<0.01). Either perindopril or Qiliqiangxin could help relieve such pathological change both on the14th day and the28th day (P<0.05).
     (2) Autophagic function
     On the14th and the28th day, the expression of LC3was significantly higher in the TAC group, the perindopril group and the Qiliqiangxin group in comparasion with the sham group (P<0.01). Compared with the TAC group, the perindopril group and the Qiliqiangxin group showed lower LC3positive rate (P<0.05or P<0.01).
     On the14th day, rapamycin significantly increased the expression of LC3in every group (P<0.05or P<0.01); combination with rapamycin and chloroquine further increased the expression LC3except the TAC group on the14th day (P<0.05or P<0.01).
     On the28th day, rapamycin significantly increased the expression of LC3(P<0.05or P<0.01) and combination with rapamycin and chloroquine further increased the expression LC3in every group (P<0.05or P<0.01)except the TAC group on the28th day.
     (3) Autophagic gene
     On the28th day, the p62protein expression level in the TAC group was significantly increased compared with the perindopril group, the Qiliqiangxin group and the sham group (P<0.01).
     On the14th day and the28th day, the expression of Beclin-1in the sham group was significantly lower than the other groups (P<0.01).It was much higher in the perindopril group and the Qiliqiangxin group than the TAC group on the14th day (P<0.05or P<0.01).On the28th day, it was higher in the TAC group than the perindopril group and the Qiliqiangxin group (P<0.05).
     On the14th and the28th day, the expression of Rubicon in the sham group was significantly lower than the other groups (P<0.01), and it was much lower in the perindopril group and the Qiliqiangxin group than the TAC group (P<0.05or P<0.01).
     (4) Oxidative stress markers
     On the14th day and the28th day, the expression of4-HNE and8OHdG were much higher in the TAC group, the perindopril group and the Qiliqiangxin group than the sham group (P<0.01). The4-HNE and8OHdG protein expression levels were much higher in the TAC group than the perindopril group and Qiliqiangxin group (P<0.05or P<0.01) on the28th day.
     (5) MMPs/TIMPs
     On the14th day, the expression of MMP-9were increased in the TAC group and the Qiliqiangxin group compared with the sham group and the perindopril group (P<0.01). On the28th day, the expression level of MMP-9was significantly increased in the TAC group, the perindopril group and the Qiliqiangxin group than the sham group (P<0.01), and it was lower in the perindopril group and Qiliqiangxin group than the TAC group (P<0.05).
     On the14th day, there is no significant difference in every groups,on the28th day, the expression of TIMP-1were much higher in the TAC group, the perindopril group and the Qiliqiangxin group than the sham group (P<0.01). It was much higher in the perindopril group and the Qiliqiangxin group than the TAC group on the28th day (P<0.01).
     3. Real-time PCR
     (1) LC3expression
     On the14th day, the mRNA expression of LC3a in the TAC group, the perindopril group and the Qiliqiangxin group were significantly increased in comparison with the sham group (P<0.05or P<0.01). Compared with the TAC group, the mRNA expression of LC3a was significantly higher (P<0.01). On the28th day, the mRNA expression of LC3a was significantly higher in the perindopril group and the Qiliqiangxin group compared with the sham group and the TAC group (P<0.01).
     The mRNA expression of LC3b was significantly increased in the perindopril group and the Qiliqiangxin group compared with the TAC group and the sham group on the14th day (P<0.01). The mRNA expression of LC3b in the TAC group, the perindopril group and the Qiliqiangxin group were significantly increased in comparison with the sham group on the28th day (P<0.05or P<0.01). Furthermore, the mRNA expression of LC3b in the perindopril group were significantly higher in comparison with the TAC group on the28th day (P<0.05)..
     (2) Autophagic flux
     On the14th day, rapamycin significantly increased the mRNA expression of LC3a in every group (P<0.01), combination with rapamycin and chloroquine further increased the expression LC3a in every group (P<0.01).
     On the28th day, rapamycin significantly increased the mRNA expression of LC3a in every group (P<0.01); combination with rapamycin and chloroquine further increased the expression LC3a in every groups except the TAC group (P<0.01).
     On the14th day, rapamycin significantly increased the mRNA expression of LC3b in every group, combination with rapamycin and chloroquine further increased the expression LC3b in every group, P<0.01).
     On the28th day, rapamycin significantly increased the mRNA expression of LC3b in every group (P<0.05or P<0.01); combination with rapamycin and chloroquine further increased the expression LC3b in every groups except the TAC group (P<0.01).
     Autophagic flux was much lower in the TAC group but made no significant differedce on the14th day. On the28th day, the autophagic flux was further decreased in the TAC group compared to the other groups (P<0.01). And it was lower in the perindopril group and the Qiliqiangxin group compared to the sham group (P<0.05).
     (3) Autophagic gene
     On the14th day, the expression of Atg5were much higher in the TAC group, the perindopril group and the Qiliqiangxin group than the sham group (P<0.01). It was much lower in the perindopril group than the TAC group (P<0.05). On the28th day, compared to the sham group and the TAC group, the mRNA level of Atg5was significantly increased in the perindopril group and the Qiliqiangxin group (P<0.01).
     On the14th day and the28th day, the expression of Atg7were higher in the perindopril group and the Qiliqiangxin group than the TAC group and the sham group (P<0.05or P<0.01).
     The mRNA level of Beclin-1in the perindopril group and the Qiliqiangxin group were significantly higher than the other groups on the14th day (P<0.05or P<0.01), and it was higher in the TAC group than the other groups on the28th day (P<0.01).
     On the14th and the28th day, the mRNA expression of Rubicon were much higher in the TAC group, the perindopril group and the Qiliqiangxin group than the sham group (P<0.01). It was much higher in the perindopril group and the Qiliqiangxin group than the TAC group on the14th day (P<0.01), and lower in the perindopril group and the Qiliqiangxin group than the TAC group on the28th day (P<0.01).
     Conclusions
     1. A reversing effect of Qiliqiangxin on the cardic remodeling in TAC mice was observed in the present study.
     2. Qiliqiangxin could anti-oxidative stress and improve autophagic function, and has the same effect as perindopril.
     Background
     Heart failure (HF) is a major public health concern associated with significant mortality and morbidity. Symptoms of psychological stress, such as anxiety and depression, are common among patients with HF. Furthermore, the presence of these disorders significantly leads to increased symptoms of HF, poor quality of life and an opposite effect on prognosis. Thus, psychological stress may have an important role in the development of HF. However, previous studies were prospective observational studies, so mechanisms relating psychological stress to HF are still not totally understood.
     Depression and anxiety disorders were linked to dysfunction of the renin-angiotensin system (RAS) and generation of Angiotensin Ⅱ(AngⅡ). AngⅡ contributes to the progression of HF, and recent study showed that AngⅡ takes part in cardiomyocyte autophagy.Autophagy is a highly conserved cellular mechanism that plays a key role in the turnover of long-lived proteins, RNA, and other macromolecules. In the heart, autophagy occurs at low levels under normal conditions, then defects in the process cause cardiac dysfunction and HF. Autophagy may be an important mechanism underlying the progression of HF. Whether psychological stress induces autophagic dysfunction in HF is not totally understood. Psychological stress may affect cardiac autophagy through AngⅡ, thus adversely affecting cardiac remodeling.
     The angiotensin-converting enzyme inhibitor (ACEI) captopril can reduce the activity of the renin-angiotensin system (RAS), blocking the conversion of AngI to Ang Ⅱ.We observed autophagy in mice with HF induced by transverse aortic constriction (TAC) and investigated whether psychological stress influences autophagy in HF and the role of captopril in this progression, thus discuss the underlying mechanism.
     Objectives
     1. To observe autophagy in early stage of HF in TAC mice, investigated whether psychological stress influence the autophagy in HF.
     2. To discusse the role of Ang Ⅱ in this progression, thus studied the underlying mechanisms.
     Experiment I
     Methods
     1. Experimental Protocol
     150male C57BL/6mice (7-8weeks old) were underwent TAC surgery (n=120), a model of pressure-overload HF, or sham surgery (n=30). On the3rd day after surgery, we randomly divided the TAC mice into3groups for treatment (n=40):the combined acoustic and restraint stress group (stress), the stress plus captopril group (captopril) and the TAC control group (TAC). To investigate autophagic flux, mice in each group were randomly assigned to treatment with physiological saline(0.2ml), chloroquine (30mg/kg) or rapamycin (2mg/kg) by intraperitoneal injection4h before being killed.
     2. Combined acoustic and restraint stress
     Stressed mice were exposed to combined acoustic and restraint stress for7days. They were placed in50-ml conical centrifuge tubes with multiple ventilation holes without pinning the tail for2h. Meanwhile, acoustic stress was produced by an alarm fixed on the top of the stimulator and introduced every3min at110dB lasting for5s.
     3. Splash test
     The splash test was performed at the beginning and end of the stress procedure. An amount of10%sucrose solution was squirted on the dorsal coat of mice that were in their home cage. Grooming behaviour was recorded as total frequency.
     4. Echocardiography and hemodynamic analysis
     Echocardiography and hemodynamic analysis was performed at the beginning and end of1-week stress treatment. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured by the tail-cuff method. Echocardiography was performed and left ventricular mass weight (LVMW) and ejection fraction (EF%) were detected to evaluate cardiac function.
     5. Survival analysis
     Survival rate of every group was record.
     6. Blood collection and biochemical measurements
     After1-week stress, all animals were killed, and blood was collected. Serum samples were prepared. Enzyme-linked immunosorbent assay (ELISA) kits were used to assay serum concentration of corticosterone and Ang Ⅱ.
     7. Histology and immunohistochemical staining
     Tissues were embedded in paraffin, and coronal sections (5μm) underwent general histological staining with haematoxylin&eosin (HE) and Masson. Specific immunohistochemical staining was also performed with antibody against microtubule-associated protein light chain3b (LC3b) in every group and performed with antibodies against Bcl-2interacting coiled-coil protein-1(Beclin-1), RUN domain protein as Beclin1-interacting and cysteine-rich containing (Rubicon),4-hydroxy-2-Nonenal (4-HNE) and8-hydroxydeoxyguanosine (8OHdG,) in groups injected with physiological saline.
     8. Real-time quantitative polymerase chain reaction (Real-time PCR)
     Real-time PCR was used to analyze the mRNA levels of LC3a, LC3b in every group and Beclin-1, Rubicon, Autophagy5(Atg5), and Atg7in groups injected with physiological saline.
     9. Statistical analysis
     Statistical analysis involved use of SPSS11.5for Windows. Survival was assessed by the Kaplan-Meier method with chi-square analysis. Normally distributed data were analyzed by one-way ANOVA and non-normally distributed data by Kruskal-Wallis one-way ANOVA. Student t test was used to compare data for2groups. Data are expressed as mean±SD. P<0.05was considered statistically significant.
     Results
     1. Grooming frequency
     Stressed mice groomed significantly less than did unstressed mice (P<0.01).
     2. Survival rate
     Kaplan-Meier survival analysis showed cumulative survival probability significantly shorter for stressed mice (75%,27/36) than TAC mice (91%,33/36, P<0.05).
     3. Bichemical studies
     Seven-day stress increased serum corticosterone levels in the stress group and the captopril group (6-7fold, P<0.01) and compared with the sham group and the TAC group.
     The serum level of Ang II was significantly higher in the stressed than the TAC and captopril mice (P<0.01), with no difference in Ang Ⅱ level between the captopril and the TAC mice (P>0.05). Moreover, the serum level of Ang Ⅱ was higher but not significantly in the TAC than the sham mice (P<0.05).
     4. Hemodynamic analysis and echocardiography
     Stress significantly elevated SBP, DBP and HR in the stress and the captopril groups (P<0.01). The levels were lower with captopril than with stress alone. Compared to the TAC group, the stressed group showed enhanced cardiac hypertrophy, including increased LVMW (P<0.01) and ratio of heart weight to body weight (HW/BW, P<0.01). Most importantly, EF%was significantly lower in stressed than TAC mice after1week of stress (P<0.01). The captopril group showed higher EF%, lower LVMW and HW/BW compared to the stress group (P<0.01).
     5. Histology staining for cardiac fibrosis
     Masson staining revealed more cardiac fibrosis in hearts of stressed than TAC mice (P<0.05). Masson staining revealed less cardiac fibrosis exists in hearts of captopril mice, with no significant difference (P>0.05).
     6. Autophagic flux assay
     To determine whether stress induces autophagic dysfunction in the heart, we measured expression of LC3b by immunohistochemistry and Real-time PCR. The level of LC3b was markedly increased in TAC mice (P<0.01). Furthermore, stress further upregulated the expression of LC3b (P<0.01). Administration of captopril decreased expression of LC3b compared to stress alone (P<0.01).
     Autophagic flux was markedly increased in TAC mice as compared with the sham group but significantly decreased in the stressed group as compared with the TAC group. The captopril group showed upregulated autophagic flux as compared with stress alone. Rapamycin significantly increased the expression of LC3b in all conditions (P<0.05or P<0.01), which indicates no autophagosome formation dysfunction under stress. Therefore, decreased clearance occurred after stress, and such autophagic responses could be reduced by captopril.
     7. Autophagosomal marker assay
     Stress significantly increased the mRNA levels of Beclin-1, Rubicon, Atg5and Atg7(P<0.01). The expression of Rubicon and Beclin-1were lower with captopril than stress alone (P<0.01). Immunohistochemical staining results were consistent with Real-time PCR results.
     8. Cardiac oxidative stress assay
     To investigate oxidative stress in the heart, we examined the expression of4-HNE and8OHdG. Both4-HNE and8OHdG levels were increased in TAC mice (P<0.01) and further exaggerated in stress mice (P<0.01). Moreover, levels were lower with captopril than stress alone (P<0.01).
     Experiment II
     Method
     1. Cell Stimulation
     In some experiments, cells were pretreated with Ang II (0.1μM), N-acetylcysteine (NAC,50μM), rapamycin (1μM) or bafilomycin A1(Baf-A1,50nM).
     2. Immunofluorescence
     The protein levels of LC3b and4-HNE were measured by immunofluorescence.
     3. Western blot
     The protein levels of LC3b, Rubicon, Beclin-1, β-action were measured by Western blot.
     4. Real-time PCR
     LC3a, LC3b, Atg5, Atg7, Beclin-1, Rubicon mRNA levels were measured by Real-time PCR after RNA extraction and reverse transcription.
     Result
     1. Ang Ⅱ promotes autophagy
     To further confirm the role of Ang Ⅱ in autophagy, H9c2cells were incubated with vehicle (control) or AngⅡ (0.1μM) for22h, then rapamycin or bafilomycin Al were added to the medium and co-incubated for2h., finally underwent immunofluorescence. Ang Ⅱ promoted the expression of LC3b (P<0.01). Ang Ⅱ enhanced autophagic flux. Rapamycin or Baf-A1enhanced AngⅡ-induced increased ofLC3b.
     2. Role of oxidative stress in induction of autophagy
     To evaluate the role of oxidative stress in Ang Ⅱ-induced autophagy induction, cells were treated with vehicle (control) or Ang Ⅱ with or without NAC (50μM), then underwent immunofluorescence and western blot analysis. Ang Ⅱ enhanced LC3b and4-HNE expression (P<0.01), which was partly inhibited by NAC (P<0.01). Furthermore, Rapamycin or Baf-Al enhanced Ang Ⅱ-induced increased of LC3b which was partly inhibited by NAC (P<0.01).
     3. Expression of Autophagy gene
     AngⅡ enhanced Atg5, Atg7, Beclin-1, Rubicon mRNA expression and Beclin-1(P<0.05or P<0.01)., Rubicon protein expression, which was partly inhibited by NAC (P<0.05or P<0.01).
     Conclusions
     1. Stress may induce autophagic flux dysfunction in clearing autophagosomes and adversely affects cardiac hypertrophy and HF in mice with TAC.
     2. Endogenous Ang Ⅱ plays a key role in autophagic dysfunction via the oxidative stress response to stress.
引文
1.Strike PC, Perkins-Porras L, Whitehead DL, et al. Triggering of acute coronary syndromes by physical exertion and anger:clinical and sociodemographic characteristics. Heart.2006; 92:1035-1040.
    2.Strike PC, Steptoe A. Behavioral and emotional triggers of acute coronary syndromes:A systematic review and critique. Psychosom Med.2005; 67:179-186.
    3.顾东风,黄广勇,吴锡桂,等.中国心力衰竭流行病学调查及其患病率.中华心血管病杂志.2003;1:3-6.
    4.钱俊峰,姜红,葛均波.我国慢性心力衰竭流行病学和治疗现状.中国临床医学.2009;16:700-703.
    5.Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct.2002; 27:421-429.
    6.Levine B, Klionsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell.2004; 6,463-477.
    7.Kostin S, Pool L, Elsasser A, Hein S, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res.2003; 92:715-724.
    8.Yamamoto S, Sawada K, Shimomura H, et al. On the nature of cell death during remodeling of hypertrophied human myocardium. J Mol Cell Cardiol.2000; 32: 161-175.
    9.Knaapen MW, Davis MJ, De Bie M, et al. Apoptotic versus autophagic cell death in heart failure. Cardio Res.2001; 51:304-312.
    10.Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med.2007; 13:619-624.
    11.Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest.2007; 117:1782-1793.
    12.Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem.2006; 281: 29776-29787.
    13.Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagyand cell survival in the absence of apoptosis. Cell.2005; 120:237-248.
    14.Levine B, Yuan J. Autophagy in cell death:an innocent convict? J Clin Invest.2005; 115:2679-2688.
    15.Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res.2007; 100:914-922.
    16.Collucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol; 1997; 80:15-25.
    17.Shimizu M, Tanaka R, Fukuyama T, et al. Cardiac remodeling and angiotensin II-forming enzyme activity of the left ventricle in hamsters with chronic pressure overload induced by ascending aortic stenosis. J Vet Med Sci.2006; 68:271-276.
    18.Wang Y, Tandan S, Cheng J, et al. Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. J Biol Chem.2008;283:25524-25532.
    19.del Monte F, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation.2001;104:1424-1429.
    20.Norton GR, Woodiwiss AJ, Gaasch WH, et al. Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol.2002; 39:664-671.
    21.Inoko M, Kihara Y, Morii I, et al. Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol.1994; 267: H2471-2482.
    22.Tiritilli A. DOCA-salts induce heart failure in the guinea pig. Eur J Heart Fail.2001; 3:545-551.
    23.Tsutsui H, Spinale FG, Nagatsu M, et al. Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest.1994;93:2639-2648
    24.Liu Z, Hilbelink DR, Crockett WB, et al. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas.1.Developing and established hypertrophy. Circ Res.1991; 69:52-58.
    25.Galindo CL, Skinner MA, Errami M, et al. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure.BMC Physiol.2009; 9:23.
    26.Okafor CC, Saunders L, Li X, et al. Myofibrillar responsiveness to cAMP, PKA, and caffeine in an animal model of heart failure.Biochem Biophys Res Commun.2003; 300:592-599.
    27.Liu YH, Yang XP, Nass O, et al. Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol.1997; 272:H722-727.
    28.Toko H, Takahashi H, Kayama Y, et al. Ca2+/calmodulin-dependent kinase IIdelta causes heart failure by accumulation of p53 in dilated cardiomyopathy. Circulation.2010; 122:891-899.
    29.Kubota T, Bounoutas GS, Miyagishima M, et al. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation.2000; 101:2518-2525.
    30.Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science.2000; 290:1717-1721.
    31.Crotzer VL, Blum JS. Autophagy and intracellular surveillance:Modulating MHC class Ⅱ antigen presentation with stress. Proc Natl Acad Sci USA.2005; 102: 7779-7780.
    32.Esclatine A, Chaumorcel M, Codogno P. Macroautophagy signaling and regulation. Curr Top Microbiol Immunol.2009; 335:33-70.
    33.Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. The international journal of biochemistry & cell biology.2004; 36:2503-2518.
    34.Akdemir F, Farkas R, Chen P, et al. Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development.2006; 133:1457-1465.
    35.赵艳春,苗俊英.血管内皮细胞自噬的调节.生命的化学.2009;29:398-400.
    36.吴春燕.胰腺癌中KAI1与自噬相关性及其作用机制的研究.第四军医大学.2011.
    37.Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res.2003; 92:715-724.
    38.Tannous P, Zhu H, Nemchenko A, et al. Intracellular protein aggregation is aproximalt rigger of cardiomyocyte autophagy. Circulation.2008; 117:3070-3078.
    39.Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res.2007; 100:914-922.
    40.Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med.2007; 13:619-624.
    41 He H, Dang Y, Dai F, Guo Z, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem.2003; 278:29278-29287.
    42Wu J, Dang Y, Su W, et al. Molecular cloning and characterization of rat LC3A and LC3B-two novel markers of autophagosome. Biochem Biophys Res Commun.2006; 339:437-342.
    43.Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy.2008; 4:151-175.
    44.Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy.2007; 3:181-206.
    45.Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol.2004; 36:2491-502.
    46.Wullschleger S, Loewith R, Oppliger W, et al. Molecular organization of target of rapamycin complex 2. J Biol Chem.2005; 280:30697-30704.
    47.Iwai-Kanai E, Yuan H, Huang C, et al. A method to measure cardiac autophagic flux in vivo. Autophagy.2008; 4:322-329.
    48.Yang X, Wei LL, Tang C, et al. Overexpression of KAI1 suppresses in vitro invasiveness and in vivo metastasis in breast cancer cells. Cancer Res.2001; 61: 5284-5288.
    49.Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol.2004; 36:2503-2518.
    50.Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol.2001; 152: 657-668.
    51.Friedman LS, Ostermeyer EA, Lynch ED, et al. The search for BRCA1. Cancer Res.1994; 54:6374-6382.
    52.Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA.2003; 100:15077-15082.
    53.Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol.2007; 9: 1142-1151.
    54.Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protect against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem.2006;281: 29776-29787.
    55.Lahiry L, Saha B, Chakraborty J, et al. Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis.2008; 13:771-781.
    56.Gaytan M, Morales C, Sanchez-Criado JE, et al. Immunolocalization of beclin 1, a bcl-2-binding, autophagy-related protein, in the human ovary:possible relation to life span of corpus luteum. Cell Tissue Res.2008; 331:509-517.
    57.Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature.1999; 402:672-676.
    58.Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell.2009; 137:1062-1075.
    59.Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell.2007;131: 1149-1163.
    60.Ichimura Y, Kominami E, Tanaka K, et al. Selective turnover of p62/A170 /SQSTM1 by autophagy. Autophagy.2008; 4:1063-1066.
    61.Refines D, Conaway JW, Conaway RC. The RNA polymerase II general elongation factors. Trends Biochem Sci.1996; 21:351-355.
    62.Bres V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol,2008; 20:334-340.
    63.Abramson J, Giraud M, Benoist C, et al. Aires partners in the molecular control of immunological tolerance. Cell.2010; 140:123-135.
    64.Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol.2009; 11:468-476.
    65.Matsunaga K, Noda T, Yoshimori T. Binding Rubicon to cross the Rubicon. Autophagy.2009; 5:876-877.
    66.Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol.2010; 20:355-362.
    67.Damas JK, Gullestad L, Aass H, et al. Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure modulatory effect of intravenous immunoglobulin. J Am Coll Cardiol.2001; 38: 187-193.
    68.Gullestad L, Aukrust P. Review of Trials in Chronic Heart Failure Showing Broad-Spectrum Anti-inflammatory Approaches. Am J Cardiol.2005;95:17-23.
    69.Anker SD, von Haehling S. Inflammtory mediators in chronic heart failure:an overview.Heart.2004; 90:464-470.
    70.Boyd JH, Kan B, Roberts H, et al. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res.2008; 102:1239-1246.
    71.Satoh M, Shimoda Y, Maesawa C, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol.2006; 109:226-234.
    72.Arslan F, Smeets MB, O'Neill LA, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation.2010; 121:80-90.
    73.Nemoto S, Vallejo JG, Kunefermann R, et al. Escherichia coli Lps-induced LV dysfunction:role of toll-like receptor 4 in the adult heart. Am J physiol Heart circ physiol.2002; 82:H2316-2323.
    74.Timmers L, Shijtor JP, Hoefer IE, et al. Toll-fike receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res.2008;102:257-264.
    75.Oyama J, Blais C Jr, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation.2004; 109:784-789.
    76.Foldes G, von Haehling S, Okonko DO, et al. Fluvastatin reduces increased blood monocyte Toll-like receptor 4 expression in whole blood from patients with chronic heart failure. Int J Cardiol.2008; 124:80-85.
    77.Sheu JJ, Chang LT, Chiang CH, et al. Prognostic value of activated toll-like receptor-4 in monocytes following acute myocardial infarction. Int Heart J.2008; 49: 1-11.
    78.Riad A, Jaiger S, Sobirey M, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol.2008;180:6954-6961.
    79.Feng Y, Zhao H, Xu X, et al. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. Am J Physiol Heart Cire Physiol.2008;295:H1311-1318.
    80.Parissis JT, Karavidas A, Bistola V, et al. Effects of levosimendan on flow-mediated vasodilation and soluble adhesion molecules in patients with advanced chronic heart failure. Atherosclerosis.2008; 197:278-282.
    81.Damas JK, Eiken HG, Oie E, et al. Myocardial expression of CC-and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res.2000; 47:778-787.
    82.Tonnessen T, Florhbilmen G, Henriksen UL. Csrdiopulmonary alterations in mRNA expression for interleukin-lbeta,the interleukin-6 superfamily and CXC-chemokines during development of postischaemic heart failure in the rat. Clin physiol Funct Imaging.2003;23:263-268.
    83.Kajihara N, Morita S, Nishida T, et al. Transfection with a dominant-negative inhibitor of monocyte chemoattractant protein-1 gene improves cardiac function after 6 hours of cold preservation. Circulation.2003; 108:213-218.
    84.Nagashima H, Kasanuki H. Therapeutic value of statins for vascular remodeling. Curr Pharmacol.2003; 1:273-279.
    85.Hayashidani S, Tsutsui H, Shiomi T, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation.2003; 108:2134-2140.
    86.Blander J M, Medzhitov IZ. Regulation of phageseme maturation by signals from toll-like receptom. Science.2004; 304:1014-1018.
    87.Sanjuan MA, Dilon CP, Tait SW, et al. Toll-like receptor signaling in macrophages links the autophy pathway to phngocytosis. Nature.2007; 450:1253-1257.
    88.Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem.2008; 283:33175-33182.
    89.Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat.2010; 11:373-384.
    90.Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat.Rev.2007; 7:179-190.
    91.Harris J, De Haro SA, Master SS, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity.2007; 27:505-517.
    92.Inbal B, Bialik S, Sabanay I, et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol.2002; 157:455-468.
    93.Lee HM, Shin DM, Yuk JM, et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol.2011; 186: 1248-1258.
    94.Delgado MA, Elmaoued RA, Davis AS, et al. Toll-like receptors control autophagy. EMBO J.2008; 27:1110-1121.
    95.Schroder K, Tschopp J. The infiammasomes. Cell.2010; 140:821-832.
    96.Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature.2008; 456:264-268.
    97.Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell.2009; 137:1001-1004.
    98.Li JM, Gall NP, Grieve DJ, et al. Activation of NADPH oxidase during pmgreesion of cardiac hypertrophy to failure. Hypertension.2002;40:477-484.
    99.Sawyer DB, Siwik DA, Xiao L, et al. Role of oxidative in myocardial hypertrophy and failure. J Mol Cell Cardiol.2002; 34:379-388.
    100.Wu HH, Hsiao TY, Chien CT, et al. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. J Biomed Sci.2009; 16:19.
    101.Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS):implications for cancer progression and treatment. Antioxid Redox Signal.2009; 11:777-790.
    102.Moore MN, Viarengo A, Donkin P, et al. Autophagic and lysosomal reactions to stress in the hepatopancreas of blue mussels. Aquat Toxicol.2007; 84:80-91.
    103.Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.2007; 26: 1749-1760.
    104.De Meyer GR, Martinet W. Autophagy in the cardiovascular system. Biochim Biophys Acta.2009; 1793:1485-1495.
    105.Zabirnyk O, Liu W, Khalil S, et al. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROSdependent autophagy. Carcinogenesis.2010;31:446- 454.
    106.陆立鹤,颜建云扣,于汇民,等.自噬参与氧化性低密度脂蛋白诱导的血管平滑肌细胞钙化.中山大学学报(医学科学版).2010;31:772-775.
    107.Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging.2009; 1:425-437.
    108.Kiffin R, Bandyopadhyay U, Cuervo AM. Oxidative stress and autophagy. Antioxid Redox Signal.2006; 8:152-162.
    109.He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet.2009; 43:67-93.
    110.Morimoto N, Nagai M, Ohta Y, et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res.2007; 1167:112-117.
    111.Dadakhujaev S, Jung EJ, Noh HS, et al. Interplay between autophagy and apoptosis in TrkA-induced cell death. Autophagy.2009; 5:103-105.
    112.Yu L, Wan F, Dutta S, et al. Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA.2006; 103:4952-4957.
    1.Creemers EE, Wilde A, Pinto YM. Heart failure:advances through genomics. Nature Reviews Genetics.2011;12:357-362
    2.Sano M, Tohru M, Haruhiro T, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature.2007; 446:444-448.
    3.李莹,宋耀明,黄岚,等.培哚普利与坎地沙坦对慢性心力衰竭患者ET-1、IL6. MMP9及左心室重塑的影响.第三军医大学学报.2011;33:633-636.
    4.Geng ZH, Liu CY, Peng YH, et al. Effect of carvedilol and perindopril on Ca2+ pump activity and Ca2+-release channel density in myocardial sarcoplasmic reticulum in rats with chronic heart failure following myocardial infarction. Nan Fang Yi Ke Da Xue Xue Bao.2009; 29:1461-1464.
    5.Cleland JG, Tendera M, Adamus J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J.2006; 27:2338-2345.
    6.Lockshin RA, Zakeri Z. Caspase-independent cell deaths. Curr Opin Cell Biol. 2002.14:727-733.
    7.Miyata S, Takemura G, Kawase Y, et al. Autophagie cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. Am J Pathol.2006; 168:386-397.
    8.Stypmann J, Janssen PM, Prestle J, et al. LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling. Basic Res Cardiol.2006; 101:281-291.
    9.Dosenko VE, Nagibin VS, Tumanovska LV, et al. Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? Autophagy.2006; 2:305-306.
    10.Valentim L, Laurence KM, Townsend PA, et al. Urocortin inhibits Beclinl-mediated autophagie cell death in cardiac myocytes exposed to ischemia/repeffusion injury. J Mol Cell Cardiol,2006,40:846-852.
    11.Nakai A, Yamaguchi O, Takeda T, et al.The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med.2007; 13:619-624.
    12.Suematsu N, Gaetani GF. Oxidative streaks mediates tumor necrosis factor-alpha induced mitochondrial DNA damage and dysfunction in caldiac myocytes. Circulation.2003; 107:1418-1423.
    13.Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal.2006; 8:1737-1744.
    14.Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest.2003; 111:1497-1504.
    15.Grieve DJ, Byrne JA, Cave AC, et al. Role of oxidative stress in cardiac remodelling after myocardial infarction. Heart Lung Circ.2004; 13:132-138.
    16.Forman HJ, Torres M, Fukuto. Redox signaling. Mol Cell Biochem.2002; 234: 49-62.
    17.F Giordano. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest.2005;115:500-508.
    18.Polyakova V, Hein S, Kostin S, et al. Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol.2004; 44:1609-1618.
    19.Fedak PW, Smookler DS, Kassiri Z, et al. TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation.2004; 110:2401-2409.
    20.李世荣.心脏重构与心脏功能.内蒙古医学杂志.2003;35:135-137.
    21.Li YY, Feng YQ, Kadokami T, et al. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA.2000; 97: 12746-12751.
    22.Sakata Y, Yamamoto K, Mano T, et al. Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats:its inhibition as a primary effect of Angiotensin-converting enzyme inhibitor. Circulation.2004; 109:2143-2149.
    23.Reinhardt D, Sigusch HH, Hensse J, et al. Cardiac remodelling in end stage heart failure:upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart.2002; 88:525-530.
    24.高璀乡,郭乃州,崔玉宝.冠心病患者基质金属蛋白酶-9和基质金属蛋白酶组织抑制物-1表达的临床意义.第四军医大学学报.2009;30:335.
    25.申颖,郭文奇,艾育德.基质金属蛋白酶抑制剂的研究.内蒙古医学杂志.2007;39:263-265.
    26.Xia D, Yan LN, Tong Y, et al. Construction of recombinant adenoviral vector carrying human tissue inhibitor of metalloproteinase-1 gene and its expression in vitro. Hepatobiliary Pancreat Dis Int.2005; 4:259-264.
    27.Roten L, Nemoto S, Simsic J, et al. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type1(TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol.2000; 32:109-120.
    28.Fedak PW, Altamentova SM, Weisel RD, et al. Matrix remodeling in experimental and human heart failure:A possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol.2003; 284:626-634.
    29.吴以岭.“脉络-血管系统病”新概念及其治疗探讨.疑难病杂志.2005;4:285-287.
    30张萌,高俊虹,王玉敏,等.黄芪及其有效成分治疗心功能衰竭机制的研究.中医杂志.2011;4:349-352.
    31张金国,杨娜,何华,等.黄芪注射液对慢性心力衰竭患者血浆凋亡相关因子的影响.中国中西医结合杂志.2005;25:400-403.
    32李艳茹,崔璐,吕文伟,等.黄芪注射液对急性心源性休克犬心肌超微结构的影响.吉林大学学报(医学版).2006;32:1026-1028.
    33艾合买提·买买提,王曼丽,米叶斯尔·买买提艾力.黄芪注射液联合丹参注射液对冠心病心力衰竭的临床疗效分析.现代预防医学.2011;38:3352-3353.
    34 Zhang Z, Chen LX, Song CS, et al. The protective effect of APS on myocardial ischemia-reperfusion injury. J Tradit Chin Med.2007; 14:33-34.
    35杨志霞,林谦,农一兵,等.黄芪多糖联合丹参酮对心衰大鼠心肌NF-κB通路过度激活的影响.北京中医药大学学报.2011;34:609-612.
    36陈颖丽,李伟,付萍,等.黄芪皂苷注射液对戊巴比妥钠所致心衰犬心脏舒缩 功能的影响.中国实验方剂学杂志.2009;15:79-81.
    37刘艳霞,刘在萍,焦建杰,等.黄芪苷Ⅳ对正常和心功能受抑制大鼠左心室心肌力学的影响.中草药.2001;32:332.
    38许晓乐,季晖,谷舒怡,等.黄芪甲苷对小鼠实验性心室重构及基质金属蛋白酶表达的影响.中国药科大学学报.2010;41:70-75.
    39.孙乾,睢大员,于晓风,等.人参Rb组皂苷对实验性心肌梗死犬心脏血流动力学及氧代谢的影响.中草药.2002;33:718-722.
    40.刘洁,刘芬,王秋静,等.人参二醇组皂苷对心肌梗死犬血清一氧化氮、一氧化氮合酶水平的影响.中国实验方剂学杂志.2008;14:46-49.
    41.新明,李艳茹,吕文伟,等.人参皂苷Rg2对急性心源性休克犬心肌的保护作用.吉林大学学报(医学版).2003;29:392-394.
    42.韩冬,于晓风,曲绍春,等.人参二醇组皂苷对心肌梗死后心室重构大鼠心脏形态学及血流动力学的影响.中国老年学杂志.2011;31:57-59.
    43.孙晓霞,崔新明,王健春,等.人参二醇皂苷对感染性休克大鼠血清心肌酶和心肌超微结构的影响.中国老年学杂志.2010;30:2139-2141.
    44.刘正湘,刘晓春.人参皂甙Rbl与Re对大鼠缺血再灌注心肌细胞凋亡的影响.中国组织化学与细胞化学杂志.2002;11:374-378.
    45.唐泽耀,唐田田,付雷,等.人参茎叶皂苷对实验性小鼠心电改变及死亡时间的影响.实验动物科学.2009;26:4-7.
    46.陆丰,睢大员,于晓凤,等.西洋参叶20S-原人参二醇组皂苷对急性心肌梗死大鼠交感神经递质及肾素-血管紧张素系统的影响.中草药.2001;32:619-621.
    47.田浪,艾俊,吴熙.丹参注射液与多巴酚丁胺合用治疗慢性肺心病心衰的临床观察.贵阳中医学院学报.2004;26:20-21.
    48.李明,张军,陈燕,等.丹参抑制异丙肾上腺素引起的小鼠心肌肥厚和纤维化及其作用机制.中国药科大学学报.2003;34:565-568.
    49.于海波,徐长庆,单宏丽,等.丹参酮Ⅱ-A对大鼠心室肌细胞膜钾电流的影响.哈尔滨医科大学学报.2002;36:112-114.
    50.周亚光,屠恩远,王照华,等.丹参酮Ⅱ-A对压力超负荷大鼠心肌肥厚及MAPK通路的影响.华中科技大学学报(医学版).2010;39:29-36.
    51.张冬梅,秦英,杨君,等.丹参酮Ⅱ-A对心衰心室重构Ⅰ型胶原基因启动子活性的影响.北京中医药大学学报.2006;29:258-261.
    52.何晓静,菅凌燕,王守涛,等.注射用丹参酮Ⅱ-A亚微乳对冠脉结扎犬心脏血流动力学的影响.中国医院药学杂志.2009;29:1-4.
    53.旋一帆,李军.复方丹参滴丸对家兔动脉粥样硬化的影响.心血管康复医学杂志,2004;11:226-227.
    54.邓超,豆利华.丹参多酚酸盐对急性心肌梗死溶栓再通患者血清h-FABP、IMA水平的影响.中国老年学杂志.2011;31:2078-2079.
    55.邢永发,姬艳苏,张玲,等.丹参总酚酸对慢性心衰大鼠肌浆网Ca2+-ATP酶受磷蛋白表达的影响.辽宁中医杂志.2011;38:162-164.
    56.杨孟考.单味葶苈子治疗顽固性心衰23例.中国社区医师.2002;18:40.
    57.柏正平,郑兵,卜献春.复方葶苈子胶囊对肺动脉高压和心肌力收缩力影响的实验研究.湖南中医杂志.2000;16:57-58.
    58.吴美平,熊旭东,董耀荣,等.玉竹乙醇提取物对心梗后心力衰竭大鼠血流动力学的影响.中国实验方剂学杂志.2009;15:67-70.
    59.李波,邓昌明,吴艳,等.PAF拮抗剂红花黄色素对急性心肌梗死大鼠心功能及心肌IL-1βm RNA表达的影响.重庆医科大学学报.2010;35:1668-1671.
    60.林萍,任谦.红花黄色素对老年冠心病患者血脂和炎症因子影响的临床观察.中国医院药学杂志.2009;29:652-653.
    61.郑为超,陈铎葆,张雷,等.红花总黄素对缺血心肌的影响及机制研究.中国药理学通报.2005;21:978-980.
    62.朴永哲,金鸣,臧宝霞,等.红花黄色素改善大鼠缺氧心肌能量代谢的研究.中草药.2003;34:436-439.
    1.York KM, Hassan M, Sheps DS. Psychobiology of depression/distress in congestive heart failure. Heart Fail Rev.2009; 14:35-50.
    2.Jiang W, Alexander J, Christopher E, et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure. Arch Intern Med.2001; 161:1849-1856.
    3.Johansson P, Dahlstrom U, Brostrom A. Consequences and predictors of depression in patients with chronic heart failure:implications for nursing care and future research. Prog Cardiovasc Nurs.2006; 21:202-211.
    4.Kiank C, Holtfreter B, Starke A, et al. Stress susceptibility predicts the severity of immune depression and the failure to combat bacterial infections in chronically stressed mice.Brain Behav Immun.2006; 20:359-368.
    5.Ni M, Wang Y, Zhang M, et al. Atherosclerotic plaque disruption induced by stress and lipopolysaccharide in apolipoprotein E knockout mice. Am J Physiol Heart Circ Physiol.2009;296:1598-1606.
    6.Yalcin I, Aksu F, Belzung C. Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol.2005; 514:165-174.
    7.Collins PY, Patel V, Joestl SS, et al.Grand Challenges on Global Mental Health. Nature.2011; 475:27-30.
    8.韩晓春.下丘脑-垂体-肾上腺在慢性应激过程中的调节作用.医学综述.2006;12:73-75.
    9.Yang EV, Glaser R. Stress-induced immunomodulation and the implications for health. Int Immunopharmacol.2002; 2:315-324.
    10.吴相春,来静,吴相锋,等.慢性心理应激对血管内皮功能障碍大鼠的影响及通心络的干预作用.中国中西医结合杂志.2011;31:680-683.
    11.刘洋,潘桂娟.情志成为中医学病因的理论依据与致病形式.中国中医基础医 学杂志.2007:13:892.
    12.Funada M, Hara C. Differential effects of psychological stress on activation of the 5-hydroxytryptamine- and dopamine-containing neurons in the brain of freely moving rats. Brain Res.2001; 901:247-251.
    13.Kabbaj M, Isgor C, Watson SJ, Akil H. Stress during adolescence alters behavioral sensitization to amphetamine. Neuroscience.2002; 113:395-400.
    14.Shinba T, Shinozaki T, Mugishima G. Clonidine immediately after immobilization stress prevents long-lasting locomotion reduction in the rat. Prog Neuropsychopharmacol Biol Psychiatry.2001; 25:1629-1640.
    15.Niikura S, Yokoyama O, Komatsu K, et al. A causative factor of copulatory disorder in rats following social stress. J Urol.2002; 168:843-849.
    16.York KM, Hassan M, Sheps DS. Psychobiology of depression/distress in congestive heart failure. Heart Fail Rev.2009; 14:35-50.
    17.Sullivan M, Levy W, Russo J, et al. Depression and health status in patients with advanced heart failure:a prospective study in tertiary care. J Card Fail.2004,10: 390-396.
    18.Rumsfeld J, Havranek E, Masoudi F, et al. the Cardiovascular Outcomes Research Consortium Depressive symptoms are the strongest predictors of short-term declines in health status in patient with heart failure. J Am Coll Cardiol.2003; 42:1811-1817.
    19.Von Kanel R. Platelet hyperactivity in clinical depression and the beneficial effect of antidepressant drug treatment:how strong is the evidence. Acta Psychiatr Scand.2004; 110:163-177.
    20.Heinz A, Hermann D, Smolka M, et al. Effects of acute psychological stress on adhesion molecules, interleukins and sex hormones:implications for coronary heart disease. Psychopharmacology.2003; 165:111-117.
    21.龚素珍.醛固酮对心室成纤维细胞分泌内皮素的影响.生理学报.2001;53:23-26.
    22.Parissis J, Adamopoulos S, Rigas A, et al. Comparison of circulating proinflammatory cytokines and soluble apoptosis mediators in patients with chronic heart failure with versus without symptoms of depression. Am J Cardiol.2004; 94: 1326-1328.
    23.Redwine L, Mills P, Hong S, et al. Cardiac-related hospitalization and/or death associated with immune dysregulation and symptoms of depression in heart failure patients. Psychosom Med.2007; 69:23-29.
    24.Arrighi J, Burg M, Cohen I, et al. Myocardial blood-flow response during mental stress in patients with coronary artery disease. Lancet.2000; 356:310-311.
    25.Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans:cell survival in the land of plenty. Nat Rev Mol Cell Biol.2005; 6:439-448.
    26.Pan T, Rawal P, Wu Y, et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience.2009;164:541-551.
    27.Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol.2005; 25:1025-1040.
    28.Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med.2007 May; 13: 619-624.
    29.Mizushima N, Levine B, Cuervo AM, et al.Autophagy fights disease through cellular self-digestion. Nature.2008;451:1069-1075.
    30.Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.2000; 19: 5720-5728.
    31.Maiuri MC, Criollo A, Tasdemir E, et al.BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy.2007;3:374-376.
    32.Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol.2004; 36:2445-2462.
    33.Scarlatti F, Maffei R, Beau I, et al.Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ.2008; 15:1318-1329.
    34.Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell.2003; 4:422-424.
    35.Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atgl4L and Rubicon associated with Beclinl-phosphatidylinositol-3-kinase complex. Nat Cell Biol.2009; 11:468-476.
    36.Matsunaga K, Noda T, Yoshimori T. Binding Rubicon to cross the Rubicon. Autophagy.2009; 5:876-877.
    37.De Mello WC. Cardiac arrhythmias:the possible role of the renin-angiotensin system. J Mol Med(Berl).2001; 79:103-108.
    38.Kawano H, Do YS, Kawano Y, et al. Angiotensin Ⅱ has multiple profibrotic effects in human cardiac fibroblasts. Circulation.2000; 101:1130-1137.
    39.Bouzegrhane F, Thibault G. Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res.2002; 53:304-312.
    40.Yamamoto K, Shioi T, Uchiyama K, et al. Attenuation of virus-induced myocardial injury by inhibition of the angiotensin II type 1 receptor signal and decreased nuclear factor-kappa B activation in knockout mice. J Am Coll Cardiol.2003; 42:2000-2006.
    41.Mollnau H, Wendt M, Szocs K, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res.2002;90:E58-65.
    42.Porrello ER, Delbridge LM. Cardiomyocyte autophagy is regulated by angiotensin Ⅱ type 1 and type 2 receptors. Autophagy.2009; 5:1215-1216.
    43.Yang J, Wu LJ, Tashino S, et al. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res.2008; 42:492-504.
    44.Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ.2007; 14: 146-157.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.