PTEN基因重组腺病毒治疗脑胶质瘤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑胶质瘤作为人类最常见的原发性颅内肿瘤,有很高的发病率和死亡率。约占成人颅内原发肿瘤的30%-50%,近年来发病率还有增加的趋势。恶性肿瘤的常规治疗手段,如手术、放疗、化疗、生物治疗等对胶质瘤的治疗,效果甚微,胶质瘤患者的平均生存期仍较短。迄今的治疗方法都不能从根本上治疗这一致命的肿瘤。因而新疗法的探索成为热点课题。基因治疗作为治疗疾病的一种新手段,正愈来愈受到人们的重视和关注。常用的基因治疗的方法包括基因置换和增补缺陷基因。将抑癌基因转移肿瘤细胞是直接杀伤或抑制肿瘤细胞的最有效的基因治疗的措施之一。
     PTEN(phosphatase and tensin homologue deleted on chromosome 10)抑癌基因,即第10号染色体缺失的与张力蛋白同源的基因,是新近发现的一个具有双特异性的抑癌基因,在胶质瘤干细胞的表达谱中缺失。PTEN基因位于10号染色体q23.3,有9个外显子和8个内含子。第5个外显子编码第122和123位氨基酸,该编码序列与蛋白质丝氨酸/苏氨酸磷酸酶和蛋白质酪氨酸磷酸酶催化中心具有同源序列,表明该区域具有双特异性磷酸酶功能。PTEN蛋白所具有的双特异性磷酸酯酶的活性在抑制肿瘤中具有极其重要的作用,除了能使磷酸丝氨酸/苏氨酸和酪氨酸去磷酸化,发挥蛋白磷酸酯酶的作用外,还能通过抑制1-磷酸酰肌醇-3-激酶(P13K)的产物磷酸酰肌醇3,4,5-三磷酸(PIP3)的磷酸化,发挥脂性磷酸脂酶的功能,在P13K信号传导通路中起负性调节作用。PTEN直接使PIP3的D3位去磷酸化,这是PTEN抑制细胞生长和促进凋亡的重要机制。PTEN蛋白的表达能抑制P13K激酶信号通路介导的下游事件,如:PKB/Akt细胞存活增殖信号的激活,促进G1细胞周期转换P70S6-激酶的激活。PTEN基因已经成为有市场前景的抑癌基因。
     为进一步探讨PTEN基因及蛋白在脑胶质瘤中的作用,我们通过临床研究和基础研究两方面深入分析了PTEN在脑胶质瘤中的作用机制。通过研究我们检测了PTEN基因水平以及蛋白水平在脑胶质瘤中的表达以及与细胞凋亡的关系。通过基础研究我们将外源性野生型PTEN转染胶质瘤细胞系,观察野生型PTEN在体外及体内对胶质瘤细胞的治疗作用,并检测其可能的作用机制,为脑胶质瘤的基因治疗提供理论依据。系统的研究PTEN-PI3K-Akt-NF-KB以及下游靶基因的信号传导通路,在国内外尚无报道。
     第一部分PTEN在正常脑组织及脑胶质瘤中的表达与细胞凋亡关系的研究
     目的:探讨PTEN (phosphatase and tensin homology deleted on chromosome ten)在人脑胶质瘤及正常脑组织中的表达以及与细胞凋亡的关系。
     方法:应用免疫组织化学SP及Western blot检测人正常脑组织及人脑胶质瘤组织中PTEN蛋白水平的表达,半定量RT-PCR法检测人正常脑组织和人脑胶质瘤中PTEN mRNA水平的表达,以及TUNEL法检测人正常脑组织和人脑胶质瘤中细胞凋亡的情况。
     结果:
     1 PTEN在正常人脑组织标本中过度表达,在胶质瘤组织标本之中有表达,且随着级别的增加表达的阳性率降低(Figl),它们从正常到高级别的阳性率分别为100%、85.7%、63.6%、50%(table.1),低级别胶质瘤(I-II)和高级别胶质瘤(Ⅲ、Ⅳ)之间具有统计学意义(P<0.05)。
     2 PTEN在蛋白水平均为正常脑组织表达高于人脑胶质瘤,随着胶质瘤级别的升高,PTEN蛋白表达水平明显降低(Fig2),其相对表达量分别为0.667±0.203、0.475±0.169、0.237±0.087、0.153±0.046(table2),胶质瘤各级别之间表达有显著差异(P<0.05)。
     3 PTEN在mRNA水平均为正常脑组织表达高于人脑胶质瘤,随着胶质瘤级别的升高,PTENmRNA表达水平明显降低(Fig2),其相对表达量分别为3.767±0.865、2.530±0.619、1.853±0.436、0.688±0.140(table2),胶质瘤各级别之间表达有显著差异(P<0.05)。
     4人正常脑组织中细胞凋亡率明显低于人脑胶质瘤,两组之间表达有显著差异(P<0.05)(Fig4),且随着级别的增加表达的细胞凋亡率降低,它们从正常到高级别的凋亡率分别为3.2±0.5%、46.4±6.7%、37.2±5.2%、21.2±5.1%(table.4),细胞凋亡率与胶质瘤级别的升高以及PTEN mRNA及蛋白表达水平密切相关(P<0.05),随着PTEN mRNA及蛋白表达水平表达升高,细胞凋亡率随之下降。
     结论:PTEN mRNA及蛋白表达水平在人脑胶质瘤中随级别的升高表达下降,PTEN与细胞凋亡密切相关,可能成为其诊疗的一个新的指示靶点。
     第二部分PTEN基因重组腺病毒对胶质瘤细胞株增殖、凋亡以及细胞周期的影响
     目的:探讨抑癌基因PTEN对人胶质瘤U251、U87、A172细胞系增殖、凋亡及细胞周期的影响,并对其可能的作用机制进行探讨。
     方法:将携带PTEN及绿色荧光蛋白的重组腺病毒(Ad-PTEN-GFP)或空载体腺病毒(Ad- GFP)转染人胶质瘤U251、U87、A172细胞系。MTT检测细胞生长曲线;TUNEL法检测细胞凋亡;流式细胞仪检测Ad-PTEN-GFP转染后细胞周期分布以及细胞凋亡率;半定量PCR(RT- PCR)检测PTEN、CIAP1、CIAP2、XIAP、Survivin mRNA水平变化;Western Blot检测PTEN、AKT、p-AKT、IκB、P65、CIAP1、CIAP2、XIAP、Survivin、CyclinD1、P27、Bcl-2、Bax蛋白水平变化。
     结果:
     1携带PTEN腺病毒转染的检测结果
     Ad-PTEN感染胶质瘤细胞后,细胞在第三天达到最高转染率,当感染复数(M.O.I)为100时,荧光显微镜镜下显示细胞的荧光表达率均为80%以上(Figl、2、3),符合基因治疗对载体的要求。
     2 MTT检测细胞生长曲线
     在MOI=100时,Ad-PTEN-GFP转染组与Ad-GFP转染组各时间段细胞吸光度相比,增殖活性程度均降低(P<0.01 Fig 7),差异具有统计学意义。PTEN增高后明显降低胶质瘤细胞株的增殖活性。
     3 TUNEL法检测细胞凋亡
     在MOI=100时,腺病毒转染U251、U87、A172细胞系后,分别取1d、3d、5d后转染Ad-PTEN-GFP组细胞凋亡比例均明显高于未转染组,且于第5天,细胞凋亡比率最高(Fig 6、9 P<0.01)。
     4流式细胞仪检测细胞凋亡以及细胞周期变化
     Ad-PTEN-GFP转染U251、U87、A172细胞后与Ad-GFP组相比细胞凋亡率逐渐增加,空白对照和无义序列组相比凋亡率明显增加,提示PTEN基因表达上调明显诱导胶质瘤细胞株的凋亡(Fig 10)。细胞周期分析显示,当Ad-PTEN-GFP转染U251、U87、A172细胞后5天,G1期细胞比例增加,S期细胞比例降低,细胞周期阻滞于G1期(Fig 8);
     5 RT-PCR检测PTEN以及IAP家族1mRNA水平
     以M.O.I=100转染U251、U87、A172细胞系1、3、5天,Ad-PTEN-GFP组与Ad-GFP组的CIAP1、CIAP2、XIAP、Survivin mRNA表达水平相比表达明显降低,且于第3天IAP家族mRNA表达水平降至最低水平。IAP家族mRNA表达水平与PTEN mRNA表达水平呈负相关改变(Fig 4、5;table 3、4 P<0.01)。
     6 Western blot检测PTEN及相关靶基因的蛋白水平
     以M.O.I=100转染U251、U87、A172细胞系1、3、5天,Ad-PTEN-GFP组与Ad-GFP组的AKT、p-Akt、IκB、P65、IAps、CyclinD1、P27、Bcl-2家族蛋白表达水平相比明显变化,且其蛋白表达水平与PTEN蛋白表达水平密切相关(Fig 5,table 4)。
     结论:高表达PTEN能够明显抑制人胶质瘤U251、U87、A172细胞系增殖并诱导凋亡,其可能与PTEN-PI3K/AKT-NF-κB信号通路被激活有关,并通过此通路调控多种凋亡相关因子家族,如IAPs及Bcl-2家族,并通过调控细胞周期相关因子导致细胞周期阻滞。
     第三部分PTEN基因重组腺病毒抑制裸鼠胶质瘤生长的实验研究
     目的:探讨Ad-PTEN对人胶质瘤荷瘤裸鼠的治疗作用,并对其可能的作用机制进行探讨。
     方法:建立裸鼠胶质瘤模型;将携带Ad-PTEN-GFP或空Ad-GFP注射治疗肿瘤,观察肿瘤生长情况及裸鼠生存期,TUNEL法检测细胞凋亡;免疫组化检查PTEN及P65蛋白水平变化。
     结果:
     1各组肿瘤生长情况及裸鼠存活时间
     U251细胞以7×105接种裸鼠后20天左右均可见肿瘤结节形成,瘤体内注射5次,Ad-PTEN组肿瘤体积生长明显变慢,较对照组体积小,治疗6周后肿瘤体积抑制率82.50%,与对照组相比有显著性差异(p<0.05 Fig5)。U251和Ad-GFP台疗组裸鼠肿瘤生长迅速,生存状态较差,均在移植后28-80天内相继死亡,两组裸鼠的平均生存时间分别54±7天和58±8天,Ad-PTEN治疗组裸鼠的生存状态明显好于另外两组,肿瘤生长缓慢直至移植后120天观察结束仍有2只裸鼠存活,平均生存时间103±10天,生成时间显著延长(Fig6)。
     2各组中目的蛋白及凋亡的表达
     免疫组化显示PTEN及P65蛋白主要表达于细胞核,偶有胞浆表达,着色后成棕黄色、棕褐色颗粒。其Ad-PTEN治疗组中PTEN表达明显增高,P65表达明显降低,细胞凋亡增加(Fig1-3),其表达差异有统计学意义。
     结论:各组细胞接种裸鼠后均可见移植瘤的生长,Ad-PTEN治疗后能明显抑制肿瘤在裸鼠内的生长,延长裸鼠的生存期,免疫组化结果提示PTEN可能通过PTEN-P65通路体内促瘤细胞凋亡。
As the most common primary intracranial primary tumor, glioma has high morbidity and mortality. It accounts for 30%-50% of the adult intracranial, which is increasing in recent years. The conventional treatments of malignant tumor, such as surgery, radiation therapy, chemotherapy, biological therapy, all are not effective for gliomas. Therefore, the patients'average survival period is still short. So far this deadly cancer cannot be cured fundamentally. Thus the new therapy becomes a big task. As a fresh treatment for a disease, gene therapy is concerned by more and more people. Common gene therapy includes gene replacement and faulty gene supplement. Transfer tumor cells by tumor-suppressor gene are the most effective gene therapy to kill or inhibit tumor cells.
     PTEN (phosphates and tensing homologue deleted on chromosome 10) the tumor-suppressor genes, which are lack of chromosome 10 and homologous with tension protein genes, are one of the tumor suppressor genes with double specificity. It is discovered recently and lacked in the expression of gliomas stem cells. PTEN genes are located in chromosome 10 q23.3, including 9 explicit the son, and 8 introns. The 5th explicit son are coded the 122 and 123 amino acids. This coding sequence has the same sequence with protein serine/threonine phosphates and protein tyrosine phosphates catalytic center, so this region has double specificity phosphates'function. This function plays an important role in inhibiting tumor, which not only can dephosphorylated in phosphoric acid serine/threonine and tyrosine as protein phosphatase, but also can inhibit 1-3 instill acylating phosphate-the product of PI3K) kinase (3,4,5 inositol acylating phosphate 3 phosphoric acid (PIP3)-the phosphorylation of phosphate ester and plays a negative regulatory role in the function of PI3K enzyme signaling pathways, as fat phosphatase. The dephosphorylation of D3 PIP3 is an important mechanism of inhibiting cell growth and promoting apoptosis. PTEN protein can restrain the activities of PI3K kinase signaling pathways, such as PKB/Akt cell survival proliferation signal activation which can promote the G1 cell cycle P70S6-kinase activation. PTEN gene has become a market prospect as one kind of tumor suppressor genes.
     To further explore the effect of PTEN genes and proteins in gliomas, we deeply analyzed the PTEN functions in gliomas through clinical research and basic research. Through the research we examined PTEN gene level and protein levels in gliomas and the relationship with cell apoptosis. Through the basic research we transferred the exogenous wild-type PTEN into glioma cells transfected, observed the therapeutic effect of wild-type PTEN to gliomas cells in vitro and in vivo, and detected the possibility for glioma, for providing the theory basis for gene therapy. The research of PTEN-PI3K-Akt-NF-κB and the downstream target genes signaling pathways have not been reported at home and abroad.
     1:The research of relationship between PTEN expression in the normal brain tissue and gliomas and cell apoptosis
     Objective:Explore the relationship between PTEN (phosphatase and tensin homology deleted on chromosome ten) expression in the normal brain tissue and gliomas and cell apoptosis.
     Methods:Test people normal brain tissue and the human.brain PTEN protein levels in gliomas organization expression using immunohistochemistry SP and Western blot; detect normal brain tissue and human brain mRNA level in gliomas PTEN expression using semi-quantitative RT-PCR; and detect normal brain tissue and cell apoptosis in human glioma using TUNEL.
     Result:
     1. PTEN is over-expressed in normal brain tissue samples, exists in gliomas tissue samples. The positive expression increased following the levels (Fig1),100%,85.7%,63.6%,50% for normal to higher-level (table 1). There is statistically significant between low-level gliomas (Ⅰ-Ⅱ), and high-level gliomas (Ⅲ,Ⅳ) (P< 0.05).
     2. PTEN protein expression level in normal brain is higher than in the human brain with gliomas. The higher level of gliomas, the lower PTEN protein expression obviously (Fig2), which showed 0.667±0.203, 0.475±0.169,0.237±0.087,0.153±0.046 relatively (table2). Furthermore glioma express has significant differences (P< 0.05).
     3. PTEN mRNA level in normal brain is higher than in the human brain with gliomas. The higher level of gliomas, the lower PTENmRNA expression obviously (Fig2), which showed 3.767±0.865.2.530±0.619、1.853±0.436、0.688±0.140 relatively (table2). Furthermore glioma express has significant differences (P< 0.05).
     4. Cell apoptosis rate in normal brain obviously lower than in human gliomas, the two groups express significant difference (P< 0.05) (Fig4). Moreover apoptosis rate decreased with the increase of the expression level, 3.2±0.5%、46.4±6.7%、37.2±5.2%、21.2±5.1% from normal to higher-level (table 4). There is close relationship between apoptosis rate, the gliomas level and mRNA and protein expression level PTEN (P< 0.05), because when PTEN mRNA and protein expression level express rise, cell apoptosis rate decrease.
     Conclusion:PTEN mRNA and protein expression level of in the brain with elevated levels of gliomas, express drop, closely related with PTEN cell apoptosis, may become a new instructions targets diagnosis..
     2:The influence of PTEN gene recombinant adenovirus for cell proliferation of glioma, apoptosis and the cell cycle
     Objective:Analyze the PTEN tumor-suppressor genes'influence to U251, U87, A172 gliomas, apoptosis and cell proliferation, anddiscuss the cycle of its possible mechanism.
     Methods:Transfer restructuring adenovirus (Ad-PTEN-GFP) carrying PTEN and green fluorescent protein or empty carrier adenovirus (Ad-GFP) to U251, U87, A172 glioma cell lines. Detect cell growth curve by MTT; detect apoptosis by TUNEL; detect cell cycle distribution and apoptosis rate after carrying Ad-PTEN-GFP by flow cytometric analysis ion; test PTEN,CIAP1, CIAP2 XIAP, Survivin mRNA level by half quantitative polymerase chain reaction (PCR) (RT-PCR); test PTEN、AKT、p-AKT、IκB、P65、CIAP1、CIAP2、XIAP、Survivin、CyclinD1、P27、Bcl-2、Bax protein levels by Western Blot.
     Result:
     1. Test results of Carrying PTEN adenovirus
     The highest rate reached in the third day after Ad-PTEN infection.when infections (M.O.I) was 100 plural, the fluorescent expression rate were all more than 80%(Fig1,2,3), which accorded with the requirement of the carrier of gene therapy.
     2. The MTT detection for cell growth curve
     When the MOI=100, the proliferation activity degree reduced compared to spectrophotometry Ad-PTEN-GFP carrying group and Ad-GFP carrying group each time (P< 0.01 Fig 7), with a statistically significant difference. Increased PTEN significantly reduced glioma cell proliferation activity.
     3. TUNEL method to detect apoptosis
     When MOI=100, adenovirus carrying U251, U87, A172 cell lines, cell apoptosis proportion in which respectively taking 1d,3d,5d carrying Ad-PTEN-GFP group were significantly higher than not carrying group. In the fifth day, apoptosis rate was highest (Fig 6,9 P< 0.01).
     4. Detect cell apoptosis and cell cycle changes by streaming instrument Compared with Ad-GFP cell, Ad PTEN-GFP-carrying U251, U87, A172 cells, apoptosis rate increase gradually; compared with no righteous sequence, blank control group apoptosis rate significantly increased. It noticed that PTEN genes over-active obvious lead to glioma cell apoptosis (Fig 1). The cell cycle analysis show that 5 days after the Ad-PTEN-GFP carrying U251, U87, A172 cell, G1 phase cells increased, S period cells decreased, the cell cycle block proportion in G1 phase (Fig 8).
     5. mRNA level of PTEN and IAP family by RT-PCR detection when M.O.I= 100 in carrying U251, U87, A172 cell line 1,3,5 days, compared with Ad-GFP group, Ad-PTEN-GFP group's CIAP2, CIAP1, XIAP, Survivin mRNA expression level was significantly lower, and IAP family mRNA expression level is reduced to the minimum level on the third day. MRNA of IAP Expression level family and mRNA of PTEN Expression level were negatively correlated (Fig 4,5; table 3,4 P< 0.01).
     6. Western blot test PTEN and related target genes protein level When M.O.I= 100 in carrying U251, U87, A172 cell line 1,3,5 days, Ad-PTEN-GFP group protein expression level changed obviously compared to Ad-GFP group AKT、p-Akt、IκB、P65、IAps、CyclinD1、P27、Bcl-2 family, and the protein expression level was closely related to PTEN protein expression level (Fig 5, table 4).
     Conclusion:High expression PTEN can significantly inhibite gliomas U251, U87, A172 proliferation and apoptosis-oriented lines, which may be relevant to PTEN-PI3K/AKT-NF-κB signaling pathways activated. Through this channel regulation various factors related to family, such as apoptosis IAPs and Bcl-2 family, and through regulating the cell cycle related factors cause the cell cycle block.
     3:Experimental study of restructuring nude glioma growth by PTEN genes
     Objective:Study the therapeutic effect of nude tumor-burdened using the Ad-PTEN gliomas, and discuss its possible mechanism.
     Methods:Build nude glioma model, inject tumor carrying Ad-PTEN-GFP or empty Ad-GFP, observe tumor growth and nude survival, detect apoptosis using TUNEL method; Immunohistochemical check PTEN protein levels and P65 change.
     Results:
     1. Situation of tumor growth and survival time of nude U251 cells to 7×105 nude about 20 days after inoculation tumor nodules are visible form, inject inside 5 times, tumors Ad-PTEN group of tumor size obviously, a slow growth control volume small, the treatment for 6 weeks after tumor size inhibition rate, as compared with control 82.50% was significant difference (p <0.05 Fig5). U251 and Ad-GFP treatment group nude tumor growth and survival condition worse quickly after transplantation, two groups died off the average survival time in 28~80 days. Nude respectively to 54±7 days and 58±8days, Ad-PTEN nude treatment group was significantly better than living condition of the other two groups, tumor growth slow until 120 days after transplantation end still has 2 only observe nude alive, the mean survival time plus or minus 10 days,103 generate time significantly extend (Fig6).
     2. Each target protein and apoptosis in the expression Immunohistochemical display P65 protein mainly express PTEN and in the nucleus, with occasional cytoplasm after expression, shaded into tan, brown particles. Ad-PTEN treatment group significantly higher in P65 PTEN expression expression, reduced significantly, and apoptosis increase (Fig 1-3). Its expression differences with a statistical significance.
     Conclusion:Each cell nude are visible transplantation after inoculated the growth of tumors, Ad-PTEN after treatment can significantly inhibit the growth of tumors in nude, extend survival time. Immunohistochemical results suggest that PTEN possibly by PTEN-P65 pathways promote tumor cell apoptosis body.
引文
1 Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. [J].Proc Natl Acad Sci USA 1997,94: 9052-9057
    2 Lee S,Choi EJ,Jin C,et al. Activation of PI3K/Akt pathway by PTENreduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol,2005,97(1):26-34
    3 Datta SR, Brunet A, Greenberg ME. Cellular survival:a play in three Akts, Genes Dev 1999,13:2905-2927
    4 Myers MP, Stolarov JP, Eng C,et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl78Acad Sci USA,1997,94(17):9052-9057
    5 Tabellini G, Tazzari PL, Bortu R, etal. Novel2'-substituted,3'-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. Br J Haematol,2004,126(4):574-582
    6 Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275:1943-1947
    7 Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet,1997, 15:356-362
    8 Myers MP, Stolarov JP, Eng C, et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA,1997,94:9052-9057
    9 Gulati N, Laudet B, Zohrabian VM, et al. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res,2006,26(2A):1177-1181
    10 Abe T, Terada K, Wakimoto H, et al. PTEN decrease in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res,2003,63 (9):2300-2305
    11 Korshunov A, Sycheva R, Golanov A. The prognostic relevance of molecular in glioblastomas for patients age<50 years. Cancer, 2005,104(4):825-832
    12 Furukawa K, Kumon Y, Harada H, et al. PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules. Int J Oncol, 2006,29(1):73-81
    13 Saito Y, Swanson X, Mhashilkar AM, et al. Adenovirus mediated transfer of the PTEN gene inhibits human colorectalcancer growth in vitro and in vivo. Gene Ther,2003,10(23):1961-1969
    14卢量盛,周小平,王建军等腺病毒介导PTEN基因杭脑胶质瘤作用的实验研究.肿瘤防治杂志,2004,11(5):476-480
    15 Korsmeyer SJ. Apoptosis regulation and oncogenesis. Proccedings of Am Assoc Cancer Res,1996; 37:624-632
    16 Que FG, Gores GJ. Cell death by apoptosis:basic concepts and disease relevance for the gastroenterologist. Gastroenterology, 1996;110:1238-1243
    1 Abe T, Terada K, Wakimoto H, et al. PTEN decrease in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res,2003,63(9)2300-2305
    2 Korshunov A, Sycheva R, Golanov A. The prognostic relevance of molecular in glioblastomas for patients age<50 years. Cancer, 2005,104(4):825-832
    3 Furukawa K, Kumon Y, Harada H, et al. PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules. Int J Oncol,2006,29(1):73-81
    4 Furnari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN mediates a serum sensitive G1 growth arrest in glioma cells. Cancer Res,1998,58(22):5002-5008
    5 Zhu XY, Kwon CH, Schlosshauer PW, et al. PTEN Induces G1 cell cycle arrest and decreases cyclin D3 levels in endometrial carcinoma cells. Cancer Res,2001,61:4569-4575
    6 Saito Y, Swanson X, Mhashilkar AM, et al. Adenovirus mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther,2003,10(23):1961-1969
    7 Kim D, Dan HC, Park S, Yang L, et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front biosci,2005,1(10):975-984
    8 Sharma PS, Sharma R, Tyagi R. Inhibitors of cyclin dependent kinases: useful targets for cancer treatment. Curr Cancer Drug Targets,2008,8 (1): 53-75
    9 Scholl C, Gilliland DG, Frohling S. Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol,2008,35(4):336-345
    10 Ihle NT, Powis G. Take your PIK:phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther, 2009,8(1):1-9
    11 LoPiccolo J, Granville CA, Gills JJ, et al. Targeting Akt in cancertherapy. Anticancer Drugs,2007,18 (8):861-874
    12 Lop iccolo J, Ballas MS, Dennis PA. PTEN hamartomat ous tumor syndromes(PHTS):rare syndromes with great relevance t o common cancers and targeted drug development. Crit Rev Oncol Hematol,2007,63 (3):203-214
    13 Kenneth M, Yamada, Masaru Araki. Tumor suppressor PTEN:modulator of cell signaling, growth, migration and apoptosis. Cell Sci, 2001,114(23):2375-82
    14陈琳,薛绪潮.第三代腺病毒载体的改良与应用.第二军医大学学报,2007,28(07):89-91
    15 Gulati N, Laudet B, Zohrabian VM, et al. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res,2006,26(2A):1177-1181
    16 Weng LP, Brow JL, Eng C, et al. PTEN coordinates G1 arrest by downregulating cyclin D1 via its protein phosphatese activity and upregulating p27 via its Lipid phosphatase activity. Hum Mol Genet, 2001,10(6):599-604
    17 Lee SJ, Yang EK, Kim SG. Peroxisome proliferators-activated receptor-gamma and retinoic acid X receptor alpha represses the TGF betal gene via PTEN-mediated p70 ribosomal S6 kinase-1 inhibition:role for Zf9 dephosphorylation. Mol Pharmacol,2006,70(1):415-425
    18 Li HF; Keeton A; Vitolo M.A High-Throughput Screen with Isogenic PTEN+/+ and PTEN-/-Cells Identifies CID1340132 as a Novel Compound That Induces Apoptosis in PTEN and PIK3CA Mutant Human Cancer Cells. J Biomol Screen.2011,16(4):383-393
    19 Sarkar D; Park ES; Emdad L; et al.Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res.2008:68(5):1478-84
    20 Gozzelino R; Sole C; Llecha N; et al. BCL-XL regulates TNF-alpha-mediated cell death independently of NF-kappaB, FLIP and IAPs Cell Res.2008:18(10):1020-36
    21 Zhao X; Laver T; Hong SW; et al. An NF-kappa B p65-cIAP2 link is necessary for mediating resistance to TNF-alpha induced cell death in gliomas. J Neurooncol.2011:10(1):198-208
    22 Stehlik C, De Martin R, Kumabashiri I, et al. Nuclear factor (NF)-kappaB-regulated X-chromosome- linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J ExpMed,1998,188:211-216
    23 Hofer-WarbinekR, Schmid JA, Stehlik C, et al-Activation of NF-kappa B by XIAP, the X chromosome-liked inhibitor of apoptosis, in endothelial cells involves TAK1-J Biol Chem,2000,275(29):22064-22068
    24 Tamm I, Wang Y, Sausville E, et al. IAP 2 family protein survivin inhibits caspase activity and apoptosis induced by fas (CD95), bax, caspases,and anticancer drugs. Cancer Res 1998,58:5315-5320
    25 Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors.Cell,1998,94(4):481-490
    26 Weber IT, Fang B, Agniswamy J. Caspases:structure-guided design of drugs to control cell death. Mini Rev Med Chem,2008,8(11):1154 1162
    27 Zhai D, Jin C, Huang Z, et al Differential regulation of Bax and Bak by anti-apoptotic Bcl-2-family proteins, Bcl-B and Mcl-1. J bio chen,2008 11;283(15):9580-9586
    28 De Falco M; De Luca A; Cell cycle as a target of antineoplastic drugs. Curr Pharm Des.2010:16(12):1417-1426
    29 Lee KW, Kim HJ, Lee YS, et al. Acteoside inhibits human promyelocyticHL-60 leukemia cell proliferation via inducing cell cycle arrest at G0/G1 phase and differentiation into monocyte. Carcinogenesis, 2007,28(9):1928-1936
    30 Cheung CH; Cheng L; Chang KY; et al. Investigations of survivin:the past, present and future. Front Biosci.2011,16:952-961
    1 Myers MP, Stolarov JP, Eng C, Li J, et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 1997,94:9052-9057
    2 R Endersby, SJ Baker. PTEN signaling in brain:neuropathology and tumorigenesis. Oncogene,2008,27:5416-5430
    3 Korshunov A, Sycheva R, Golanov A. The prognostic relevance of molecular in glioblastomas for patients age<50 years. Cancer, 2005,104(4):825-832
    4 Furukawa K, Kumon Y, Harada H, et al. PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules. Int J Oncol,2006,29(1):73-81
    5 Abe T, Terada K, Wakimoto H, et al. PTEN decrease in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res,2003,63(9)2300-2305
    6 Yang CM, Yen YT, Huang CS, et al. Growth inhibitory efficacy of lycopene and β-carotene against androgen-independent prostate tumor cells xenografted in nude mice. Mol Nutr Food Res,2011,55(4):606-612.
    7 Steinstraesser L, Hauk J, Jacobsen F, et al. Establishment of a synovial sarcoma model in athymic nude mice. In Vivo,2011,25(2):165-169.
    8 Ko MS, Jung JY, Shin IS, et al. Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse. Int J Med Sci,2011,8(3):231-238
    9 Barajas M,Mazzolini QGenove GGene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin-12[J]. Hepatology,2001,33:52-61
    10 Sehondof T, Becker M, Gohring UJ. et al. Interaction of cisplatin, paclitaxel and adriamycin with the tumor suppressor PTEN. Anticancer Drugs,2001,12:797-780
    11 Hartmann W, DigonSontgerath B, Koch A, et al. Phosphatidylinositol 3-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res 2006,12:3019-3027
    12 Yang LQ,Fang DC,Wang RQ,et al.Effect of NF-KB,surviving,Bcl-2 and Caspase 3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand.World Journal of Gastroenterology,2004; 10(1):22-26
    1 Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. [J].Proc Natl Acad Sci USA 1997,94:9052-9057
    2 Raftopoulou M,Etienne-Manneville S,Self A,et al.Regulation of cell migration by the C2 domain of the tumor suppressor PTEN[J].Science,2004,303(5661):1179-1181
    3 Weng LP,Gimm O,Kum JB,et al.Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death[J].Hum Mol Genet,2001,10(3):251-258
    4 R Endersby,SJ Baker.PTEN signaling in brain:neuropathology and tumorigenesis.[J].oncogene,2008,27:5416-5430
    5 Chung JH, Eng C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. [J]. Cancer Res 2005; 65:8096-100
    6 She QB, Solit DB, Ye Q, O'Reilly QE, Lobo J, Rosen N. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. [J] Cancer Cell 2005; 8:287-297
    7 Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. [J].Nature 2004 432: 396-401
    8 Korshunov A, Sycheva R, Golanov A. The prognostic relevance of molecular in glioblastomas for patients age<50 years. Cancer,2005, 104(4):825-832
    9 Furukawa K, Kumon Y, Harada H, et al.PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules. Int J Oncol,2006,29(1):73-81
    10 Abe T, Terada K, Wakimoto H, et al. PTEN decrease in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res,2003,63 (9):2300-2305
    11 Sano T, Lin H, Chen X, Langford LA, Koul D, Bondy ML et al. (1999).Differential expression of MMAC/PTEN in glioblastoma multiforme:relationship to localization and prognosis. Cancer Res 59: 1820-1824
    12 Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM et al.Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 2006,66:7864-7869
    13 Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007). WHO Classification of Tumours of the Central Nervous System. Internationa Agency for Research on Cancer:Lyon
    14 Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 2005;7:356--68
    15 Zhu X, Kwon CH, Schlosshauer PW, Ellenson LH, Baker SJ. PTEN induces G1 cell cycle arrest and decreases cyclin D3 levels in endometrial carcinoma cells. Cancer Res 2001;61:4569-4575
    16 Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen Eet al. Loss of PTEN facilitates HIF-1-mediated geneexpression. Genes Dev 2000,14:391-396
    17 RamnathN Creaven PJ. Matrixmetallo Proteinase inhibitors. CurrOneol ReP.2004 Mar;6(2):96-102
    1 Charles DS, David HR. Glioma Stem Cells:A Midterm Exam [J]. cell,2008,5(31):832-847
    2 Fan X,salford LG,Widegren B.Glioma stem cells:evidence and limitaion[J]. Semin Cancer Biol,2007,17(3):214-218
    3 Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS, Fiocco R,Foroni C, Dimeco F, and Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. CancerRes[J].2004,64(6):7011-7021
    4 Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith, M, Geschwind DH, Bronner-Fraser, M, and Kornblum HI. Cancerous stem cellscan arise from pediatric brain tumors[J].Proc.Natl.Acad.Sci.USA.2003,100(26): 15178-15183
    -5 Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman R.M, Cusimano MD, and Dirks PB. Identification of human brain tumour initiating cells[J].Nature.2004,432(18):396-401
    6 Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, and Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response [J]. Nature. 2006a,444(7120):756-760
    7 Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ,Aigner L, Brawanski A, Bogdahn U, and Beier CP. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles[J]. Cancer Res.2007,67(9): 4010-4015
    8 Reynolds BA, and Weiss S. Generation of neurons and astrocytesfrom isolated cells of the adult mammalian central nervous system[J]. Science.1992.255(5052):1707-1710
    9 Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T,Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat. Biotechnol.2008,26(1):101-106
    10 Uhrbom L, Kastemar M, Johansson FK, Westermark B, Holland EC. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis[J].Cancer Res.2005,65(6):2065-2069
    11 Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ,Tang Y, DeFrances J, Stover E, Weissleder R, et al. Epidermal growth factor receptor and Ink4a/Arf:convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyteaxis[J]. Cancer Cell.2002,65(1):269-277
    12 Doetsch F, Caille I, Lim DA, Garcia V, Alvarez BA. Sub ventricular zone astrocytes are neural stem cells in the adult mammalian brain[J].Cell.1999,97(6):703-716
    13 Varfhese M, Olstom H, Sandberg C. A compasion between stem cells from the adult human brain and from brain tumors [J]. Neurosurgery. 2008,63(6):1022-1033
    14 Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells,cancer, and cancer stem cells[J]. Nature.2001,414(8):105-111
    15 Kondo T, Raff M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells[J].GenesDev.2004,18(23):2963-2972
    16 Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S.Wehner R, Schackert G, Schackert HK, Fussel M, et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy[J]. Cancer.2007,96(8):1293-1301
    17 Ligon KL, Kesari S, Kitada M, Sun T, Arnett HA, Alberta JA, Anderson DJ, Stiles CD, Rowitch DH. Development of NG2 neural progenitor cells requires Olig gene function[J]. Proc. Natl. Acad. Sci. USA (2006b).103(12):7853-7858
    18 Liu A, Han YR, Li J, Sun D, Ouyang M, Plummer MR, Asaccia-Bonnefil P. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory [J]. Neurosci. 2007,27(27):7339-7343
    19 Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS, Fiocco R,Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma[J].CancerRes.2004,64(19):7011-7021
    20 Vescovi A, Galli R, Reynolds BA. Brain tumour stem cells[J].Nat. Rev. Cancer 2006.6(6):425-436
    21 Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells[J].Nature.2001,414(12):105-111
    22 Hirsch C, Campano LM, Wohrle S, Hecht A. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures[J]. Exp Cell Res 2007; 313(3):572-87
    23 Prakash N, Wurst W. A Wnt signal regulates stem cell fate and differentiation in vivo. [J]. Neurodegener Dis 2007; 4(4):333-8
    24 Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T, Nikolcheva T, Gotoh Y, Peltz G, Gong L,Kawase T, Alvarez Buylla A, Okano H, Sawamoto K. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone [J]. Stem Cells 2007;25(11):2827-36
    25 Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D. Notch pathway molecules are essential for the maintenance,but not the generation, of mammalian neural stem cells [J]. Genes Dev 2002;16(7):846-858
    26 Wang J, Wakeman TP, Lathia JD. Notch promotes radioresistance of glioma stem cells [J]. stem cells.2010,28(1):17-28
    27 Baron M. An overview of the Notch signalling pathway [J]. Semin Cell Dev Biol,2003,14(2):113-119
    28 Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, Suter U, Nave KA, Mantei N. Notch1 control of oligodendrocyte differentiation in the spinal cord. [J]. cell Biol 2002; 158(4):709-718
    29 Alberta JA, Park SK, Mora J, Yuk D, Pawlitzky I, Iannarelli P, Vartanian T, Stiles CD, Rowitch DH. Sonic hedgehog is required during an early phase of oligodendrocyte development in mammalian brain[J]. Mol Cell Neurosci 2001; 18(4):434-441
    30 Li L, Liu F, Ross A H. PTEN regulation of neural developmentand CNS stem cells [J]. J Cell Biochem,2003,88(1):24-28
    31 Yilnaz OH. ValdezR, Theisen BK, et al. Pten dependence distinguishes Haen atopoietic stem cells from leukaem ia- initiating cells[J].Nature,2006.441(5):475-482
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.