双醛淀粉脂肪胺/芳香胺希夫碱合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据双醛淀粉(DAS)中醛基的高反应活性,通过C=N双键向双醛淀粉中引入一定量的芳香基团或烷基基团,同时破坏双醛淀粉中的缩醛/半缩醛结构,释放出羟基。淀粉的羟基与引入的疏水性芳基或烷基能使淀粉衍生物具有合适的亲水/疏水平衡,赋予双醛淀粉希夫碱表面活性。同时,高的芳基或烷基取代度使双醛淀粉希夫碱不溶于水,并且具有优良的金属离子吸附能力。详细研究了双醛淀粉希夫碱的合成条件,水溶性双醛淀粉希夫碱的表面活性,以及水不溶性双醛淀粉希夫碱对金属离子的吸附。
     论文首先以苯胺(AN)为代表,研究了油溶性氨基化合物与双醛淀粉在DMSO均相体系和乙酸催化的条件下生成双醛淀粉希夫碱的最佳反应条件,在此基础上又合成了苄胺(BN)、苯乙胺(PEA)、正己胺(HA)和正辛胺(OA)双醛淀粉希夫碱。还研究了以水为溶剂合成双醛淀粉-间氨基苯酚(AP)希夫碱的最佳反应条件,反应效率最高为65%。通过FT-IR、NMR和XRD对双醛淀粉脂肪胺/芳香胺希夫碱的化学结构进行了研究。DAS-ANs、DAS-BNs、DAS-PEAs、DAS-HAs和DAS-OAs的取代度小于0.2时,其在水中的溶解度在1.80-2.00g·100g-1之间,取代度大于0.2时不溶于水;而双醛淀粉-间氨基酚希夫碱均不溶于水。
     对于水溶性双醛淀粉脂肪胺/芳香胺希夫碱,研究了其水溶液的表面张力、发泡能力、硬水稳定性和乳化能力,以及疏水基团结构对表面活性的影响规律。当疏水基团的取代度小于0.2时,DAS-ANs、DAS-BNs、DAS-PEAs、DAS-HAs和DAS-OAs在临界聚集浓度(CAC)分别为1.66、0.62、0.31、0.33和0.23g·L-1时,表面张力(γCAC)分别为58.25、47.96、46.27、38.03和36.17mN·m-1。研究表明,双醛淀粉脂肪胺希夫碱的表面张力小于双醛淀粉芳香胺希夫碱;对于同系物(DAS-BNs和DAS-PEAs; DAS-HAs和DAS-OAs),碳链长度的增加对表面张力(γCAC)的影响不大,但随着疏水基团疏水性的增强,CAC减小。而DAS-ANs的表面张力与DAS-BNs和DAS-PEAs的差异较大。水溶性双醛淀粉脂肪胺/芳香胺希夫碱的发泡力随表面张力的下降而提高,而双醛淀粉脂肪胺希夫碱的泡沫稳定性高于双醛淀粉芳香胺希夫碱。产品的硬水稳定性均达到最高级。
     水不溶性双醛淀粉脂肪胺/芳香胺希夫碱的金属离子吸附研究表明:双醛DAS-APs对Cu(Ⅱ)和Pb(Ⅱ)有很好的吸附能力;吸附在2h时达到平衡;随着间氨基苯酚取代度的增加,吸附能力增加;在pH为5.3的Cu(Ⅱ)溶液和pH为4.0的Pb(Ⅱ)溶液中,DAS-APs对Cu(Ⅱ)和Pb(Ⅱ)的最大吸附量分别为0.96mmol·g-1和2.34mmol·g-1。
In this study, aryl or alkyl groups were introduced to dialdehyde starch (DAS) by C=N based on the high reactive aldehyde groups of DAS, and the Schiff-bases of DAS were obtained. The formation of C=N partially destroyed the acetal or hemiacetal structure of DAS, and gave the starch derivatives proper hydrophilic/hydrophobic balance by released hydroxyl groups and aryl (or alkyl) groups, then the resulting water-soluble Schiff-bases of DAS could show surface activities, and the resulting water-insoluble ones with the degree of substitution (DS) of aryl (alkyl) groups could show metal ion adsorption capacity. Surface tension, foaming behavior, stability in hard water and emulsifying capacity of water-soluble Schiff-bases of DAS had also been measured, and the water-insoluble Schiff-bases of DAS had been used as sorbent to remove Cu(II) and Pb(II) ions in aqueous solution. The synthesis conditions of Schiff-bases of DAS were also studied.
     The synthesis conditions of aniline Schiff-bases of DAS (DAS-ANs) were optimized to achieve the highest reaction efficiency with acetic acid as catalyst in dimethyl sulfoxide (DMSO) homogeneous system. These optimized synthesis conditions were applied to synthesize other Schiff-bases between DAS and oil-soluble amino reactants, such as benzylamine (BN), phenethylamine (PEA), n-hexylamine (HA) and n-octylamine (OA). The water solubility of Schiff-bases of DAS with oil-soluble amine were researched. It demonstrated that the water solubility was between1.80-2.00g·1OOg-1when the DS of oil-soluble amine was less than0.2, and they were insoluble in water when the DS of oil-soluble amine was greater than0.2. m-Aminophenol (AP) Schiff-bases of DAS were synthesized in water, and the highest reaction efficiency was65%. The synthesized DAS-APs were all insoluble in water. The structures of all Schiff-bases of DAS were characterized by FT-IR, NMR and XRD.
     Surface tension, foaming behavior, stability in hard water and emulsifying capacity of water-soluble alipatic/aromatic amine Schiff-bases of DAS had been measured, and the effect of aryl and alkyl groups on surface tension had been studied. When the DS of hydrophobic groups was less than0.2, the surface tension at critical aggregation concentration (γCAC) of DAS-ANs, DAS-BNs, DAS-PEAs, DAS-HAs and DAS-OAs was58.25,47.96,46.27,38.03and36.17mN-m-1at1.66,0.62,0.31,0.33and0.23g·L-1, respectively. These data suggested that (1) the surface tension of alipatic amine Schiff-bases of DAS was less than that of aromatic amine Schiff-bases of DAS;(2) the increase of alkyl chain length among homologues, such as BN and PEA, or HA and OA, did not affected yCAC obviously, but the critical aggregation concentration (CAC) decreased as the hydrophobicity of alkyl or aryl groups increased. The γCAC and CAC of DAS-ANs were different from that of DAS-BNs and DAS-PEAs. The foaming behavior showed that the foaming power of water-soluble alipatic/aromatic amine Schiff-bases of DAS increased as the surface tension decreased, and the foam stability of alipatic amine Schiff-bases of DAS was better than that of aromatic amine Schiff-bases of DAS. The stability in hard water all reached the highest level.
     The adsorption studies of water-insoluble alipatic/aromatic amine Schiff-bases of DAS showed that:(1) there is good adsorption capacity of DAS-APs for Cu(II) and Pb(II);(2)2h was needed for the equilibrium of adsorption;(3) adsorption capacity increased as the DS of AP increased;(4) the maximum adsorption capacity for Cu(II)(pH5.3) and Pb(II)(pH4.0) were0.96mmol·g-1and2.34mmol·g-1, respectively.
引文
[1]Jackson EL, Hudson C. Application of the cleavage type of oxidation by periodic acid to starch and cellulose[J]. Journal of the American Chemical Society,1937,59(10):2049-2050.
    [2]Mehltretter C. Recent progress in dialdehyde starch technology[J]. Starch-Starke,1966,18(7): 208-213.
    [3]陈前火,魏健美.碘酸钠氧化再生高碘酸钠的电极行为研究[J].福建化工,1998(1):9-10.
    [4]傅伍尧.高碘酸的钠盐和钾盐的制备[J].化学世界,1954,6:011.
    [5]殷强锋.双醛淀粉Schiff碱衍生物的合成与应用[D].大连理工大学;2008.
    [6]Veelaert S, De Wit D, Tournois H. An improved kinetic model for the periodate oxidation of starch[J]. Polymer,1994,35(23):5091-5097.
    [7]Milch R, Murray R. Infrared spectra of aqueous dialdehyde starch solutions[J]. J Am Leather Chemists' Assoc,1964.
    [8]Haaksman IK, Besemer AC, Jetten JM et al. The oxidation of the aldehyde groups in dialdehyde starch[J]. Starch-Starke,2006,58(12):616-622.
    [9]Fiedorowicz M, Para A. Structural and molecular properties of dialdehyde starch[J]. Carbohydrate Polymers,2006,63(3):360-366.
    [10]Veelaert S, De Wit D, Gotlieb K et al. Chemical and physical transitions of periodate oxidized potato starch in water[J]. Carbohydrate Polymers,1997,33(2):153-162.
    [11]Veelaert S, De Wit D, Gotlieb K et al. The gelation of dialdehyde starch[J]. Carbohydrate Polymers, 1997,32(2):131-139.
    [12]Bothwell JW. Process for preparing tanned collage:US,3093439[P].1963,06,11.
    [13]Zhen J, Ma J. Modification of starch and its application in leather making[J]. Journal of the Society of Leather Technologists and Chemists,2002,86(3):93-95.
    [14]魏世林,刘京华,刘镇华等.用双醛淀粉制作白湿皮的研究[J].西北轻工业学院学报,1994,12(3):48-53.
    [15]Kanth S, Madhan B, Rao J et al. Studies on the stabilization of collagen using dialdehyde starch: Part I. Effect of autoclaving on dialdehyde starch[J]. Journal of the American Leather Chemists Association,2006,101(12):444-453.
    [16]Previte RW. Dialdehyde starch hydraulic cement composition additive:US,3503768[P].1970,5,31.
    [17]Weakley F, Roth W, Mehltretter C et al. Mill evaluation of dialdehyde starch-protein glue for hardwood plywood manufacture[J]. Forest Products Journal,1973,23(7):44-48.
    [18]刘玉环,阮榕生,郑丹丹等.淀粉基木材胶黏剂研究现状与展望[J].化学与粘合,2005.
    [19]Marzona M, Di Modica G. Wool modification by dialdehyde starch treatment[J]. Textile Research Journal,1983,53(12):729-732.
    [20]Nobile L. Process for improving the properties of textile fibres:US,3176002[P].1963,5,30.
    [21]Bresak AF, Tolgyesi E. Hair setting composition and method:US,4452261[P].1984,6,5.
    [22]戴红旗,徐文娟.双醛淀粉湿强剂的合成[J].中国造纸学报,2002,17(2):78-81.
    [23]殷国栋,朱红祥,吴瑞平等.木薯淀粉制备纸张湿强剂的研究[J].造纸科学与技术,2008,6:034.
    [24]任怀燕,赵传山.浅谈生活用纸用暂时性湿强剂[J].造纸化学品,2008,20(3).
    [25]Nedelcheva M, Vulcheva E, Bencheva S. Adsorption of dialdehyde starch on pulp[J]. Zeust Paper, 1981,30(6):251-254.
    [26]Thornton JW, Van BDLI, Besemer A et al. Aldehyde-containing polymers as wet strength additives: WO,1154074[P].2001,11,08.
    [27]Thomas A, Sagredos AN. Process for the preparation of protected protein:EP,0168080[P]. 1985,06,06.
    [28]Chiang P, Li J, Chen M. Rheological characteristics and morphology of dialdehyde starch/meat composites during heating[J]. Journal of Food Science,2009,74(2):El 12-E119.
    [29]Mokrejs P, Langmaier F, Janacova D et al. Thermal study and solubility tests of films based on amaranth flour starch-protein hydrolysate[J]. Journal of Thermal Analysis and Calorimetry,2009, 98(1):299-307.
    [30]Langmaier F, Mladek M, Mokrejs P et al. Biodegradable packing materials based on waste collagen hydrolysate cured with dialdehyde starch[J]. Journal of Thermal Analysis and Calorimetry,2008, 93(2):547-552.
    [31]Langmaier F, Mladek M, Mokrejs P. Hydrogels of collagen hydrolysate cross-linked with dialdehyde starch[J]. Journal of Thermal Analysis and Calorimetry,2009,98(3):807-812.
    [32]Langmaier F, Mokrejs P, Mladek M. Heat-treated biodegradable films and foils of collagen hydrolysate crosslinked with dialdehyde starch[J]. Journal of Thermal Analysis and Calorimetry, 2010,102(1):37-42.
    [33]Mehltretter C. Production and use of dialdehyde starch[M].//Starch:Chemistry and Technology. Academic Press. New York; 1967:433-444.
    [34]王丽娟,刘峥,王莉.磁性交联双醛淀粉微球的制备及表征[J].材料导报,2007,21(9):153-156.
    [35]Song L, Cruz C, Farrah SR et al. Novel antiviral activity of dialdehyde starch[J]. Electronic Journal of Biotechnology,2009,12(2):1-5.
    [36]Song L, Sang Y, Cai L et al. The effect of cooking on the antibacterial activity of the dialdehyde starch suspensions[J]. Starch-Starke,2010,62(9):458-466.
    [37]Sarac TP. Method for fixing tissue:US,7559953[P].2009,07,14.
    [38]CERAMI A, CERAMI C, ULRICH P. Methods, agents and devices for removing nucleophilic toxins from tobacco and tobacco smoke:US,6119701 [P].2000,09,19.
    [39]Cerami A, Cerami C, Ulrich P. Methods for removing nucleophilic toxins from tobacco smoke:US, 6615842[P].2003,09,09.
    [40]SUNG H-W, TU H. Drug-loaded biological material chemically treated with genipin:US, 6624138[P].2003,09,23.
    [41]Zhang SD, Zhang YR, Zhu J et al. Modified corn starches with improved comprehensive properties for preparing thermoplastics[J]. Starch-Starke,2007,59(6):258-268.
    [42]Qiao X, Tang Z, Sun K. Plasticization of corn starch by polyol mixtures[J]. Carbohydrate Polymers, 2011,83(2):659-664.
    [43]Yu J, Chang PR, Ma X. The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch[J]. Carbohydrate Polymers,2010,79(2):296-300.
    [44]Spence K, Allen A, Wang S et al. Soil and marine biodegradation of protein-starch plastics[M].//Hydrogels and biodegradable polymers for bioapplications. ACS Publications; 1996: 149-158.
    [45]Martucci J, Ruseckaite R. Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions[J]. Polymer Degradation and Stability,2009,94(8):1307-1313.
    [46]Martucci J, Ruseckaite R. Tensile properties, barrier properties, and biodegradation in soil of compression-Molded gelatin-dialdehyde starch films[J]. Journal of Applied Polymer Science,2009, 112(4):2166-2178.
    [47]Sharma PK, Handa RN, Dubey SN. Synthesis and characterization of some transition metal complexes of N-(2-hydroxy-l-naphthylidene) amino acids[J]. Synthesis and Reactivity in Inorganic and Metal-organic Chemistry,1996,26(7):1219-1230.
    [48]Islam S, Roy AS, Mondal P et al. Efficient allylic oxidation of olefins catalyzed by polymer supported metal Schiff base complexes with peroxides[J]. Journal of Inorganic and Organometallic Polymers and Materials,2012,22(4):717-730.
    [49]Frantz EB. Synthesis, reactivity, and coordination chemistry relevant to the copolymerization of CO2 and epoxides by first row transition metal schiff base complexes[D]. Texas:Texas A&M University; 2008.
    [50]Przybylski P, Huczynski A, Pyta K et al. Biological properties of schiff bases and azo derivatives of phenols[J]. Current Organic Chemistry,2009,13(2):124-148.
    [51]Bringmann G, Dreyer M, Faber JH et al. Ancistrotanzanine C and related 5, 1'-and 7,3'-coupled naphthylisoquinoline alkaloids from ancistrocladus tanzaniensis[J]. Journal of Natural Products, 2004,67(5):743-748.
    [52]de Souza AO, Galetti FC, Silva CL et al. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds[J]. Quimica Nova,2007,30(7):1563.
    [53]Gama A, Flores-Lopez LaZ, Aguirre G et al. Steric effects in the design of chiral Schiff base-titanium complexes:new catalysts for asymmetric trimethylsilylcyanation of aldehydes[J]. Tetrahedron:Asymmetry,2002,13(2):149-154.
    [54]Yang D, Gao L, Zhao W. Synthesis, characterization and catalytic activity of dialdehyde starch-schiff base Co(Ⅱ) complex in the oxidation of cyclohexane[J]. Catalysis Letters,2008, 126(1-2):84-88.
    [55]Star A, Goldberg I, Fuchs B. Diazadioxadecalin and salen podands and macrocycles within dynamic combinatorial virtual libraries:structure, prototropy, complexation and enantioselective catalysis[J]. Journal of Organometallic Chemistry,2001,630(1):67-77.
    [56]Tokunaga M, Larrow JF, Kakiuchi F et al. Asymmetric catalysis with water:efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis[J]. Science,1997,277(5328): 936-938.
    [57]Rathelot P, Vanelle P, Gasquet M et al. Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity[J]. European Journal of Medicinal Chemistry,1995,30(6): 503-508.
    [58]Shi L, Ge H-M, Tan S-H et al. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde[J]. European Journal of Medicinal Chemistry,2007,42(4):558-564.
    [59]De Clercq E. Strategies in the design of antiviral drugs[J]. Nature Reviews Drug Discovery,2002, 1(1):13-25.
    [60]Dong Y, Gai K. The application of glyoxal-bis-(2-hydroxyanil) to the determination of trace amounts of cadmium by spectrofluorimetry[J]. Journal of the Brazilian Chemical Society,2006, 17(1):135-138.
    [61]Faridbod F, Ganjali MR, Dinarvand R et al. Schiffs bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors[J]. Sensors,2008,8(3): 1645-1703.
    [62]Schwedt G. High-performance liquid chromatography in inorganic analysis[J]. Chromatographia, 1979,12(9):613-619.
    [63]Tang R, Du Y, Fan L. Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects[J]. Journal of Polymer Science Part B:Polymer Physics,2003,41(9):993-997.
    [64]Gennadios A, Handa A, Froning GW et al. Physical properties of egg white-dialdehyde starch films[J]. Journal of Agricultural and Food Chemistry,1998,46(4):1297-1302.
    [65]Yin QF, Ju BZ, Zhang SF et al. Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu(Ⅱ) ions from aqueous solution[J]. Carbohydrate Polymers, 2008,72(2):326-333.
    [66]Liu J-T, Zhang K-Y, Wang P et al. Adsorption behavior of Cd(Ⅱ) from aqueous solution using dialdehyde 5-aminophenanthroline starch[J]. Separation Science and Technology,2013,48(5): 766-774.
    [67]Dembitsky VM. Astonishing diversity of natural surfactants:1. Glycosides of fatty acids and alcohols[J]. Lipids,2004,39(10):933-953.
    [68]Hill K, Rhode O. Sugar-based surfactants for consumer products and technical applications[J]. Fett-lipid,1999,101(1):25-33.
    [69]Gamia M, Ribosa I, Campos E et al. Ecological properties of alkylglucosides[J]. Chemosphere,1997, 35(3):545-556.
    [70]Parrish FW, Angyal SJ, Evans ME et al. Formation of dimethyl acetals of d-glucose, d-xylose, and 1-idose in the presence of strontium ions[J]. Carbohydrate Research,1975,45(1):73-83.
    [71]Shinoda K, Carlsson A, Lindman B. On the importance of hydroxyl groups in the polar head-group of nonionic surfactants and membrane lipids[J]. Advances in Colloid and Interface Science,1996,64: 253-271.
    [72]蔡京荣,李仲谨.淀粉基类高分子表面活性剂研究概况[J].中国洗涤用品工业,2009,1:74-78.
    [73]胡飞.辛烯基琥珀酸淀粉酯理化性质的研究[J].粮食与饲料工业,2005,1(25.26).
    [74]张淑芬,朱维群,杨锦宗.高取代度羧甲基淀粉的合成及应用研究[J].精细化工,1999:16(14),57-60.
    [75]Jonhed A, Jarnstrom L. Phase and gelation behavior of 2-hydroxy-3-(N, N-dimethyl-N-dodecylarnmonium) propyloxy starches[J]. Starch-Starke,2003,55(12):569-575.
    [76]Bataille I, Huguet J, Muller G et al. Associative behaviour of hydrophobically modified carboxymethylpullulan derivatives[J]. International Journal of Biological Macromolecules,1997, 20(3):179-191.
    [77]Wang HJ, Chen KM. Preparation and surface activity of biodegradable polymeric surfactants. I. Preparation and surface activity of dextrin derivatives[J]. Journal of Applied Polymer Science,2005, 98(2):711-717.
    [78]Wang CF, Chen KM. Preparation and surface activities of novel multiply hydrophilic dextrin-derived surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008,320(1):1-5.
    [79]Charpentier D, Mocanu G, Carpov A et al. New hydrophobically modified carboxymethylcellulose derivatives[J]. Carbohydrate Polymers,1997,33(2-3):177-186.
    [80]Landoll L. Nonionic polymer surfactants[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1982,20(2):443-455.
    [81]Ebringerova A. Biodegradable polymeric surfactants from O-(carboxymethyl) starch[J]. Fibres & Textiles in Eastern Europe,2007,15(5-6):64-65.
    [82]Kang HA, Jeon GJ, Lee MY et al. Effectiveness test of alginate-derived polymeric surfactants[J]. Journal of Chemical Technology and Biotechnology,2002,77(2):205-210.
    [83]Aiad I, Ahmed S, Dardir M. Synthesis and some applications of Schiff base surfactants[J]. Journal of Dispersion Science and Technology,2012,33(3):317-324.
    [84]Negm NA, Ghuiba FM, Mahmoud SA et al. Biocidal and anti-corrosive activities of benzoimidazol-3-ium cationic Schiff base surfactants[J]. Engineering in Life Sciences,2011,11(5): 496-510.
    [85]NEGM N, TAWFIK S. Isoxazolium cationic Schiff base surfactants[J]. Chimica oggi/Chemistry Today,2012,30(6).
    [86]Negm N, Ghuiba F, Tawfik S. Novel isoxazolium cationic Schiff base compounds as corrosion inhibitors for carbon steel in hydrochloric acid[J]. Corrosion Science,2011,53(11):3566-3575.
    [87]Negm NA, El Farargy AF, Al Sabagh AM et al. New Schiff base cationic surfactants:surface and thermodynamic properties and applicability in bacterial growth and metal corrosion prevention[J]. Journal of Surfactants and Detergents,2011,14(4):505-514.
    [88]Negm NA, Kandile NG, Mohamad MA. Synthesis, characterization and surface activity of new eco-friendly schiff bases vanillin derived cationic surfactants[J]. Journal of Surfactants and Detergents,2011,14(3):325-331.
    [89]Negm N, Elkholy Y, Ghuiba F et al. Benzothiazol-3-ium cationic Schiff base surfactants:synthesis, surface activity and antimicrobial applications against pathogenic and sulfur reducing bacteria in oil fields[J]. Journal of Dispersion Science and Technology,2011,32(4):512-518.
    [90]Negm N, Elkholy Y, Zahran M et al. Corrosion inhibition efficiency and surface activity of benzothiazol-3-ium cationic Schiff base derivatives in hydrochloric acid[J]. Corrosion Science,2010, 52(10):3523-3536.
    [91]Negm NA, Aiad IA, Tawfik SM. Screening for potential antimicrobial activities of some cationic uracil biocides against wide-spreading bacterial strains[J]. Journal of Surfactants and Detergents, 2010,13(4):503-511.
    [92]Negm NA, Zaki MF, Salem MA. Cationic Schiff base amphiphiles and their metal complexes: surface and biocidal activities against bacteria and fungi[J]. Colloids and Surfaces B:Biointerfaces, 2010,77(1):96-103.
    [93]Abdel-Salam FH. Synthesis, biological study and complexation behavior of some anionic Schiff base amphiphiles[J]. Journal of Surfactants and Detergents,2010,13(4):423-431.
    [94]Shaker NO, FH AE-S, El-Sadek BM et al. Anionic Schiff base amphiphiles:synthesis, surface, biocidal and antitumor activities[J]. Journal of American Science,2011,7(5):427-436.
    [95]Negm NA, Zaki MF. Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu(Ⅱ) and Fe(Ⅲ) metal complexes[J]. Colloids and Surfaces B:Biointerfaces,2008,64(2): 179-183.
    [96]Chohan ZH, Pervez H, Kausar S et al. Synthesis and characterization of antibacterial Co(Ⅱ), Cu(II), Ni(Ⅱ), and Zn(Ⅱ) complexes of acylhydrazine derived pyrrolyl compounds[J]. Synthesis and Reactivity in Inorganic and Metal-organic Chemistry,2002,32(3):529-543.
    [97]Negm N, Zaki M, Synthesis and characterization of some amino acid derived Schiff bases bearing nonionic species as corrosion inhibitors for carbon steel in 2N HC1[J]. Journal of Dispersion Science and Technology,2009,30(5):649-655.
    [98]Negm NA, Zaki MF. Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p-aminobenzoic acid for aluminum in 4N HC1[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,322(1):97-102.
    [99]ZAKY M, NEGM N. Antimicrobial and surface activities of phosphate Schiff bases[J]. Chimica oggi/Chemistry Today,2012,30(4):10-13.
    [100]Migahed M, Farag A, Elsaed S et al. Synthesis of a new family of Schiff base nonionic surfactants and evaluation of their corrosion inhibition effect on X-65 type tubing steel in deep oil wells formation water[J]. Materials Chemistry and Physics,2011,125(1):125-135.
    [101]Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment[J]. Progress In Polymer Science,2005,30(1):38-70.
    [102]Wan Ngah W, Endud C, Mayanar R. Removal of copper(Ⅱ) ions from aqueous solution onto chitosan and cross-linked chitosan beads[J]. Reactive and Functional Polymers,2002,50(2): 181-190.
    [103]Bozic D, Stankovid V, Gorgievski M et al. Adsorption of heavy metal ions by sawdust of deciduous trees[J]. Journal of Hazardous Materials,2009,171(1):684-692.
    [104]Soliman EM, Ahmed SA, Fadl AA. Reactivity of sugar cane bagasse as a natural solid phase extractor for selective removal of Fe(Ⅲ) and heavy-metal ions from natural water samples[J]. Arabian Journal of Chemistry,2011,4(1):63-70.
    [105]Popuri SR, Vijaya Y, Boddu VM et al. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads[J]. Bioresource Technology,2009,100(1):194-199.
    [106]Suryan S, Ahluwalia S. Biosorption of heavy metals by paper mill waste from aqueous solution[J]. International Journal of Environmental Sciences,2012,2(3):1331-1343.
    [107]Mosa AA, El-Ghamry A, Truby P. Chemically modified crop residues as a low-cost technique for the removal of heavy metal ions from wastewater[J]. Water, Air, & Soil Pollution,2011,217(1-4): 637-647.
    [108]Dang V, Doan H, Dang-Vu T et al. Equilibrium and kinetics of biosorption of cadmium(Ⅱ) and copper(Ⅱ) ions by wheat straw[J]. Bioresource Technology,2009,100(1):211-219.
    [109]Giiclu G, Al E, Emik S et al. Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels[J]. Polymer Bulletin,2010,65(4):333-346.
    [110]Wan Ngah W, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites:A review[J]. Carbohydrate Polymers,2011,83(4):1446-1456.
    [111]Fu F, Wang Q. Removal of heavy metal ions from wastewaters:A review[J]. Journal of Environmental Management,2011,92(3):407-418.
    [112]Ji F, Li C, Tang B et al. Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution[J]. Chemical Engineering Journal,2012.
    [113]Dambies L, Vincent T, Guibal E. Treatment of arsenic-containing solutions using chitosan derivatives:uptake mechanism and sorption performances[J]. Water Research,2002,36(15): 3699-3710.
    [114]Juang RS, Shao HJ. Effect of pH on competitive adsorption of Cu(II), Ni(II), and Zn(II) from water onto chitosan beads[J]. Adsorption,2002,8(1):71-78.
    [115]Krajewska B. Diffusion of metal ions through gel chitosan membranes[J]. Reactive and Functional Polymers,2001,47(1):37-47.
    [116]Cao Z, Ge H, Lai S. Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu(II) as template under microwave irradiation[J]. European Polymer Journal, 2001,37(10):2141-2143.
    [117]Wang T, Song Y, Li B et al. Chelating-ultrafiltration treatment of some heavy metal ions in aqueous solutions by crosslinking carboxymethyl modified cornstarch[J]. Water, Air, & Soil Pollution,2012, 223(2):679-686.
    [118]Chen Y-X, Wang G-Y. Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,289(1):75-83.
    [119]Chen YX, Zhong BH, Fang WM. Adsorption characterization of lead(II) and cadmium(II) on crosslinked carboxymethyl starch[J]. Journal of Applied Polymer Science,2012,124(6):5010-5020.
    [120]Pant BR, Jeon H-J, Song HH. Radiation cross-linked carboxymethylated starch and iron removal capacity in aqueous solution[J]. Macromolecular Research,2011,19(3):307-312.
    [121]Pant BR, Jeon H-J, Park C-I et al. Radiation-modified carboxymethyl starch derivative as metal scavenger in aqueous solutions[J]. Starch-Starke,2010,62(1):11-17.
    [122]Guo L, Sun C-m, Li G-y et al. Thermodynamics and kinetics of Zn(Ⅱ) adsorption on crosslinked starch phosphates[J]. Journal of Hazardous Materials,2009,161(1):510-515.
    [123]Song XL, Qian H. Study on the experiment of adsorption cadmium(Ⅱ) with Insoluble starch xanthate[J]. Advanced Materials Research,2012,413:34-37.
    [124]Xu SM, Wei J, Feng S et al. A study in the adsorption behaviors of Cr(VI) on crosslinked cationic starches[J]. Journal of Polymer Research,2004,11(3):211-215.
    [125]Wang S, Yang J, Xu X. Effect of the cationic starch on removal of Ni and V from crude oils under microwave irradiation[J]. Fuel,2011,90(3):987-991.
    [126]Chan WC, Wu JY. Dynamic adsorption behaviors between Cu2+ ion and water-insoluble amphoteric starch in aqueous solutions[J]. Journal of Applied Polymer Science,2001,81(12):2849-2855.
    [127]Zou LX, Liu QC, Xu Q et al. A study in the adsorption behaviors of Cr(VI) on crosslinked amphoteric starches synthesized through using the microwave radiation method[J]. Advanced Materials Research,2010,87:387-392.
    [128]Xu SM, Feng S, Yue F et al. Adsorption of Cu(II) ions from an aqueous solution by crosslinked amphoteric starch[J]. Journal of Applied Polymer Science,2004,92(2):728-732.
    [129]Xu SM, Feng S, Peng G et al. Removal of Pb(II) by crosslinked amphoteric starch containing the carboxymethyl group[J]. Carbohydrate Polymers,2005,60(3):301-305.
    [130]Lu Q, Gao P, Zhi H et al. Preparation of Cu(II) ions adsorbent from acrylic acid-grafted corn starch in aqueous solutions[J]. Starch-Starke,2012.
    [131]Ekebafe L, Ogbeifun D, Okieimen F. Removal of heavy metals from aqueous media using native cassava starch hydrogel[J]. African Journal of Environmental Science and Technology,2012,6(7): 275-282.
    [132]Suwanmala P, Hemvichian K, Hoshina H et al. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation[J]. Radiation Physics and Chemistry,2012, 81(8):982-985.
    [133]Para A, Klisiewicz-Panszczyk T, Jurek 1. Synthesis and in vitro tuberculostatic activity of Co(II), Cu(II) and Ni(Ⅱ) complexes of dialdehyde starch dithiosemicarbazone[J]. Acta Poloniae Pharmaceutica,2001,58(5):405-408.
    [134]Para A, Karolczyk-Kostuch S. Metal complexes of starch dialdehyde dithiosemicarbazone[J]. Carbohydrate Polymers,2002,50(2):151-158.
    [135]Para A, Karolczyk-Kostuch S. Semicarbazone of starch dialdehyde and its complexes with metal ions[J]. Carbohydrate Polymers,2002,48(1):55-60.
    [136]Para A. Complexation of metal ions with dioxime of dialdehyde starch[J]. Carbohydrate Polymers, 2004,57(3):277-283.
    [137]Para A, Karolczyk-Kostuch S, Fiedorowicz M. Dihydrazone of dialdehyde starch and its metal complexes[J]. Carbohydrate Polymers,2004,56(2):187-193.
    [138]Dong A, Xie J, Wang W et al. A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(Ⅵ)[J]. Journal of Hazardous Materials,2010,181(1-3):448-454.
    [139]Liu J-t, Dong Z-P, Ding W et al. Adsorption of Zn(II) on dialdehyde m-phenylenediamine starchfJ]. Water science and technology:a journal of the International Association on Water Pollution Research,2012,66(2):321.
    [140]Ding W, Zhai S, Liu J et al. Preparation and adsorption properties of dialdehyde 8-aminoquinoline starch[J]. Water science and technology:a journal of the International Association on Water Pollution Research,2012,67(2):306-310.
    [141]Ding W, Zhao P, Li R. Removal of Zn(Ⅱ) ions by dialdehyde 8-aminoquinoline starch from aqueous solution[J]. Carbohydrate Polymers,2011,83(2):802-807.
    [142]Zhao P, Jiang J, Zhang F et al. Adsorption separation of Ni(Ⅱ) ions by dialdehyde o-phenylenediamine starch from aqueous solution[J]. Carbohydrate Polymers,2010,81(4):751-757.
    [143]殷强锋,具本植,张淑芬等.淀粉选择性氧化研究[J].大连理工大学学报,2009,49(2):175-179.
    [144]高鸿宾.有机化学[M],北京:高等教育出版社,2002:345-346.
    [145]耿凤英,于九皋,马骁飞.玉米淀粉的活化预处理及对其化学反应活性的影响[J].石油化工,2010,39(2):131-135.
    [146]Pinazo A, Perez L, Infante MR et al. Relation of foam stability to solution and surface properties of gemini cationic surfactants derived from arginine[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,189(1-3):225-235.
    [147]Wantke K, Malysa K, Lunkenheimer K. A relation between dynamic foam stability and surface elasticity[J]. Colloids and Surfaces A-physicochemical and Engineering Aspects,1994,82(2): 183-191.
    [148]Wantke KD, Fruhner H, Fang JP et al. Measurements of the surface elasticity in medium frequency range using the oscillating bubble method[J]. Journal of Colloid and Interface Science,1998,208(1): 34-48.
    [149]Langevin D. Influence of interfacial rheology on foam and emulsion properties[J]. Advances in Colloid and Interface Science,2000,88(1):209-222.
    [150]Folmer BM, Kronberg B. Effect of surfactant-polymer association on the stabilities of foams and thin films:sodium dodecyl sulfate and poly(vinyl pyrrolidone)[J]. Langmuir,2000,16(14): 5987-5992.
    [151]Cho YS, Laskowski J. Effect of flotation frothers on bubble size and foam stability[J]. International Journal of Mineral Processing,2002,64(2):69-80.
    [152]Kweon D-K, Choi J-K, Kim E-K et al. Adsorption of divalent metal ions by succinylated and oxidized corn starches[J]. Carbohydrate Polymers,2001,46(2):171-177.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.