节水灌溉条件下作物根区水氮迁移和高效利用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水肥利用率低是我国农业生产发展中面临的重大问题。如何提高作物水分和养分的利用效率,调节作物生长的农田水肥环境是当前我国北方旱区发展节水农业迫切需要解决的关键问题。近年来,从有限水量在作物生育期内最优分配方面考虑提出的“控制性根系分区交替灌溉”和“调亏灌溉”等先进灌水技术的广泛研究和应用,确实对改善作物生长的土壤水分状况,提高灌溉水分利用效率起到了重要的作用;同时灌溉条件下的水肥高效利用研究也是近年来较多学者广泛关注的一个重要问题。因此对控制性根系分区交替灌溉和调亏灌溉条件下作物根区水氮迁移和高效利用机制的研究,对于合理利用农田水肥资源,节水节肥具有重要的理论与现实意义。论文通过盆栽和田间试验,系统研究和分析了小麦、玉米在节水灌溉条件下根区水氮迁移和高效利用机制,研究取得了以下主要结论:
     (1)控制性根系分区交替灌溉条件下玉米根区水氮迁移和利用的研究表明,施氮后盆内土壤硝态氮含量和施氮量呈正相关,交替灌溉根区两侧的土壤硝态氮分布均匀,固定灌溉干燥侧的土壤硝态氮累积量明显大于湿润侧。交替灌溉上层土壤硝态氮的残留量和常规灌溉同一层次上的残留量相当,下层硝态氮的残留量比常规灌溉的大。交替灌溉的水分利用效率是常规灌溉的1.16~1.03倍,而灌水量是常规灌溉的0.75倍,节水效果明显。
     (2)交替隔沟灌溉条件下玉米根区土壤水氮迁移和累积动态研究表明,收获时低水高氮处理在整个剖面上硝态氮的累积量最大是高水高氮处理的1.2倍,低水低氮处理是高水低氮处理的1.27倍。施氮后表层0~30 cm土壤铵态氮含量和累积量达到高峰,30 cm以下变化不明显。氮素水平高低对土壤水分的累积影响不大。高水处理减小了根区硝态氮的累积而产生淋失,降低了氮肥的利用效率。最佳的水氮耦合形式为交替隔沟灌溉低水高氮。
     (3)隔沟灌溉条件下不同根区施氮对土壤水氮迁移和利用机制的研究表明,水氮同区高水处理更容易导致硝态氮的淋失,收获时水氮同区高氮高水和水氮同区低氮高水的施氮沟剖面上硝态氮浓度基本相同。水氮异区高氮低水的籽粒产量最大为9953 kg·hm~(-2),并且籽粒灌溉水分利用效率也最高为6.70 kg·m~(-3),比水氮同区高氮高水的水分利用效率提高72.68%。最佳的水氮耦合形式为异区隔沟灌溉高氮低水。
     (4)对遮雨棚下不同沟灌模式和氮肥处理的玉米根区水氮迁移和利用的研究表明,交替隔沟灌溉中水低氮处理的产量最高,是交替隔沟灌溉高水高氮产量的1.06倍。在相同水分和氮肥条件下,交替隔沟灌溉的平均产量可达9317 kg·hm~(-2),分别是常规沟灌和固定隔沟灌溉的1.05和1.16倍。交替隔沟灌溉的水分利用效率最大均值为3.39 kg·m~(-3),常规沟灌的次之,固定隔沟灌溉的最小为2.94 kg·m~(-3)。交替隔沟灌溉的全氮累积总量最大,常规沟灌的次之,其中固定隔沟灌溉的小于交替隔沟灌溉的均值可达26 kg·hm~(-2)。灌水量和施氮量相同时,交替隔沟灌溉的根区硝态氮等值线和常规沟灌的相似,沟内硝态氮含量基本沿垄的中心对称分布。
     (5)调亏灌溉与氮营养对盆栽玉米根区水氮有效性的研究表明,调亏灌溉根区中下层土壤硝态氮含量介于非调亏灌溉的高水、低水处理之间。抽穗期结束时中下层土壤硝态氮含量与施氮量呈正相关关系。施氮量、调亏时期对干物质和全氮累积量的影响显著。拔节期水分亏缺对干物质累积量影响最大。高氮苗期调亏的水分利用效率最高。最佳的水氮组合为抽穗期亏水低氮处理。
     (6)调亏灌溉和氮素处理的盆栽玉米生理生化特性的研究表明,水分亏缺导致了叶绿素含量降低,施氮量和叶绿素含量正相关。水分亏缺会使玉米叶片脯氨酸含量增加,施氮会使脯氨酸含量略有减少。在水分亏缺条件下,根系活力降低,覆水后根系活力补偿效应明显。调亏灌溉可使玉米叶片的丙二醛和可溶性糖含量明显升高,而过氧化物歧化酶和超氧化物歧化酶含量有所降低。施氮处理能保证叶片在抽穗期前的可溶性糖、过氧化物歧化酶和超氧化物歧化酶的含量处于较高的水平。苗期亏水处理在覆水后各生理生化指标补偿效果较好,拔节期亏水处理的次之。高氮处理不宜在抽穗期调亏灌溉。最佳处理组合为苗期调亏低氮处理。
     (7)调亏灌溉和氮肥处理对石羊河流域春小麦群体水氮利用的影响结果表明,施氮量、拔节期和抽穗期灌水对干旱区春小麦的产量影响显著;施氮量168 kg·hm~(-2)、拔节期灌水90 mm、抽穗期灌水70 mm可获得较高籽粒产量。施氮量对地上干物质和籽粒的氮素累积量影响显著;拔节期灌水为90 mm,施氮量为168 kg·hm~(-2)时籽粒的氮素累积量最大。石羊河流域春小麦的最优灌水施氮模式为:施氮量为168 kg·hm~(-2),全生育期灌水4次,拔节期灌水为90 mm,分蘖期、抽穗期、灌浆期灌水均为60 mm。
     (8)调亏灌溉对石羊河流域春小麦根区水氮迁移和利用的研究表明,在春小麦拔节前各处理的根区土壤硝态氮累积主要集中在剖面0~40 cm处,其累积量都约为550 kg·hm~(-2)。播后62天起高水处理的根区土壤硝态氮出现淋失,其硝态氮累积量是特低水处理在整个剖面上累积量的0.76倍。收获时根区土壤硝态氮的残留量特低水处理>低水处理>中水处理>高水处理。当水资源严重匮乏时,春小麦全生育期补灌360~280 mm可以保证有较高的产量和较高的水分利用效率。
Low efficiency of water and fertilizer is a main problem faced by agricultural production. How to improve the efficiency of water and fertilizer and adjust environment of water and fertilizer are urgent need to solve the key issues in developing water saving agriculture in dry areas of North China. Advanced water-saving technology were widely studied and applied considering optimal allocation of limited water in crop growth stages, such as controlled roots-divided alternative irrigation and regulated deficit irrigation could improve indeed irrigation water use efficiency and crop growth soil water situation. Many scholars have paied more and more attention to the efficiency of water and nutrient. So the research on transport of water and nitrogen efficient utilization mechanism in crop rootzone soil under water-saving irrigation has theory and realistic meaning in fair use water and fertilizer resources and water-saving and fertilizer-saving. The transport and utilization of water and nitrogen in rootzone soil was studied and systematic analyzed by pot and field experiments about maize and wheat under water-saving irrigation condition. After studying I have preliminarily obtained some major research results as follows:
     (1) The transport and utilization of water and nitrogen in rootzone soil was studied of controlled roots-divided alternative irrigation. Results showed that, Soil NO_3~--N content were positively correlated with amount of nitrogen application, Soil NO_3~--N content in both rootzone of alternative irrigation was evenly distributed, and the soil NO_3~--N accumulation in dry side was significantly greater than wet side of fixed irrigation. The NO_3~--N residues in upper soil of alternative irrigation was approximately equal with them of convention irrigation, while the residues in lower soil of alternative irrigation were much than them of convention irrigation. The WUE of alternative irrigation were 1.16~1.03 times it of convention irrigation, the irrigation amount of alternative irrigation is 0.75 times it of conventional irrigation, water-saving effects of alternative irrigation was evident.
     (2) Effects of alternative furrow irrigation on transport and accumulation of water and nitrogen in maize rootzone soil were investigated. The results showed that, The maximal accumulated NO_3~--N of low water and high nitrogen was gained in the whole profile at harvest time, which was 1.2 times of that of high water and high nitrogen. The accumulation of NO_3~--N of low water and low nitrogen was 1.27 times of that of low nitrogen and high water. NH4+-N contents in the soil of 0~30 cm reached a peak, and the contents basically did not change below 30 cm soil after fertilizing. Soil water accumulation and distribution was not obviously affected by the level of nitrogen. The treatment of high water reduced the accumulation of NO_3~--N in root zone, which lead to leaching and reduced nitrogen fertilizer use efficiency. The best coupling form of alternative furrow irrigation was treatment of low water and high nitrogen.
     (3) Transport and utilization mechanism of water and nitrogen in spring maize rootzone soil were studied about separate furrow irrigation and nitrogen application in deffrent rootzone (fertilizing in the irrigated furrow (FII) and unirrigated furrow (FIU)). Results showed that high water of FII was more easily lead NO_3~--N leaching, the content of NO_3~--N was basically equal in the profile of treatment of high water of FII at harvest time. The treatment of high nitrogen and low water of FIU had maximum grain yield of 9953 kg·hm~(-2) and highest grain irrigation water use efficiency (IWUE) of 6.70 kg·m~(-3), compared with IWUE of treatment of high nitrogen and high water of FII, it raised by 72.68%.The best form of water and nitrogen space coupling was treatment of high nitrogen and low water of FIU.
     (4) Transport and utilization of water and nitrogen in spring maize rootzone soil was studied about different furrow mode and nitrogen rate under rain canopy. The results showed that, the treatment of CAFI, middle water and low nitrogen rate reached the highest yield, which was 1.06 times it of CAFI, high water and high nitrogen. Maize average yield of CAFI could reach 9317 kg·hm~(-2), it was respectively 1.05 times of CFI and 1.16 times of FFI under the same condition of water and nitrogen. The average WUE of CAFI was 3.39 kg·m~(-3),it of CFI took the second place; it of FFI reached the minimum value of 2.94 kg·m~(-3). Nitrogen cumulant of CAFI was the maximum,nitrogen cumulant of CFI took the second place, and it of FFI was less 26 kg·hm~(-2) than CAFI. NO_3~--N contour of CAFI in rootzone soil was similar to that of CFI under the same condition of irrigation quality and nitrogen rate, and NO_3~--N content in furrow profile was along the symmetry of ridge center.
     (5) The effect of regulated deficit irrigation and nitrogen nutrition on availability of water and nitrogen in maize rootzone was studied. The results showed that, NO_3~--N content in middle and lower soil layer of regulated deficit irrigation lies between the treatment of low and high water of normal irrigation, there was a positive correlation between the content of NO_3~--N in middle and lower soil layer and N rate at end of the heading stage. N rate and deficit period had a notably significant effect on accumulation of dry matter and total nitrogen. Water deficit at jointing stage affected mostly dry matter accumulation. The treatment of high nitrogen and deficit water at seedling stage had the maximum WUE. The best coupling treatment was deficit water in heading stage and low nitrogen.
     (6) The effect of regulated deficit irrigation and nitrogen nutrition on physiological characteristics of maize was studied. The results showed that, water deficit led to lower chlorophyll content; nitrogen rate and chlorophyll content was positively relevant. Water deficit would increase the proline content; the nitrogen apply would slightly reduce the proline content. Water deficit reduced root activity; compensation effect of root activity was obvious after water covered. Deficit irrigation could increase MDA and soluble sugar content, while decrease POD and SOD content. Nitrogen could ensure soluble sugar, SOD and POD at a higher level before heading date. The treatment of deficit irrigation in seedling stage had better compensation effect of biochemistry; deficit irrigation in jointing stage had less compensation effect. The treatments of high nitrogen were not suitable to be irrigated deficit in the heading stage. The best handling combination was deficit irrigation in seedling stage with low nitrogen.
     (7) Spring wheat population utilization of water and nitrogen in Shiyang River was studied about regulated deficit irrigation and nitrogen rate. The results showed that nitrogen rate and irrigation in jointing and heading stage impacted on spring wheat yield remarkably. With nitrogen rate (168 kg·hm~(-2)), irrigation (90 mm) in jointing stage, and irrigation (70 mm) in heading stage, spring wheat production is higher. The impact of nitrogen rate on nitrogen accumulation of grain yield and dry matter were significant; nitrogen accumulation of grain came to maximum when nitrogen rate (168 kg·hm~(-2)) and irrigation (90 mm) were applied. The optimal model of irrigation and nitrogen rate of spring wheat in Shiyang River Basin were nitrogen rate(168 kg·hm~(-2)), irrigation(90 mm) in jointing stage and irrigation(60 mm) in tillering、heading、filling and jointing stage.
     (8) Utilization mechanism and transfer of water and nitrogen was studied about regulated deficit irrigation in Shiyang River. The results showed that NO_3~--N accumulation in root soil was mainly concentrated in the 0~40 cm profile before the jointing stage and the accumulation was about 550 kg·hm~(-2). NO_3~--N was leaching in the rootzone soil of high water treatment from 62 days after sowing, the NO_3~--N accumulation of high water treatment was 0.76 times of that of lower treatment in the profile. The residual of NO_3~--N was in sequence of lower water>low water>middle water>high water at harvest time. Supplementary irrigation amount of 360~280 mm in the whole growth period could guarantee yield and water use efficiency on the condition of deficit water resources.
引文
[1]许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯,2002,12:103–108.
    [2] Xu X.,Li D.,Wang H. Fertilizers for the future[J].Fertilizer international,1999,369:31–32.
    [3]康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996.
    [4]汪志农.灌溉排水工程学[M].北京:中国农业出版社,2000.
    [5]陈玉民,肖俊夫,王宪杰,等.非充分灌溉研究进展及展望[J].灌溉排水,2001,6,73–75.
    [6]王仰仁,孙小平.山西农业节水理论与作物高效用水模式[M].北京:中国科学技术出版社,2003.
    [7]陈亚新,康绍忠.非充分灌溉原理[M].北京:水利电力出版社,1995.
    [8]茆智,崔远来,李新健.我国南方水稻水分生产函数试验研究[J].水利学报,1994(9):21–30.
    [9]康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996.
    [10]陈玉民,肖俊夫,肖俊杰,等.非充分灌溉研究进展及展望[J].灌溉排水,2001,20(2):73–75.
    [11]李建明,邹志荣,王晓燕.蔬菜节水灌溉指标的研究现状及存在问题[J].干旱地区农业研究,2000, 18(2):118–123. [l2]朱成立,邵孝侯,彭世彰,等.冬小麦水分胁迫效应及节水高效灌溉指标体系[J].中国农村水利水电,2023,(l1):22–24. [l3]王宝英,张学.农作物高产的适宜土壤水分指标研究[J].灌溉排水,1996,15(3):35–39.
    [14]袁光握.农田灌溉中几个需要探讨的问题[J].灌溉排水,1994,13(4):19–21.
    [15]管瑶,李林.微灌灌水定额与灌水周期的确定[J].塔里木农垦大学学报,2003,15(1):28–31.
    [16]李金山,仵峰,范永申.节水灌溉指标及发展模式研究[J].节水灌溉,2003,(5):14–15.
    [17]朱成立,邵孝侯,彭世彰,等.冬小麦水分胁迫效应及节水高效灌溉指标体系[J].中国农村水利水电,2003,(l1):22–24.
    [18]李凤民,赵松龄,段舜山,等.黄土高原半干旱区春小麦农田有限灌溉对策初探[J].应用生态学报,1995,6(3):259–246.
    [19]裴冬,陈素英,张喜英,等.太行山山前平原夏玉米优化灌溉制度研究[J].中国生态农业学报,2004,12:(1)144–147.
    [20]张喜英,裴冬,由撇正.太行山前平原冬小麦优化灌溉制度的研究[J].水利学报,2001,(1):90–95.
    [21]蔡焕杰,康绍忠,张振华,等.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报, 2001,16(3):24–27.
    [22]蔡甲冰,刘钮,雷廷武,等.精量灌溉决策定量指标研究现状与进展[J].水科学进展,2004, 15(4):531–537.
    [23]张寄阳,段爱旺,孙景生,等.作物水分状况自动监测与诊断的研究进展[J].农业工程学报,2006, 22(2)1:174–178.
    [24]郭艳波,冯浩,吴普特.作物非充分灌溉决策指标研究进展[J].中国农学通报,2007,23(8):520–525.
    [25]杨静,王玉萍,王群,等.非充分灌溉的研究进展及展望[J].安徽农业科学2008,36(8):3301–3303.
    [26]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2002.
    [27]汤章城.植物对干旱的反应和适应性[J].植物生理学通讯,1983,19(4):1–7.
    [28]马瑞昆,蹇家利,贾秀领,等.供水深度与冬小麦根系发育的关系[J].干旱地区农业研究,1991, 9(3):1–10.
    [29]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998.
    [30]陈培元.作物对水分胁迫的生理反映[M].北京:科学出版社,1998.
    [31]许旭旦,诸涵素.植物根部的水分倒流现象[J].植物生理学通讯,1995,31(4):241–245.
    [32] Baker J. M., Van Baver C. H. M. Water transfer through cotton plants connecting soil regions of differing water potential [J]. Agronomy Journal, 1988, 80:993–997.
    [33] Kang S., Liang Z., Hu W., et al. Water use efficiency of controlled alternate irrigation on roots divided maize plants [J]. Agricultural Water Management, 1998, 38:69–76.
    [34]史文娟.分根区垂直交替供水与调亏灌溉的节水机理及效应[D].西北农业大学1999届攻读硕士学位研究生学位论文.
    [35]史文娟,康绍忠.分根区垂向交替供水对玉米生长的影响研究[J].中国农业生态学报,2001, 9(2):44–46.
    [36] Graterol Y. E., Eisenhauer D. E, Elmore R. W. Alternate furrow irrigation for soybean production [J]. Agricultural Water Management, 1993, 24:133–145.
    [37] Tsegaye T., Stone J. F., Reeves H. E. Water use characteristics of wide spaced furrow irrigation[J].Soil Science Society of America,1993,57:240–245.
    [38]梁宗锁,胡炜.控制性分根交替灌水的节水效应[J].农业工程学报,1997,13(4):58–63.
    [39]段爱旺,肖俊夫,张寄阳,等.控制交替隔沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报,1999,25(6):766–71.
    [40]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程报,2000, 16(1):39–43.
    [41]梁宗锁,康绍忠,高俊风,等.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J].作物学报,2000,26(2):250–255.
    [42]史文娟,康绍忠,王全九.分根区垂向交替供水的节水机理及效应[J].农业工程学报,2000, 16(5):11–15.
    [43]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2):5–7.
    [44]龚道枝,康绍忠,佟玲,等.分根交替灌溉对土壤水分分布和桃树根茎液流动态的影响[J].水利学报,2004,10:112–118.
    [45]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(8):17–21.
    [46]胡笑涛,康绍忠,张建华,等.番茄垂向分根区交替控制滴灌室内试验及节水机理[J].农业工程学报,2005,21(7):1–4.
    [47]周琼,李伏生,黄文君,等.分根区交替灌溉对百合鲜切花生理变化和质量的影响[J].北方园艺2007(3):33–38.
    [48]杜太生,康绍忠,张建华.不同局部根区供水对棉花生长与水分利用过程的调控效应[J].中国农业科学,2007,40(11):2546–2555.
    [49]汪耀富,蔡寒玉,张晓海,等.分根交替灌溉对烤烟生理特性和烟叶产量的影响[J].干旱地区农业研究,2006,24(5):93–98.
    [50]刘永贤,李伏生,农梦玲,等.不同生育时期分根区交替灌溉对烤烟生长和氮钾含量的影响灌溉[J].排水学报,2007,26(6):102–109.
    [51] Bruee R. R.Cotton row spacing as it affects soil water utilization and yield[J].Agronomy Journal, 1965,57: 319–321.
    [52] Hawkins B. S., Peaeock H. A. Effect of skip-row culture on agronomic and fiber properties of upland cotton (Gossypium hirsutum) varieties[J]. Agronomy Journal, 1968,60:189–191.
    [53]杜太生.干旱荒漠绿洲区作物根系分区交替灌溉的节水机理与模式研究[D].中国农业大学2006届攻读博士学位研究生学位论文.
    [54] Kemper W. D., Ruffing B. J., Bondurant J. A. Furrow intake rates and water management[J]. Transactions of the ASABE,1982,25:333–339.
    [55] Musick J. T., Dusek D. A. Alternate furrow irrigation of fine textured soils[J]. Transactions of theASABE,1974, 17:289–294.
    [56] Hodges M. E., Stone J. F., Garton J. E., et al.Variance of water advance in wide-spaced furrow irrigation [J]. Agricultural Water Management,1989,16:5–13.
    [57]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报, 2000, 16(1):39–43.
    [58]潘英华,康绍忠,杜太生,等.交替隔沟灌溉土壤水分时空分布与灌水均匀性研究[J].中国农业科学, 2002,35(5):531–535.
    [59] Stone J. F., Garton J. E., Webb B. B., et al. Irrigation water conservation using wide-spaced furrow[J]. Soil Science Society of America Journal,1979,43:407–411.
    [60] Stone J. F., Reeves H. E., Garton J. E. Irrigation water conservation by using wide-spaced furrows[J]. Agricultural Water Management,1982,5:309–307.
    [61] Stone J. F., Nofziger D. L. Water use and yields of cotton grown under wide-spaced furrow irrigation [J]. Agricultural Water Management, 1993, 24:27–28.
    [62] Dry P. R., Loveys B. R. Factors influencing grapevine vigor and the potential for control with partial rootzone drying[J]. Australian Journal of Grape and Wine Research, 1998,4:140–148.
    [63] Tang L.,Li Y.,Zhang J.Physiological and yield responses of cotton under partial rootzone irrigation[J].Field Crops Research.2005,94:214–223.
    [64]梁宗锁,康绍忠,石培泽,等.交替隔沟灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26–32.
    [65]邢维芹,王林权,骆永明,等.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002,18 (6):46–49.
    [66]杜社妮,梁银丽,翟胜,等.不同灌溉方式对茄子生长发育的影响[J].中国农学通报,2005, 25(6):430–432.
    [67]连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技,2005,8:21–22.
    [68]杜太生,康绍忠,王振昌,等.交替隔沟灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报,2007,33(12):1982–1990.
    [69]李彩霞,陈晓飞,王铁良,等.控制性交替灌溉对玉米根系层水分再分布与产量的影响[J].农业工程学报,2007,23(11):59–64.
    [70]杜太生,康绍忠,胡笑涛,等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J].中国农业科学,2005,38(10):2061–2068.
    [71]钱卫鹏,邹志荣,孟长军.大棚内膜下根系分区交替滴灌不同灌溉下限对甜瓜生长及水分利用效率的影响[J].干旱地区农业研究,2007,25(3):138–141.
    [72] Benjamin J. G., Porter L. K., Duke H. R., et al.Nitrogen movement with furrow irrigation method and fertilizer band placement [J]. Soil Science Society of America Journal, 1998, 62(4):1103–1108.
    [73] Lehrsch G. A., Sojka R. E., Westermann D. T. Nitrogen placement, row spacing, and furrow irrigation water positioning effects on corn yield [J]. Agronomy Journal, 2000, 92(6):1266–1275.
    [74] Skinner R. H., Hanson J. D., Benjamin J. G. Root distribution following spatial of water and nitrogen supply in furrow irrigated corn[J].Plant and Soil,1998,199:187–194.
    [75] Wang L., Kroon H. D., Smits A. J. M. Combined effects of partial root drying and patchy fertilizer placement on nutrient acquisition and growth of oilseed rape[J]. Plant and Soil,2007,295: 207–216.
    [76]梁继华,李伏生,唐梅,等.分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J].农业工程学报,2006,22(10):68–72.
    [77]胡田田,康绍忠,张富仓.局部灌水方式对玉米不同根区氮素吸收与利用的影响[J].中国农业科学,2005,38(11):2290–2295.
    [76]黄春燕,李伏生,覃秋兰,等.两种施肥水平下根区局部灌溉对甜玉米水分利用的效应[J].节水灌溉,2004,6:8–11.
    [78]高明霞,王国栋,胡田田,等.不同灌溉方式下娄土玉米根际硝态氮的分布[J].西北植物学报,2004, 24(5):881–885.
    [79]谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报,2005, 11(4):442–448.
    [80]吕桂军,康绍忠.不同灌水处理对盐渍土壤中玉米生长发育及水盐热变化的影响[J].中国农学通报,2005,22(2):408–412.
    [82]王金凤,康绍忠,张富仓,等.控制性根系分区交替灌溉对玉米根区土壤微生物及作物生长的影响[J].中国农业科学,2006,39(10):2056–2062.
    [83]蔡大鑫,沈能展,崔振才.调亏灌溉对作物生理生态特征影响的研究进展[J].东北农业大学学报, 2004,35(2):139–143.
    [84]杨广海,张万军,崔建伟,等.作物调亏灌溉理论与技术研究进展[J].安徽农业科学,2008, 36(6):2514–2516.
    [85] Boland A. M., Mitchell P. D., Jerie P. H., et al. The effect of regulated deficit irrigationon tree water use and growth of peach [J].Journal of Horticultural Seience, 1993, 68(2):261–264.
    [86] Chalmers D. J., Mitchell P. D., Jerie P. H. The physiology of growth control of perch an pear trees using reduced irrigation[J]. Acta Horticulturae,1984,146:143–148.
    [87] Blackman P. G., Davies W. J. Root communication in maize plants of the effects of soil drying[J]. Journal of Experimental Botany,1985,36:39–48.
    [88] Chalmers D. J.,Burge G., Jerie P. H., et al.The mechanism of regulation of“Bartlett”pear fruit and vegetative growth by irrigation with holding and regulated deficit irrigation[J].Journal of the American Society for Horticultural Seience,1986,11(6):944–947.
    [89] Chalmers D. J., Wilson I. B. Productivity of peach trees: tree growth and water stress in relation to fruit growth and assimilate demand[J]. Annals of Botany,1978,(42):285–294.
    [90] Turner N. C.Plant water relations and irrigation management [J].Agri Water Manag, 1990(17):59–75.
    [91] Chalmers D. J, Van D. B. Productivity of peach trees factors affecting dry-weight distribution during tree growth[J]. Annals of Botany, 1975(39):423–432.
    [92] Ebel R. C., Proebsting E. L., Patterson M. E. Regulated deficit irrigation may alter apple maturity quality and storage life[J].HortScience,1993,28(2):141–143.
    [93] Marshell J., Girona J. Relationship between leaf water potential and gas exchange activity at different phonological stages and fruit loads in peach trees [J].Journal of the American Society for Horticultural Science,1997,122(3):415–421.
    [94] Chalmers, D. J., Burge, G., Jerie, P. H., et al. The mechanism of regulation of `Bartlett' pear fruit and vegetative growth by irrigation withholding and regulated deficit irrigation[J].Journal of the American Society of Horticultural Science,1986,11(6):904–907.
    [95]史文娟,胡笑涛,康绍忠.干旱缺水条件下作物调亏灌溉技术研究状况与展望[J].干旱地区农业研究,1998,16(2):84–88.
    [96]何华,耿增超,康绍忠.调亏灌溉及其在果树上的应用[J].西北林学院学报,1999,14(2):83–87.
    [97] Paul D. C.Estimating soil moisture under low frequency surface irrigation using crop water stress index[J].Journal of Irrigation and Drainage Engineering,2003,129(1):27–35.
    [98] Turner N. C.Further progress in crop water relations advances in agronomy [J]. Journal of the American Society for Horticultural Science, 1997,58:293–338.
    [99]蔡焕杰,康绍忠,张振华,等.作物调亏灌溉的适宜时间与调亏度的研究[J].农业工程学报,2000, 16(3):24–27.
    [100]李洁.作物的生理节水及需水关键期[J].节水灌溉,1999,(1):35–37.
    [101]郭克贞,何京丽.牧草节水灌溉若干理论问题研究[J].水利学报,1999,(5):77–81.
    [102]梁银丽,山仑,康绍忠.黄土早区作物—水分模型[J].水利学报,2000,(9):86–90.
    [103]王修贵.作物产量对水分亏缺敏感性指标的初步研究[J].灌溉排水,1998,17(2):25–30
    [104]Mayer W. S., Green G. C.Water use by wheat and plant indications of available soil water [J]. Agronomy Journal, 1980,72:253–256.
    [105]张喜英,由憋正.冬小麦调亏灌溉制度田间试验研究初报[J].生态农业研究,1998,6(3):33–36.
    [106]黄占斌,山仑.水分利用效率及其生理生态机理研究进展[J].生态农业研究,1998,6(4):19–23.
    [107]蔡焕杰,康绍忠,张振华,等.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报,2000,16(3):24–27.
    [108]邵明安,杨文治,李玉山.黄土区土壤水分有效性研究[J].水利学报,1987(8):38–40.
    [109]张薇,司徒淞.王和洲.节水农业的土壤水分调控与标准研究[J].农业工程学报,1996,12(2):23–27.
    [110]王和洲,孟兆江,庞鸿宾,等.小麦节水高产的土壤水分调控标准研究[J].灌溉排水,1999, 18(1):14–17.
    [111]陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水,1997,16(1): 2 4–26.
    [112]王宝英,张学.农作物高产的适宜土壤水分指标研究[J].灌溉排水,1996, 15 (3): 35–39.
    [113]康绍忠,史文娟,胡笑涛,等.调亏灌溉对玉米生理指标及水分利用效率的影响[J].农业工程学报, 1998,11(4):82–87.
    [114]马忠明.绿洲灌区麦田节水高产适宜土壤水分指标研究[J].灌溉排水,1999,18(1):26–29.
    [115]孟兆江,贾大林.夏玉米调亏灌溉的生理机制与指标研究[J].农业下程学报,1998,14(4):88–92.
    [116]胡笑涛,梁宗锁,康绍忠,等.模拟调亏灌溉对玉米根系生长及水分利用效率的影响[J].灌溉排水,1998,17(2):11–15.
    [117]裴冬,亢茹.调亏灌溉对棉花生长、生理及产量的影响[J].中国生态农业研究,2000,8(4):52–55.
    [118]王密侠,康绍忠,蔡焕杰,等.调亏灌溉对玉米生态特性及产量的影响[J].西北农业大学学报, 2000,28(1):31–36.
    [119]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001,27(4):513–516.
    [120]黄兴法,李光永,曾德超.果树调亏灌溉技术的机理与实践[J].农业工程学报,2001,17(4):30–33.
    [121]黄兴法,李光永等.充分灌与调亏灌溉条件下苹果树微喷灌的耗水量研究[J].农业工程学报,2001b, 17(5):43–46.
    [122]黄兴法,李光永,曾德超,等.调亏灌溉—果园节水管理新技术[J].节水灌溉,2001,2:12–14.
    [123]Decosta W. A. J. M., Shanmugathasan K. N.Physiology of yield determination of soybean under different irrigation regimes in the sub-humid zone of Sri Lanka[J].Field Crops Research,2002, 75:23–35.
    [124]陈玉民,郭国双,王广兴,等.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995.
    [125]Colaizzi P. D., Barnes E. M., Clarke T. R., et al.Estimating soil moisture under low frequency surface irrigation using crop water stress index[J].Journal of Irrigation and Drainage Engineering, 2003.129(1):27–35.
    [126] Paul D. C.,Edward M. B.,Thomas R. C., et al.,Water stress detection under high frequency sprinkler irrigation with water deficit index[J].Journal of Irrigation and Drainage Engineering, 2003,129(1): 36–43.
    [127]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000, 6(2):147–151.
    [128]孔庆波,聂俊华,张青.生物有机肥对调亏灌溉下冬小麦苗期生长的影响[J].河南农业科学,2005, 2:51–53.
    [129]张步翀.绿洲春小麦调亏灌溉对土壤磷素养分的影响研究[J].中国生态农业学报,2007, 15(5):26–29.
    [130]赵彦锋,吴克宁,李玲,等.玉米苗期调亏控水与磷协同效应研究[J].河南农业科学,2002,4:4–6.
    [131]张步翀,黄高宝.春小麦调亏灌溉对土壤氮磷钾的影响[J].灌溉排水学报,2007,26(4):45–48.
    [132]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性究[J].农业工程学报,2002,18(1):53–57.
    [133] Pandey R. K., Maranville J. W., Chetima M. M. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. II.Shoot growth, nitrogen uptake and water extraction[J].Agricultural Water Management,2000,46:15–27.
    [134] Pandey R. K., Maranville J. W., Chetima M. M. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. II. Biomass accumulation, nitrogen uptake and water extraction[J].European Journal of Agronomy,2001,15:107–118.
    [135] Tavakkoli A. R., Oweis T. Y.The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran[J].Agricultural Water Management,2004,65:225–236.
    [136] Pandey R. K., Maranville J. W., Chetima M. M. Tropical wheat response to irrigation and nitrogen in a Sahelian environment I. Grain yield, yield components and water use efficiency[J].European Journal of Agronomy[J].2001,15:93–105.
    [137]Elvio D. P.,Michele R.Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment[J].Field Crops Research,2008,105(3):202–210.
    [1] Wakrim R., Wahbi S., Tahi H., et al. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.)[J].Agriculture Ecosystems Environment,2005,106:275–287.
    [2] Buttar G. S., Thind H. S., Aujla M. S. Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape (Brassica napus L.)[J]. Agricultural Water Management, 2006, 85:253–260.
    [3]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001, (11):80–86.
    [4]史文娟,康绍忠.控制性作物根系分区供水的节水机理及研究进展[J].水科学进展,2001, 12(2):270–275.
    [5]梁宗锁,康绍忠,石培泽,等.交替隔沟灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26–32.
    [6]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报, 2000,16(1):39–43.
    [7]杜太生,康绍忠,胡笑涛,等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J].中国农业科学,2005,38(10):2061–2068.
    [8]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2000.
    [9]梁宗锁,康绍忠,胡炜,等.控制性分根交替灌水的节水效应[J].农业工程学报,1997,13(4):58–63.
    [10]梁宗锁,康绍忠,张建华,等.控制性分根交替灌水对作物水分利用率的影响及节水效应[J].中国农业科学,1998,31(5):88–90.
    [11]Kang S., Liang Z., Hu W., et al. Water use efficiency of controlled alternate irrigation on roots divided maize plants[J]. Agricultural Water Management,2001,38:69–76.
    [12]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(8):17–21.
    [13]Benjamin J. G., Porter L. K., Duke H. R., et al.Nitrogen movement with furrow irrigation method and fertilizer band placement[J]. Soil Science Society of America Journal,1998,62(4):1103–1108.
    [14]Lehrsch G. A., Sojka R. E., Westermann D. T. Nitrogen placement, row spacing, and furrow irrigation water positioning effects on corn yield[J]. Agronomy Journal,2000,92(6):1266–1275.
    [15]Skinner R. H., Hanson J. D., Benjamin J. G. Root distribution following spatial of water and nitrogen supply in furrow irrigated corn[J].Plant and Soil,1998,199:187–194.
    [16]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2):5–7.
    [17]高明霞,王国栋,胡田田,等.不同灌溉方式下土娄土玉米根际硝态氮的分布[J].西北植物学报,2004,24(5):881–885.
    [18]梁继华,李伏生,唐梅,等.分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J].农业工程学报,2006,22(10):68–72.
    [19]胡田田,康绍忠,张富仓.局部灌水方式对玉米不同根区氮素吸收与利用的影响[J].中国农业科学,2005,38(11):2290–2295.
    [20]黄春燕,李伏生,覃秋兰,等.两种施肥水平下根区局部灌溉对甜玉米水分利用的效应[J].节水灌溉,2004,6:8–11.
    [21]宁堂原,焦念元,李增嘉,等.施氮水平对不同种植制度下玉米氮利用及产量和品质的影响[J].应用生态学报,2006,17(12):2332–2336.
    [1]梁继华,李伏生,唐梅,等.分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J].农业工程学报, 2006,22(1):68–72.
    [2]康绍忠,张建华,梁宗锁,等.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究, 1997,15(1):1–6.
    [3]孙景生,康绍忠,蔡焕杰,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1–5.
    [4] Kang S., Zhang L., Hu X., et al.An improve water use efficiency for hot pepper grown under controlledalternate drip irrigation on partial roots[J].Scientia Horticulturae,2001,89:257–267.
    [5]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001, (11):80–86.
    [6] Kang S., Liang Z., Hu W.,et al.Water use efficiency of controlled alternate irrigation on root–divided maize plants.[J].Agricultural Water Management,1998,38:69–76.
    [7]史文娟,康绍忠.控制性作物根系分区供水的节水机理及研究进展[J].水科学进展,2001, 12(2):270–275.
    [8]梁宗锁,康绍忠,石培泽,等.交替隔沟灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26–32.
    [9]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000,16(1):39–43.
    [10]杨秀英,杜太生,潘英华,等.干旱沙漠绿洲区地膜玉米控制性交替隔沟灌溉节水技术研究[J].干旱地区农业研究,2003,21(3):74–77.
    [11]杜太生,康绍忠,胡笑涛,等.根系分区交替滴灌对棉花产量和水分利用效率的影响.中国农业科学, 2005,38(10):2061–2068.
    [12]孙景生,康绍忠,蔡焕杰,等.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报, 2002,3:64–68.
    [13]于保静,石培泽,杨秀英,等.干旱区大田玉米控制性交替隔沟灌溉需水量及需水规律研究[J].甘肃水利水电技术,2006,42(3):209–212.
    [14]Lehrsch G. A., Sojka R. E., Westermann D. T. Nitrogen placement, row spacing, and furrow irrigation water positioning effects on corn yield [J]. Agronomy Journal,2000,92(6):1266–1275.
    [15]Skinner R. H., Hanson J. D., Benjamin J. G. Root distribution following spatial of water and nitrogen supply in furrow irrigated corn[J].Plant and Soil,1998,199:187–194.
    [16]Benjamin J. G., Porter I. K., Duke H. R., et a1.Corn growth and nitrogen uptake with furrow irrigation and fertilizer bands[J]. Agronomy Journal,1997,89:609–612.
    [17]高明霞.不同灌水方式下玉米根际硝态氮的分布[D].西北农林科技大学2004年攻读硕士学位论文.
    [18]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2):5–7.
    [19]邢维芹,王林权,骆永明,等.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002, 18(6):46–49.
    [20]鲍士旦.土壤农化分析[M].北京.中国农业出版社,2000:49–60.
    [21]袁锋明,陈子明,姚造华.土壤中的氮素淋洗[M].北京:中国农业科技出版社,1996:191–208.
    [22]谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报, 2005,11(4):442–448.
    [23]Miller A. J., Smith S. J. Nitrate transport and compartmentation in cereal root cells[J].Journal of Experimental Botany,1996,47:843–854.
    [24]Coruzzi G., Bush D. R. Nitrogen and carbon nutrient and metabolite signaling in plants[J].Plant Physiology,2001,125:61–64.
    [25]黄绍敏,张鸿程,宝德俊,等.施肥对土壤硝态氮含量及分布的影响及合理施肥研究[J].土壤与环境, 2000,9(3):201–203.
    [1] Dry P. R., Loveys B. R.Factors influencing grapevine vigour and the potential for control with partial rootzone drying[J].Journal of Grape and Wine Research,1998,4:140–148.
    [2] Kang S., Zhang J.Controlled alternate partial rootzone irrigation: its physiological consequences and impact on water use efficiency[J].Journal of Experimental Botany,2004, 55(407):2437–2446.
    [3] Kang S.,Shi W.,Cao H.,et al.Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays)[J].Field Crops Research,2002,77:31–41.
    [4] Wakrim R.,Wahbi S.,Tahi H.,et al.Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean(Phaseolus vulgaris L)[J].Agriculture Ecosystems Environment,2005,106:275–287.
    [5] Buttar G. S.,Thind H. S.,Aujla M. S.Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape(Brassica napus L)[J]. Agricultural Water Management,2006,85:253–260.
    [6]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001, (11):80–86.
    [7]史文娟,康绍忠.控制性作物根系分区供水的节水机理及研究进展[J].水科学进展,2001, 12(2):270–275.
    [8]梁宗锁,康绍忠,石培泽,等.交替隔沟灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26–32.
    [9]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000, 16(1):39–43.
    [10]杜太生,康绍忠,胡笑涛,等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J].中国农业科学, 2005,38(10):2061–2068.
    [11]Lehrsch G. A., Sojka R. E., Westermann D. T.Nitrogen placement, row spacing, and furrow irrigation water positioning effects on corn yield [J]. Agronomy Journal, 2000, 92(6):1266–1275.
    [12]Skinner R. H.,Hanson J. D.,Benjamin J. G.Root distribution following spatial separation of water and nitrogen supply in furrow irrigated corn[J].Plant and Soil,1998,199:187–194.
    [13]Benjamin J. G., Porter I. K., Duke H. R., et a1.Corn growth and nitrogen uptake with furrow irrigation and fertilizer bands[J].Agronomy Journal,1997,89:609–612.
    [14]何华,康绍忠,曹红霞.限域供应NO3–对玉米根系形态及其吸收的影响[J].西北农林科技大学学报, 2002,30(1):5–7.
    [15]谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报, 2005,11(4):442–448.
    [16]邢维芹,王林权,李生秀.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002, (6):46–49.
    [17]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [18]梁运江,依艳丽,许广波.水肥耦合效应的研究进展与展望[J].湖北农业科学,2006,45(3):385–388.
    [19]宁堂原,焦念元,李增嘉,等.施氮水平对不同种植制度下玉米氮利用及产量和品质的影响[J].应用生态学报,2006,17(12):2332–2336.
    [1]康绍忠,张建华,梁宗锁,等.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究, 1997,15(1):1–6.
    [2] Kang S., Liang Z., Hu W., et al.Water use efficiency of controlled alternate irrigation on root–divided maize plants[J].Agricultural Water Management,1998,38:69–76.
    [3]梁宗锁,康绍忠,胡炜,等.控制性分根交替灌木节水效应[J].农业工程学报,1997,19(4):58–64.
    [4]杜太生,康绍忠,王振昌,等.交替隔沟灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报,2007,33(12):1982–1990.
    [5]杜太生,康绍忠,张霁,等.不同沟灌模式对沙漠绿洲区葡萄生长和水分利用的效应[J].应用生态学报,2006,17(5):805–810.
    [6]杜太生,康绍忠,闫博远,等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报,2007,23(11):52–58.
    [7]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000, 16(1):39–43.
    [8]孙景生,康绍忠,蔡焕杰,等.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报,2002,3:64–68.
    [9] Graterol Y. E., Eisenhauer D. E., Elmore R. W.Alternate furrow irrigation for soybean production[J]. Agricultural Water Management, 1993, 24:133–145.
    [10]Tsegaye T., Stone J. F., Reeves H E.Water use characteristics of wide spaced furrow irrigation [J].Soil Science Society of America, 1993, 57:240–245.
    [11]Stone J. F., Nofziger D. L. Water use and yields of cotton grown under wide–spaced furrow irrigation [J]. Agricultural Water Management,1993,24:27–28.
    [12]Stanford G., Epstein E. Nitrogen mineralization water relations in soils [J].Soil Science,1974, 38:103–106.
    [13]李生秀,巨孝棠,王喜庆,等.水分对土壤养分矿化的影响[M].中国农业科技出版社,1995.
    [14]刘小刚,张富仓,田育丰.交替隔沟灌溉和施氮对玉米根区水氮迁移的影响[J].中国农业科学, 2008,41(7):2025–2032.
    [15]刘小刚,张富仓,田育丰,等.水氮处理对玉米根区水氮迁移和利用的影响[J].农业工程学报, 2008,24(11):19–24.
    [16]郭大应,冯艳,谢成春,等.灌溉土壤硝态氮运移与土壤湿度的关系[J].灌溉排水,2001,20(2),66–68.
    [17]邢维芹,王林权,李立平,等.半干旱区玉米水肥空间耦合效应Ⅱ.土壤水分和速效氮的动态分布[J].土壤,2003,35(3):242–247.
    [1] Fereres E., Soriano M. A.Deficit irrigation for reducing agricultural water use[J].Journal of Experimental Botany,2007,58(2):147–159.
    [2]康绍忠,史文娟,胡笑涛,等.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报, 1998,14(2):82–87.
    [3] Kang S., Zhang J.An improved water–use efficiency for maize grown under regulated deficit irrigation [J].Field Crops Research, 2000, 67:207–214.
    [4] Kang S., Zhang L., Liang Y., et al.Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China[J].Agricultural Water Management, 2002, 55:203–216.
    [5]蔡焕杰,康绍忠,张振华,等.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报,2000, 16(3):24–27.
    [6]孟兆江,贾大林,刘安能,等.调亏灌溉对冬小麦生理机制及水分利用效率的影响[J].农业工程学报, 2003,7(4):66–69.
    [7]郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水,2001, 20(1):25–27.
    [8]胡笑涛,梁宗锁,康绍忠,等.模拟调亏灌溉对玉米根系生长及水分利用效率的影响[J].灌溉排水,1998,17(2):11–15.
    [9]王密侠,康绍忠,蔡焕杰,等.玉米调亏灌溉节水调控机理研究[J].西北农林科技大学学报(自然科学版),2004,32(12):87–89.
    [10]郭相平,康绍忠.玉米调亏灌溉的后效性[J].农业工程学报,2000,16(4):59–60.
    [11]史文娟,康绍忠,宋孝玉.棉花调亏灌溉的生理基础研究[J].干旱地区农业研究,2004,9(3):91–95.
    [12]阿吉艾克拜尔,邵孝侯,钟华,等.调亏灌溉及其对烟草生长发育的影响研究[J].河海大学学报(自然科学版),2006,34(2):171–174.
    [13]张步翀,李凤民,齐广平.调亏灌溉对干旱环境下春小麦产量与水分利用效率的影响[J].中国生态农业学报,2007,15(1):58–62.
    [14] Olesinski A. A., Wolf S., Rudich J.,et al. The Effect of Nitrogen Fertilization and Irrigation Frequency on Photosynthesis of Potatoes (Solanum tuberosum) [J].Annals of Botany,1989,64:651–657.
    [15] Pandey R. K., Maraville J.W., Admou A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency [J].European Journal of Agronomy,2001,15:93–105.
    [16] Pandey R. K., Maraville J.W., Chetima M.M.Tropical wheat response to irrigation and nitrogen in a Sahelian environment.Ⅱ.Biomass accumulation,nitrogen uptake and water extraction[J].European Journal of Agronomy,2001,15:106–118.
    [17] Dioufa O., Broub Y.C., Dioufa M., et al.Response of Pearl Millet to nitrogen as affected by water deficit [J].Agronomie, 2004, 24:77–84.
    [18]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53–57.
    [19]莫江华,李伏生,李桂湘.不同生育期适度缺水对烤烟生长、水分利用和氮钾含量的影响[J].土壤通报,2008,39(5):1071–1076.
    [20]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [21]刘小刚,张富仓,田育丰,等.水氮处理对玉米根区水氮迁移和利用的影响[J].农业工程学报,2008, 24(11):19–24.
    [22]王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响[J].生态学报,2007, 27(1):197–205.
    [23]王朝辉,宗志强,李生秀.蔬菜的硝态氮累积和菜地土壤的硝态氮残留[J].环境科学,2002,23(3): 79–83.
    [1]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70–76.
    [2]山仑.植物生理学与国土整治和利用[J].植物生理学通讯1994,30(1):61–66.
    [3]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2002.
    [4]曾德超.果树调亏灌溉密植节水增产技术的研究与开发[M].北京:北京农业大学出版社,1994.
    [5]康绍忠,史文娟,胡笑涛.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):82–87.
    [6]郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水, 2001,20(1):25–27.
    [7]郭相平,康绍忠.玉米调亏灌溉的后效性[J].农业工程学报,2000,16(4):58–60.
    [8]张喜英,由懋正,王新元.不同时期水分调亏及不同调亏程度对冬小麦产量的影响[J].华北农学报, 1999,6(3):33–36.
    [9]孟兆江,卞新民,刘安能,等.棉花调亏灌溉的生理响应及其优化农艺技术[J].农业工程学报, 2007,23(12):80–84.
    [10]张步翀,李凤民,齐广平.调亏灌溉对干旱环境下春小麦产量与水分利用效率的影响[J].中国生态农业学报, 2007,15(1):58–62.
    [11] Pandey R. K., Maraville J.W., Admou A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency [J].European Journal of Agronomy, 2001, 15:93–105.
    [12]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2): 147–151.
    [13]孔庆波,聂俊华,张青.生物有机肥对调亏灌溉下冬小麦苗期生长的影响[J].河南农业科学,2005年,2:51–53.
    [14]孟兆江,贾大林,刘安能,等.调亏灌溉对冬小麦生理机制及水分利用效率的影响[J].农业工程学报,2003,7(4):66–69.
    [15] Pandey R. K., Maraville J.W., Chetima M.M. Tropical wheat response to irrigation and nitrogen in a Sahelian environment.Ⅱ. Biomass accumulation, nitrogen uptake and water extraction[J].European Journal of Agronomy,2001,15:106–118.
    [16] Dioufa O., Broub Y.C., Dioufa M., et al., Response of Pearl Millet to nitrogen as affected by water deficit[J].Agronomie,2004,24:77–84.
    [17] Olesinski A. A., Wolf S., Rudich J.,et al. The Effect of Nitrogen Fertilization and Irrigation Frequency on Photosynthesis of Potatoes (Solanum tuberosum)[J].Annals of Botany,1989, 64:651–657.
    [18]高俊凤.植物生理学实验技术[M].西安:世界图书出版社,1999.
    [19]彭致功,杨培岭,任树梅,等.再生水灌溉对草坪草生长速率、叶绿素及类胡萝卜素的影响特征[J].农业工程学报,2006,22(10):105–108.
    [20]Delauney A. J., Verma D. P. S.Proline biosynthesis and osmoregulation in plants[J].Plant Journal,1993, 4:215–223.
    [21]高灿红,胡晋,郑昀晔,等.玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系[J].应用生态学报,2006,17(6):1045–1050.
    [22]彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报, 2002,26(5):533–537.
    [23]魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究[J].应用生态学报,2004, 15(9):1565–1569.
    [24]王素平,郭世荣,李璟,等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报),2006,17(10):1883–1888.
    [25]朱维琴,吴良欢,陶勤南.不同氮营养对干旱逆境下水稻生长及抗氧化性能的影响研究[J].植物营养与肥料学报,2006,12(4):506–510.
    [26]刘建新,王鑫,王凤琴.水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响[J].草业科学,2005,22(3):18–21.
    [27]孙一荣,朱教君,康宏樟.水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J].生态学杂志,2008,27(5):729–734.
    [28]何承刚,黄高宝,姜华.氮素水平对单作和间套作小麦玉米叶片叶绿素含量及品质的影响[J].干旱地区农业研究,2004,22(3):32–34.
    [29]谢华,沈荣开,徐成剑,等.水、氮效应与叶绿素关系试验研究[J].中国农村水利水电,2003,8:40–43.
    [30]曹翠玲,李生秀.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999, 27(4):96–101.
    [31]赵丽英,邓西平,山仑.持续干旱及复水对玉米幼苗生理生化指标的影响研究[J].中国生态农业学报,2004,12(3):59–61.
    [32]齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应[J].生态环境,2006,15(6):1264–126.
    [33]周婵,杨允菲,李建东.松嫩平原两种趋异类型羊草对干旱胁迫的生理响应[J].应用生态学报,2002,l3(9):1109–1112.
    [34]李向义,赵强,何兴元.策勒绿洲前沿两种植物的水分生理生态特征[J].干旱区研究,2004, 21(2):171–174.
    [35]吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79–84.
    [36]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,4(7):1–7.
    [37]Bowler C., Montagu M. V., Inze D. Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83–116.
    [38]Pauls K. P., Thompson J. E. In vitro simulation of senescence-related membrane damage by ozone–induced lipid peroxidation [J].Nature,1980,283:504–506.
    [39]刘亚云,孙红斌,陈桂珠.多氯联苯对桐花树幼苗生长及膜保护酶系统的影响[J].应用生态学报, 2007,18(1):123–128.
    [1]杜群.西北地区水资源可持续管理与防治土地退化的区域政策—以石羊河流域为例[J].资源科学,2004,26(6):77–82.
    [2]尉元明,朱丽霞,乔艳君,等.干旱地区灌溉农田化肥施用现状与环境影响分析[J].干旱区资源与环境,2003,17(5):65–69.
    [3]李晓欣,胡春胜,张玉铭,等.华北地区小麦—玉米种植制度下硝态氮淋失量研究[J].干旱地区农业研究,2006,24(6):7–11.
    [4]朱兆良.农田中氮肥的损失与对策[J].土壤与环境, 2000, 9(1): 1–6.
    [5] Benbi D. K., Biswas C. R., Kalkat J. S. Nitrate distribution and accumulation in an ustochrept soil profile in a long term fertilizer experiment[J].Fertilizer Research,1991,28:173–177.
    [6] Singh B., Singh Y., Khind C. S., et al. Leaching losses of urea–N applied to permeable soil under lowland rice[J].Fertilizer Research,1991,28:179–184.
    [7]杜太生,康绍忠,张建华.不同局部根区供水对棉花生长与水分利用过程的调控效应[J]中国农业学, 2007,40(11):2546–2555.
    [8]杜太生,康绍忠,王振昌,等.交替隔沟灌溉对棉花生长、产量和水分利用效率的调控效应[J]作物学报,2007,33(12):1982–1990.
    [9]杜太生,康绍忠,胡笑涛,等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J]中国农业科学,2005,38(10):2061–2068.
    [10]汪杰,王耀琳,李昌龙,等.民勤绿洲水资源利用中的问题与节水途径[J].中国沙漠,2006, 26(1):103–107.
    [11]王立秋.春小麦产量及其品质的水肥效应研究[J].干旱地区农业研究,1997,15(1):58–63.
    [12]Singh P. N., Joshi B. P., Singh G. Water use and yield response of wheat to irrigation and nitrogen on an alluvial soil in North India[J].Agriculture Water Management,1987,12:311–321.
    [13]Kerentajer L., Berliner P. R. Effects of moisture stress on nitrogen fertilizer response in dryland wheat[J].Agronomy Journal,1988,80:977–981.
    [14]Sharma B. D.,Jalota S. K.,Kar S., et al. Effect of nitrogen and water uptake on yield of wheat[J]. Fertilizer Research,1992,31:5–8.
    [15]金轲,汪德水,蔡典雄,等.水肥耦合效应研究.Ⅱ.不同N、P、水配合对旱地冬小麦产量的影响[J].植物营养与肥料学报,1999,5(1):8–13.
    [16]唐玉霞,孟春香,贾树龙,等.冬小麦对水肥的反应差异与节水冬施肥技术[J].干旱地区农业研究,1996,14(2):36–40.
    [17]翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感期的确定[J].中国农业科学,2005, 38(6):1188–1195.
    [18]Singh K. P., Kumar V.Water use and water use efficiency of wheat and barely in relation to seeding dates, levels of irrigation and nitrogen fertilization [J].Agriculture Water Management,1981,3(4): 305–316.
    [19]东先旺,刘树堂,陶世荣.不同肥水组合对夏玉米水分利用效率经济效益的影响[J].华北农学报, 2000,15,(1):81–85.
    [1]鲍士旦.土壤农化分析[M].北京.中国农业出版社,2000.
    [2]倪余文,区自清.土壤优先流及污染物优先迁移的研究进展[J].土壤与环境,2000,9(1):60–63.
    [3]王兴武,于强,张国梁,等.鲁西北平原夏玉米产量与土壤硝态氮淋失[J].地理研究,2005, 24(1):140–150.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.