纤维素在离子液体中均相改性合成高性能吸附剂及结构可控的接枝共聚物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是自然界最为丰富的可再生天然高分子资源,具有许多良好的性能,有效利用纤维素资源,对于解决当今面临的资源问题具有重要意义。本论文以新型绿色溶剂离子液体1-丁基-3-甲基咪唑氯盐(BMIMCl)为反应介质,采用不同的聚合方法,包括传统自由基聚合和可控/活性自由基聚合,对纤维素进行均相改性研究,后者可合成结构与分子量大小可控,分子量分布窄的纤维素接枝共聚物。
     以丙烯酸为单体,过硫酸铵为引发剂,N’N-亚甲基双丙烯酰胺为交联剂,利用传统自由基聚合,在离子液体BMIMCl为反应溶剂的均相条件下制备出纤维素与丙烯酸的接枝共聚物,随后采用反相悬浮技术将接枝共聚物球化,制备出球形纤维素吸附剂。研究了反应条件(包括单体用量,引发剂用量,反应时间和聚合反应温度)对接枝效果的影响,优化了纤维素吸附剂制备的反应条件。研究结果表明,以离子液体BMIMCl为反应介质,不仅可以加快反应速度,提高产物的接枝率,而且所制得的球形纤维素吸附剂对水溶液中重金属离子及阳离子碱性染料具有良好的吸附性能。
     实验以三种金属离子(Cu2+、Ni2+和Fe3+)和阳离子碱性染料亚甲基蓝为吸附质,采用静态吸附方法综合研究了球形纤维素的吸附性能,包括等温吸附及各影响因素对吸附效果的影响,并对其吸附热力学和动力学进行了研究,探讨了吸附机理。研究结果表明,球形纤维素吸附剂对金属离子及阳离子染料具有很好的吸附效果,对水溶液中Cu2+、Ni2+、Fe3+和亚甲基蓝静态吸附量分别达到174.8 mg/g、61.2 mg/g、63.6 mg/g和307 mg/g,而且再生容易,回收率高,并可以重复使用。吸附剂的静态等温吸附符合Langmuir和Freundlich吸附等温式。吸附热力学和吸附动力学研究结果表明球形纤维素吸附剂对金属离子及染料的吸附以化学吸附为主;吸附过程由表面扩散和颗粒内扩散联合控速,但以颗粒内扩散为主。
     用微波辐射代替常规加热方式,在离子液体中快速合成纤维素接枝共聚物,考察了反应条件包括微波辐射温度及辐射时间等对接枝效果的影响。研究结果显示,与传统的加热方式相比,微波辐射加热可加快反应速度,大大缩短了聚合反应的时间,仅3min就能得到性能良好的纤维素接枝共聚物。
     以金属离子Pb2+为印迹分子,在离子液体中通过接枝共聚方法合成了纤维素金属离子印迹聚合物。实验研究了反应条件对印迹聚合物吸附性能的影响以及聚合物对印迹分子的选择性。研究结果表明,所制备的印迹聚合物,在与其他金属离子(Cu2+或Ni2+)的竞争吸附中,对印迹分子表现出较高的吸附选择性,而且还具有良好的再生性能,可以循环使用。
     活性/可控自由基聚合技术集自由基聚合与活性聚合的优点于一体,可合成具有精致结构的分子量可控、分子量分布窄的聚合物,而且其聚合实施条件与传统自由基聚合相似。本实验分别通过两种活性/可控自由基聚合,原子转移自由基聚合(ATRP)和可逆加成-断裂链转移自由基聚合(RAFT),合成了纤维素与甲基丙烯酸甲酯(MMA)的接枝共聚物。
     实验通过纤维素与氯乙酰氯在离子液体中的均相乙酰化,一步合成了ATRP大分子引发剂(Cell-ClAc),随后用其引发了MMA在离子液体中的ATRP,构筑纤维素接枝共聚物,并对其反应动力学进行了研究。实验结果表明,MMA在离子液体中的聚合反应动力学呈一级反应动力学规律,并且分子量大小随单体转化率呈线性增加,分子量分布较窄,表明该聚合反应是活性可控的;合成的纤维素与MMA的接枝共聚物在丙酮溶液中具有自组装行为;以离子液体为反应介质可加快聚合反应速度,提高单体转化率,聚合反应的表观活化能较低(ΔEaapp为16.6 KJ/mol),说明反应容易在离子液体中进行;此外,离子液体的使用还可使聚合物容易与无机催化剂有效分离,从而避免了对聚合物的污染;聚合反应温度以及反应体系中各物料配比(例如单体与引发剂摩尔比,配体与催化剂摩尔比等)对聚合反应速率、聚合产物分子量及分子量分布有较大的影响。
     通过二硫代苯酰基氯化镁与Cell-ClAc的取代反应,将纤维素大分子引发剂转化为RAFT大分子链转移剂Cell-CTA,并以偶氮二异丁腈为引发剂,引发了MMA在离子液体中的RAFT聚合,构筑纤维素接枝共聚物。聚合反应动力学曲线以及接枝共聚物侧链的分子量及分子量分布与转化率关系曲线表明,该聚合反应是活性可控的;以离子液体为反应介质可加快聚合反应速率,提高单体转化率。
Cellulose is the most abundant renewable biopolymers on earth, it has many good properties. The effective utilization of the cellulose has a great significance to the crisis of resource. In this paper, cellulose was modified homogeneously via different methods, including traditional radical polymerization and“living”/controlled radical polymerization, using an ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl ) as reaction medium.
     Cellulose was grafted homogeneously with acrylic acid in BMIMCl by traditional radical polymerization, using ammonium persulfate (APS) as an initiator and N,N’-methylene- bisacrylamide(MBA) as a crosslinker. And then the spherical cellulose adsorbent was obtained through a water-in-oil suspension technique. The reaction conditions were optimized to obtained higher graft percentage (GP). The experimental results show that the use of BMIMCl as reaction medium can enhance the reaction rate and increase the grafting efficiency.
     Comprehensive studies on the adsorption properties of the spherical cellulose adsorbents were conducted in ways of static adsorption using metal ions(Cu2+, Ni2+ and Fe3+) and cationic dye (Methylene blue)as adsorbates.And,static isothermal adsorptions as well as various effecting factors were also studied. Moreover, the adsorption mechanisms including the adsorption thermodynamics and kinetics were explored.The adsorption of the metal ions and cationic dye on the adsorbents have found to be concentration、pH and temperature dependent.Furthermore,excellent adsorption efficiency of the above two adsorbates on the adsorbent can be obtained.And, the cellulose adsorbent has such advantages as easy regeneration, high recovery and reusability etc. The static adsorption process follows Langmuir and Freundlich adsorption isotherm equations. It can be concluded from the adsorption thermodynamics and kinetics that chemical adsorption is predominant for the adsorption of two adsorbates on the adsorbent.The adsorption rate is controlled by two diffusion models of surface diffusion process and intra-particle diffusion process,between which the intra-particle diffusion process plays a more significant role during the adsorption process.
     The microwave heating was adopted to replace the conventional heating to synthesize the graft copolymer of cellulose with acrylic acid. The effects of reaction conditions on grafting were studied and the results show that the use of microwave resulted in a drastic reduction of reaction time: 3 min irradiation was sufficient, compared with 30 min to 5 hours, as conventional heating was used. A probable free radical mechanism for grafting under microwaves was also proposed.
     The metal ion imprinted polymer was synthesized by homogeneous radical graft copolymerization of functional monomer acrylic acid onto cellulose with Pb2+ as template in BMIMCl. Investigation on the selective adsorption property of the imprinted copolymer was conducted. It is concluded that the obtained Pb2+-imprinted copolymer shows higher selectivity towards Pb2+ than the non-imprinted polymer.
     “Living”/controlled radical polymerization combines the advantages of free radical polymerization and living polymerization. Polymers with fine structures, predetermined molecular weights and narrow polydispersities can be synthesized through“living”/controlled radical polymerizations in the polymerization condition which is similar to that of traditional free radical polymerization. In this paper, cellulose graft copolymers were synthesized via two“living”/controlled radical polymerizations, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer polymerization (RAFT), respectively.
     Cellulose-based macroinitiator (Cell-ClAc) was first synthesized by direct homogenous acylation of cellulose in BMIMCl in absence of any catalyst. Then the homogeneous ATRP of MMA from cellulose macroinitiator was carried out in BMIMCl without homopolymer byproduct and the polymers were easily separated from the catalyst when the ionic liquid was used as reaction medium. Further the cellulose graft copolymer in solution could aggregate and self-assembly. The kinetic of the ATRP was also investigated and the results showed that the obtained copolymers had grafted polymer chains with well-controlled molecular weight and low polydispersity, and the polymerization was a“living/controlled”system. The reaction temperature and reaction ingredients ratios have great effect on the polymerization rate. The low apparent energy of activation (ΔEaapp , 16.6 KJ/mol) of the polymerization reaction illustrates that the reaction carried in BMIMCl is much easier.
     Cellulose based RAFT chain transfer agent (Cell-CTA) was obtained through substitution reaction of Cell-ClAc and bis(thiobenzoyl) disulphide. Then the MMA polymer chains were grafted onto the cellulose by RAFT in BMIMCl using 2, 2’-azobis(isobutyronitrile) (AIBN) as initiator. The experiment results demonstrate that the use of the ionic liquid as a reaction medium enhanced the polymerization rate to a moderate extent. Additionally, a controlled/living polymerization character was proven for cellulose-CTA-mediated RAFT polymerization in BMIMCl as a result of the first-order kinetics of the copolymerization, linear increase in Mn with conversion, and low PDIs.
引文
[1] Nevell T. P., Zeronian S. H. Cellulose chemistry and its application[M]. New York: Wiley and Sons, 1985: 15
    [2] Mohanty A. K., Misra M., Drzal L. T. Sustainable biocomposites from renewable resources: Opportunities and challenges in the green materials world[J]. Journal of Polymers and the Environment, 2002, 10(2): 19-21
    [3] Mohanty A. K., Misra M., Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview[J]. Macromolecular Materials and Engineering, 2000, 276(34): 1-5
    [4] Galbraikh L. S., Rogovin Z. A. Cellulose and Cellulose Derivatives[M]. Bikales N. M. (Ed), Wiley-Intersci., New York, 1971: 877
    [5] Huang M. R., Li X. G. Preparation and air-separation properties of membrane blends of low-molecular-weight liquid crystals with cellulose derivatives[J]. Fuel and Energy Abstracts, 1995, 36(4): 303-310
    [6] Claes M., Martin B., Schagerl H, et al. Investigation of micro-immobilised enzyme reactors containing endoglucanases for efficient hydro-L-Lysis of cellodextrins and cellulose derivatives[J]. Analytica. Chimica. Acta., 2005, 550(1): 182-190
    [7] Russell J. W. Process for the preparation of cellulose based chiral separation liquid chromatography stationary phase[J]. Biotechnology Advances, 1997, 15(2): 483-488
    [8] Stefan N. On the characterization principles of some technically important water soluble non-ionic cellulose derivatives[J]. Carbohydrate Polymers, 1996, 29(1): 101-107
    [9] Shigeo N., Masato A., Yasuo S., et al. Preparation of a minoalkyl celluloses and their adsorption and desorption of heavy metal ions[J]. Journal of Applied Polymer Science, 1992, 45(2): 265-271
    [10] Ung-Jin K., Shigenori K. Validation studies in the regeneration of ion-exchange celluloses[J]. Journal of Chromatography A, 2001, 919(1): 29-37
    [11] Shigeo N., Masato A. Preparation of hydrazinodexy cellulose and carboxyalkyl hydraxinodeox celluloses and their adsorption behavior toward heavy metal ions[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35(16): 3359-3363
    [12] Hitoshi K., Yasumichi S. Introduction of a mindoxime groups into cellulose and its ability to adsorb metal ions[J]. Journal of Applied Polymer Science, 1995, 6(2): 147-151
    [13] Mohammad L., Hnahla A., E. Heavy metal ion removal by a midoxomated bagasse[J]. Journal of Applied Polymer Science, 2003, 87(24): 666-670
    [14] Willliam A., John W. Adsorption Kineties in the polyethylenimine cellulose fiber system[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1971, 9(7): 853-865
    [15] Galbraikh L. S., Rogovin Z. A. Cellulose and Cellulose Derivatives[M]. New York: Wiley-Intersci., 1971: 878.
    [16] BuckleyR P, SzwarcM. Methyl affinities of ethylene tetrafluoroethylene and tetrachloroethylene [J]. J. Am. Chem. Soc., 1956, 78 (21): 5696-5697.
    [17] Matyjaszewski K. Functional star, comb, brush, and (hyper)branched polymers by ATRP[J]. Abstracts of Papers of the American Chemical Society, 2000, 221: 205.
    [18] Hawker C. J., Bosman A. W., Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chemical Reviews, 2001, 101(12): 3661-3688
    [19] Matyjaszewski K., Xia J. Atom transfer radical polymerization[J].Chem. Rev., 2001,101(9): 2921-2990
    [20] Chong Y. K., Le T. P. T., Moad E. R., et al. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process[J]. Macromolecules, 1999, 32: 2071-2074
    [21] Jagur-Grodzinski J. Preparation of functionalized polymers using living and controlled polymerizations[J].Reactive & Functional Polymers, 2001, 49(1): 1-54
    [22] Solomon, D.M., Rizzardo E., Cacioli P. Polymerization process and polymers produced thereby[P]. U.S. Patent4581429, 1985
    [23] Georges M. K., Veregin R. P. N., Kazmaier P.M., Hamer G. K.. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules, 1993, 23\6(11): 2987-2988
    [24] Fischer, H. The persistent radical effect in“living”radical polymerization[J]. Macromolecules, 1997, 30(19): 5666-5672
    [25] Devonport W, Michalak L, Malmstrom E,et al. ''Living'' free-radical polymerizations in the absence of initiators: Controlled autopolymerization[J]. Macromolecules, 1997, 30(7): 1929-1934.
    [26] Benoit D., Chaplinski V., Braslau R., et al. Development of a Universal Alkoxyamine for“Living”Free Radical Polymerizations[J]. J. Am. Chem. Soc., 1999, 121 (16): 3904-3920.
    [27] Dao J., Benoit D., Hawker C. J. A versatile and efficient synthesis of alkoxyamine LFR initiators via manganese based asymmetric epoxidation catalysts[J]. J. Polym. Sci.: Polym Chem A, 1998, 36(12): 2161-2167
    [28] Hawker C. J.“Living”free radical polymerization: A unique technique for thepreparation of controlled macromolecular architectures[J]. Acc. Chem. Res., 1997, 30(9): 373-382
    [29] Hawker C. J., Benoit D., Rivera F., et al. Versatile route to functionalized block copolymers by nitroxide-mediated "living" free-radical polymerization[J]. ACS Polym. Prepr., Div. Polym. Chem., 1999, 40(2): 315
    [30] Benoit D., Harth E., Fox P., et al., Hawker C. J. Accurate structural control and block formation in the living polymerization of 1,3-dienes by nitroxide-mediated procedures[J]. Macromolecules, 2000, 33(2): 363-370.
    [31] Listigovers N. A., Georges M.K, Odell P. G., et al. Narrow-polydispersity diblock and triblock copolymers of alkyl acrylates by a“living”stable free radical polymerization[J]. Macromolecules, 1996, 29(27): 8992-8993.
    [32] Keoshkerian B., Georges M., Quinlan M., et al. Polyacrylates and polydienes to high conversion by a stable free radical polymerization process: Use of reducing agents[J]. Macromolecules, 1998, 31(21): 7559-7561.
    [33] Georges M. K., Hamer G. K., Listigovers N. A. Block Copolymer Synthesis by a Nitroxide-Mediated Living Free Radical Polymerization Process[J]. Macromolecules, 1998, 31(25): 9087-9089
    [34] Pradel J. L., Boutevin B., Ameduri B. J. Controlled radical polymerization of 1,3-butadiene. II. Initiation by hydrogen peroxide and reversible termination by TEMPO[J]. Polym. Sci., Part A, Polym Chem. 2000, 38(18): 3293-3302
    [35] Burguiere C., Dourges M. A., Charleux B., et al. Synthesis and characterization ofω-unsaturated poly(styrene-b-n-butyl methacrylate) block copolymers using tempo-mediated controlled radical polymerization[J]. Macromolecules, 1999, 32(12): 3883-3890.
    [36] Benoit D., Grimaldi S., Robin S., et al. Kinetics and mechanism of controlled free-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclic beta-phosphonylated nitroxide[J]. J. Am. Chem. Soc., 2000, 122(25): 5929-5939.
    [37] Lokaj J., Vlcek P., Kriz J. Synthesis of Polystyrene-Poly(2-(dimethylamino)ethyl methacrylate) Block Copolymers by Stable Free-Radical Polymerization[J]. Macromolecules, 1997, 30(24): 7644-7646.
    [38] Harth E., Hawker C. J., Fan W., et al. Chain end functionalization in nitroxide-mediated "Living" free radical polymerizations[J]. Macromolecules, 2001, 34(12): 3856-3862
    [39] Bertin D., Destarac M., Boutevin B. In Polymer and Surfaces: A Versatile Combination[C].Hommel, D, Ed. Research Signpost: Trivandrum India, 1998: 47-75.
    [40] Malmstrom E. E., Hawker C. J.. Macromolecular engineering via“living”free radical polymerizations[J]. Macromol. Chem. Phys., 1998, 199(6): 923-935.
    [41] Bosman A .W., Frechet M. J., Hawker C. J. High-throughput synthesis of nanoscale materials: Structural optimization of functionalized one-step star polymers[J]. Polym. Mater. Sci. Eng., 2001, 84: 376
    [42] Stehling U.M., Mamstrom E. E., Waymouth, R. M., et al. Synthesis of poly(olefin) graft copolymers by a combination of metallocene and "living" free radical polymerization techniques[J].Macromolecules, 1998, 31(13): 4396-4398.
    [43] Tsoukatos T., Pispas S., Hadjichritidis N. Complex macromolecular architectures by combining TEMPO living free radical and anionic polymerization [J]. Macromolecules, 2000,33(26): 9504-9511
    [44] Weimer M. W., Scherman O. A., Sogah D. Y. Multifunctional Initiators Containing Orthogonal Sites. One-Pot, One-Step Block Copolymerization by Simultaneous Free Radical and Either Cationic Ring-Opening or Anionic Ring-Opening Polymerization[J].Macromolecules, 1998, 31: 8425
    [45] Grubbs R. B, Hawker C. J., Dao J.,et al, A tandem approach to graft and dendritic graft copolymers based on ''living'' free radical polymerizations[J]. J. Angew. Chem. Int. Ed. Engl., 1997,36(3): 270-272.
    [46] Wang J. S., Matyjaszewski K. Controlled“living”radical polymerization-atom transfer radical polymerization in the presence of transition -metal complexes[J]. J. Am. Chem. Soc, 1995, 117 (20): 5614-5615
    [47] Matyjaszewski, K. Mechanistic aspects of atom transfer radical polymerization, in "Controlled Radical Polymerization"[C]. ACS Symposium 685,The American Chemical Society, Washington D C ,1998
    [48]张兆斌,应圣康.原子转移自由基聚合及可控自由基聚合[J].高分子通报, 1999(3): 140
    [49]朱常英,郭金峰,由英才,等.苯乙烯的原子转移自由基溶液聚合研究[J].南开大学学报(自然科学), 2000,33(3): 102
    [50] Jiang C., Zhang Y. Knetic study of atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate[J].Chinese J. Chem. Eng., 2004, 12(2): 208-213
    [51] Wang J S, Matyjaszewski K.“Living”Controlled Radical Polymerization Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of aConventional Radical Initiator[J]. Macromolecules, 1995, 28 (22): 7572-7573
    [52] Wang J. S., Luo N., Ying S. K., et al. The synthesis of ABA block copolymers by means of“living”/controlled radical polymerization using hydroxyl-terminated oligomers asprecursor[J]. Eur. Polym. J., 2000,36(1): 149-156
    [53]史增谦,刘盈海,李艳香,等.几种新型有机酸配体和FeCl2络合催化下的苯乙烯原子转移自由基聚合反应[J].河北大学学报(自然科学版), 2004(2): 148-151
    [54]华曼,陈明清,刘晓亚,等.原子转移自由基聚合的近期研究进展[J].化学世界, 2004(2): 103-108
    [55]岳玲,周建华,虎春艳,等.一种新型用于原子转移自由基聚合过程的Cu(I)络合物的研究[J].感光科学与光化学, 2005, 23(3): 183-189
    [56] Wang Y. P., Pei X.W., He X. Y., et al. Synthesis of well-defined, polymer-grafted silica nanoparticles via reverse ATRP[J].European Polymer Journal, 2005 (41): 1326-1332
    [57] Singha N. K., Ruiter B., Schubert U. S. Atom Transfer Radical Polymerization of 3-Ethyl-3-(acryloyloxy)methyloxetane[J]. Macromolecules, 2005 (38): 3596-3600
    [58] Borkar S., Sen A. Novel Fluoroalkene-Methyl Acrylate Copolymers by Atom Transfer Radical Polymerization[J]. Macromolecules, 2005 (38): 3029-3032
    [59] Jin Y. Z., Gao C., Kroto, H. W., et al. Polymer-Grafted Carbon Spheres by Surface-Initiated Atom Transfer Radical Polymerization[J]. Macromolecular Rapid Communications, 2005 (26): 1133-1139
    [60] Wang T. L., Liu Y. Z., Jeng B. C., et al. The Effect of Initiators Reaction Conditions on the Polymer Syntheses Atom Transfer Radical Polymerization[J]. Journal of Polymer Research, 2005 (12): 67-75
    [61] Kizhakkedathu J. N., Kumar K. R., Goodman D. , et al. Synthesis and characterization of well-defined hydrophilic block copolymer brushes by aqueous ATRP[J]. Polymer, 2005 (45): 7471-7489
    [62] Du J.Z., Chen Y. M. Atom Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate[J]. Macromolecules, 2004(37): 6322-6328
    [63] Senkal, B.F., Hizal G., Bicak N. Atom transfer radical polymerization through N-chlorosulfonamides[ J ]. J Polym. Sci., Part A: Poly Chem, 2001,39(16): 2691-2965.
    [64] Liu B., Hu C. P. The reverse atom transfer radical polymerization of methyl methacrylate in the polar solvents[J]. Eur. Polym., 2001, 37(10): 2025-2030
    [65] Li P., Qiu K. Y. Living radical polymerization of methyl methacrylate catalyzed by cuprous N,N-diethyldithiocarbamate [J]. J. Polym. Sci., Part A:polym Chem, 2002,40(12): 2093-2097
    [66] Chen X. P., Qiu K. Y. Synthesis of poly (methyl methacrylate) by reverse atom transfer radical polymerization with a TPED/FeCl3/PPh3 initiation system[J]. Macromolecules, 1999,32(): 8711.
    [67] Yamamoto Y., Tanaka H, Tanaka H, et al.. Living radical polymerization of methyl methacrylate to polyethylene film with reverse atom transfer radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 2002, 40(20): 3350-3359
    [68]丘坤元,董建华,田士英.新型的引发体-热转移终止剂用于反向原子转移自由基聚合[J].高分子学报, 2001(3): 281.
    [69] Chen X. P., Qiu K. Y. Atom transfer radical polymerization of methyl methacrylate using the TD-FeCl3-Ph3 initiation system[J]. New. J. Chem., 2000, 24(): 865
    [70]李忠辉,张永明,刘燕刚,等.原子转移自由基聚合及催化剂负载化研究进展[J].高分子材料与工程, 2005, 21(1): 6-10
    [71]周弟,朱秀林,程振平,等.甲基丙烯酸异丁酯的低温原子转移自由基聚合[J].高分子材料科学与工程, 2005, 21(1): 137-140
    [72] Liu S. S., Sen A. Synthesis of novel linear polyethylene-based graft copolymers by atom transfer radical polymerization[J]. Macromolecules, 2001, 34(5): 1529-1532
    [73] Chung T. C., Dong J. Y. Synthesis of linear ethylene/divinyl benzene copolymers by metal locene catalysis[J]. Macromolecules, 2002, 35(8): 2868-2870
    [74] Matyjaszewski K., Teodorescu M., Miller P. J., et al. Graft copolymers of polyethylene by atom transfer radical polymerization[J]. J Polym. Sci., Part A:Polym Chem., 2000, 38(13): 2440-2448
    [75]夏攀登,耿兵,路翠苹,等.原子转移自由基聚合的研究进展[J].河南化工, 2005 (4): 5
    [76] Pattten T. E., Matyjazewski K. Atom transfer radical polymerization and the synthesis of polymeric materials[J]. Adv. Mater, 1998,(10):901-915
    [77] Sawamoto M., Kamigaito M. Metal complex-mediated living radical polymerization: Features, scope, and precision polymer synthesis[J]. Journal Of Macromolecular Science Pure And Applied Chemistry, 1997, A34(10): 1803-1814
    [78]王晓松,罗宁,应圣康. CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合[J].功能高分子学报, 1998, (1): 1-8
    [79] Xia, J.H., Johnson, T., Gaynor S.G., et al. Atom transfer radical polymerization in supercritical carbon dioxide[J]. Macromolecules, 1999, 32(15): 4802-4805
    [80] Beers, K.L., Boo, S., Gaynor, S.G., et al. Atom transfer radical polymerization of 2-hydroxyethyl methacrylate[J]. Macromolecules, 1999, 32(18): 5772-5776
    [81]万小龙,应圣康. Cu/2,2′-联吡啶/CCl4和CuCl2/2,2′-联吡啶/偶氮二异丁腈催化引发体系中的苯乙烯“活性”自由基乳液聚合研究[J].高分子学报, 2000 (1): 27
    [82] Burguiere C., Chassenieux C., Charleux B. Characterization of aqueous micellarsolutions of amphiphilic block copolymers of poly(acrylic acid)and polystyrene prepared via ATRP. toward the control of the number of particles inemulsion polymerization[J]. Polymer, 2003, 44: 509-518
    [83] Okubo M, Minami H, Jian Zhou. Preparation of block copolymer by atom transfer radical seeded emulsion polymerization[J].Colloid Polym.Sci, 2004, 282: 747-752
    [84] Xia, J H., Matyjaszewski, K. Homogeneous reverse atom transfer radical polymerization of styrene initiated by peroxides[J]. Macromolecules, 1999, 32(16): 5199-5202
    [85] Yamamoto, K; Tanaka, H; Sakaguchi, M, et al. Well-defined poly(methyl methacrylate) grafted to polyethylene with reverse atom transfer radical polymerization initiated by peroxides[J].Polymer, 2003, 44(25): 7661-7669
    [86] Ziegler, M. J, Matyjaszewski, K .Atom transfer radical copolymerization of methyl methacrylate and n-butyl acrylate[J]. Macromolecules, 2001, 34( 3): 415-424
    [87] Takahashi, H., Ando, T., Kamigaito M., et al. RuH2(PPh3)(4): An active catalyst for living radical polymerization of methyl methacrylate at or above room temperature[J]. Macromolecules, 1999, 32(20): 6461-6465
    [88]周弟,朱秀林,程振平,等.甲基丙烯酸异丁酯的低温原子转移自由基聚合[J].高分子材料科学与工程, 2005, 21(1): 137-140
    [89]彭慧,程时远,范志强.原子转移自由基聚合体系中催化剂的脱除[J].化学与生物工程, 2005,(1): 21-24
    [90] Shen Y.Q , Tang H.D., Ding S.J. Catalyst separation in atom transfer radical polymerization[J]. Prog. Polym. Sci., 2004,(29): 1053-1078
    [91] Patten T E, B Novak, M. Organotitanium( IV)-Catalyzed Cyclopolymerizations of 1, 2 -Diisocyanates and Cyclocopolymerizations of Monoisocyanates with 1, 2 -Diisocyanates[J]. Macromolecules, 1996, 29 (18): 5882-5892
    [92]廖正福,沈家瑞.原子转移自由基聚合及其在共聚物分子设计中的应用[ J].功能材料, 2000, 31(3): 242
    [93] Muhlebach A., Gaynor G. S., Matyjaszewski K. Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP) [J]. Macromolecules,1998,31 (18): 6046-6052
    [94] Beers K. L., Gaynor S. G., Matyjaszewski K., et al. The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization[J]. Macromolecules, 1998,31 (26): 9413-9415
    [95]张兆斌.含氟单体的可控自由基聚合及含氟共聚物的分子设计[D].上海:华东理工大学, 1999
    [96] Greszta D, Matyjaszewski K. Mechanism of controlled“living”radical polymerization of styrene in the presence of nitroxyl radicals kinetics and simulations [J]. Macromolecules, 1996, 29 (24): 7661-7670
    [97] Arehar T. S.V., Greszta D., Matyjaszewski K. Possibilities and limitations of“Living”radical polymerization [J]. Polym. Prep, 1997, 38 (1): 705
    [98] Greszta D., Matyjaszewski K. Comments on the Paper“Living Radical Polymerization: Kinetic Results”[J]. Macromolecules, 1996, 29 (15): 5239-5240
    [99] Kotani Y, Kamigaito M, Sawamoto, M. Living Random Copolymerization of Styrene and Methyl Methacrylatewith a Ru( II) Complex and Synthesis of ABC -Type“Block-Random”Copolymers[J]. Macromolecules, 1998, 31(17): 5582-5587
    [100] Wang X. S., Jackson R. A., Armes, S. P. Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature [J]. Macromolecules (Communication), 2000, 33 (2): 255 -257
    [101] Chen G. Q., Wu Z. Q., Wu, J.R., et a.l Synthesis of Alternating Copolymers of N-Substituted Maleimides with Styrene via Atom Transfer Radical Polymerization[J].Macromolecules, 2000, 33 (2): 232-234
    [102] Matyjaszewski K, Mu J. S., Paik H. J., et al. Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization[J]. Macromolecules, 1997,30 (20): 6398-6400
    [103] Kotani Y., Kato M., Kamigaito M., et al. Living radical polymerization of alkyl methacrylates with ruthenium complex and synthesis of their block copolymers [J]. Macromolecules, 1996, 29 (22): 6979-6982
    [104]张永明,罗宁,应圣康.乙酸乙烯酯嵌段共聚物的合成研究[J].合成橡胶工业, 1997, 20 (5): 314
    [105] Coca S., Matyjaszewski K. Block copolymers by transformation of“living”carbocationic into“living”radical polymerization[J]. Macromolecules, 1997, 30 (9): 2808-2810
    [106] Jankova K., Chen X., Kops J., et al. Synthesis of amphiphilic PS-b-PEG-b-PS by atom transfer radical polymerization[ J]. Macromolecules, 1998, 31 (2): 538-541
    [107] Gaynor S.G., Matyjaszewski K. Step-Growth polymers as macroinitators for " living" radical polymerization: synthesis of aba block copolymers[J]. Macromolecules,1997, 30 (14): 4241-4243
    [108] Cheng G.L, Hu C.P, Ying S.K. Synthesis and characterization of P(St-b-MMA), P(St-b-BA) and poly(MA-co-IBVE) by using phen-ATRP systems[J]. Acta. Polymerica. Sinica., 2000(2): 210-214
    [109] AngoT. S., Murthy K. M., Taton D. Atom transfer radical polymerization of styrene using a novel octafuctional initiators: Synthesis of Well -defined polystyrene stars [J].Macromolecules; 1998, 31(21): 72518-7255
    [110]张士福,罗宁,应圣康. 2-卤代羧酸季戊四醇四酯多官能引发剂合成星状聚苯乙烯[J].华东理工大学学报, 1999(6): 588-560
    [111] Kwak Y., Matyjaszewski K. .Effect of Initiator and Ligand Structures on ATRP of Styrene and Methyl Methacrylate Initiated by Alkyl Dithiocarbamate[J]. Macromolecules, 2008, 41 (18): 6627-6635
    [112] Wang X.N., Luo N., Ying S.K. Synthesis of SBS-g-PMMA with well-controlled branch chain by“living”radical polymerization[J]. China Synthetic Rubber Industry, 2000, 23 (1): 13-19
    [113]刘琳,夏平,王国建. FeC12/IDA催化体系制备两亲性超支化星状聚合物[J].同济大学学报, 2003, 31(11): 1382-1386
    [114]罗宇太,庄家明,邹友思等.氢氧化铝、硼酸、异丁基硼酸对苯乙烯原子转移自由基聚合的加速研究[J].厦门大学学报(自然科学), 2008, 47(1): 63-66
    [115] Letp M.G., Rizzardo E., Thang S. H. Polymerization with living characteristics[P]. PCT Int Appl. WO 9801478 Al. 980115, 1998
    [116] Mitsukami Y., Donovan M.S., Lowe A. B., et al. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT[J]. Macromolecules, 2001, 34(7): 2248-2256
    [117] Otsu T, Yoshida M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters[J]. Macromol. Rapid. Commun., 2005, 26(3): 137-142.
    [118] Jankova K., Kops J., Chen,X.Y, et al. Synthesis by ATRP of poly(ethylene-co-butylene)-block-polystyrene,poly(ethylene-co-butylene)-block-poly(4-acetoxystyrene) and its hydrolysis product poly(ethylene-co-butylene)-block-poly(hydroxystyrene) Macromol. Rapid. Commun., 1999, 20(4): 219-223
    [119] Waterson C., Haddleton D. M. Synthesis of a-b block copolymers by copper-mediated atom-transfer polymerization utilizing an end-group-modified poly(ethylene/butylene) macroinitiator[J]. Polymer Prep, 1999, 40: 218,1045
    [120] Brittain B. M. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique[J]. Macromolecules, 2002, 35(3): 610-615
    [121] Stenzel-Rosenbaum M., Davis T.P , Chen V., et al. Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization[J]. Polymer Sci, Part A: Polymer Chem., 2001,39(16): 2777-2783
    [122] Mayadunne RTA, Rizzardo E., Chiefari J., et al. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps[J]. Macromolecules, 33(2): 243-245
    [123] Hong, C.Y., You, Y. Z., Liu, J., et al. Dendrimer-star polymer and block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization with dendritic chain transfer agent[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2005,43(24): 6379-6393
    [124] Hawthorne D G, Moad G, Rizzardo E, et al. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT): Direct ESR observation of intermediate radicals[J]. Macromolecules, 1999, 32(16): 5457-5459
    [125] Ganachaud F., Monteiro M. J., Gilbert R. G., et al. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization[J].Macromolecules, 2000, 33(18): 6738-6745
    [126] Goto, A; Sato, K; Tsujii, Y, et al. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate[J]. Macromolecules, 2001, 34(3): 402-408
    [127] Monteiro M.J., Sjoberg M., Vlist V. J., et al. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: Effect of surfactant migration upon film formation[J].Polym. Sci:Part A, 2000, 38(23): 4206-4217
    [128] Monteiro M. J., Hodgson M., Brouwer H. D. The influence of RAFT on the rates andmolecular weight distributions of styrene in seeded emulsion polymerizations[J]. J. Polym. Sci: PartA, 2000, 38(21): 3864-3874
    [129] Brouwer H. D., Schellekens M. A. J., Klumperman B., et al. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization[J]. J. Polym Sci: Part A, 2000(19), 38: 3596-3603
    [130] Brouwer H D, Tsavalas J. G., Schork F. J., et al. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer[J]. Macromclecules, 2000, 33(25): 9239-9246
    [131] Bamer-Kowollik C., Quinn J. F., Morsley D. R., et al. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium[J]. J Polym. Sci: Part A, 2001, 39(9): 1353-1365
    [132] Zhang M., Ray W.H. Modeling of "living" free-radical polymerization with RAFT chemistry[J]. Ind Eng Chem Res, 2001, 40(20): 4336-4352
    [133] Mitsukami Y., Hashidzume A., Yusa S., et al. Characterization of pH-dependent micellization of polystyrene-based cationic block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization[J].T Polymer, 2006, 47(12): 4333-4340
    [134] Bon, S.A.F., Morsley, S.R., Waterson, C., et al. Use of methyl 2-(bromomethyl)acrylate as a chain-transfer agent to yield functionalized macromonomers via conventional and living radical polymerizations[J]. Macromolecules, 2000, 33(16): 5819-5824
    [135]王艳君,王玉霞,曹同玉.可逆加成—断裂链转移活性自由基聚合[J].高分子通报, 2003, (3): 57-63
    [136] Rogers R D. Ionic liquids: Not so green?[J]. Chemical & engineering news,2002, 80 (17): 4-5
    [137] Carmichael A. J., Haddleton D. M., Bon S. A. F., et al. Copper(I) mediated living radical polymerisation in an ionic liquid[J]. Chem. Commun., 2000, (14): 1237-1238
    [138] Sarbu T., Matyjaszewski K.. ATRP of Methacrylate in the Presence of Ionic Liquids with Ferrous and Cuprous Anions[J]. Macromol.Chem.Phys., 2001, 202: 3379-3391
    [139] Lai G. Q., Hu Z. Q., Wu J. R., et al. ATRP of MMA in [mim][HCOO] ionic liquid[J]. Acta. Polymer Icasinic., 2006, 6: 449-551
    [140] Sebastien M., Tadeusz B, Rinaldo P, et al. Atom Transfer Radical Polymerization of Methyl Acrylate with Molybdenum Halides as Catalysts in an Ionic Liquid[J]. Journalof Applied Polymer Science, 2007, 105: 278-281
    [141] Biedro T, Kubisa P. Atom-transfer radical polymerization of acrylates in an ionic liquid[J]. Macromol. Rapid. Commun., 2001, 22(15): 1237-1242
    [142] Biedro T, Kubisa P. Atom Transfer Radical Polymerization of Acrylates in an Ionic Liquid: Synthesis of Block Copolymers[J]. J. Polym. Sci. Polym. Chem., 2002, 40: 2799-2809
    [143] Zhao Y L, Zhang J M, Jiang J, et al. Atom Transfer Radical Copolymerization of N-Hexylmaeimide and Styrene in an Ionic Liquid[J].J Polym Sci Polym Chem, 2002, 40(20): 3360-3366
    [144] Ding S J, Radosz M, Shen Y Q. Ionic Liquid Catalyst for Biphasic Atom Transfer Radical Polymerization of Methyl Methacrylate[J]. Macromolecules, 2005, 38: 5921-5928
    [145] Gong S M, Ma H Y, Wan X H. Atom transfer radical polymerization of methyl methacrylate induced by an initiator derived from an ionic liquid[J].Society of Chemical Industry, 2006, 34: 1-4
    [146] Ma H Y, Wan X H, Chen X F, et al. Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ionic liquids[J]. J. Polym. Sci. Pol.Chem., 2003, 41(1): 143-151
    [147] Ma H Y, Wan X H, Zhou Q F, et al. Reverse atom transfer radical polymerization of methyl methacrylate in imidazolium ionic liquids[J]. Polymer, 2003, 44(18): 5311-5316
    [148] Perrier S, Davis T P, Carmichael A J, et a.l First Report of Reversible Addition-Fragmentation Chain Transfer ( RAFT )Polymerisation in Room Temperature Ionic Liquids. Chem Commun, 2002, 19: 2226- 2227
    [149] Perrier S, Davis T P,. Carmichael A J, et al. Reversible Addition-Fragmentation Chain Transfer Polymerization of Methacrylate, Acrylate and Styrene Monomers in 1-Alkyl-3-Methylimidazolium Hexfluorophosphate. Eur. Polym J., 2003, 39(3): 417- 422
    [150] Zhang H. W. Hong Kunlun, Mays J W. First Report of Nitroxide Mediated Polymerization in an Ionic Liquid. Polym Bull, 2004, 52: 9-16
    [151] Marson G. A., ElSeoud O. A. A novel, efficient procedure for acylation of cellulose under homogeneous solution conditions[J]. Journal of Applied Polymer Science, 1999, 24(6):1355-1360
    [152]高洁,汤烈贵.纤维素科学[M].北京:科学出版社, 1996
    [153]邬义明.植物纤维化学[M].北京:中国轻工业出版社, 1991
    [154]胡雪生,余江.离子液体的绿色合成及环境性质[J].化学通报, 2005(12): 906-910
    [155] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J].J Am Chem Soc, 2002, 124: 4974-4975
    [156]任强,武进,张军等. 1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报, 2003(3): 448-451
    [157]罗惠谋,李毅群,周长忍等.功能化离子液体对纤维素的溶解性能研究[J].高分子材料科学与工程, 2005, 21(2): 233-235
    [158] Heinze T, Schwikal K , Barthel S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromol.Biosci., 2005, 5: 520-525
    [159] Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids[J]. Green Chem. 2006, 8: 301-306
    [160] Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid[J]. Biomacromolecules, 2004, 5: 266-268
    [161] George F. Fanta, Frederick C. Felker, Randal L. Graft polymerization of acrylonitrile onto spherocrystals formed from jet cooked cornstarch [J]. Carbohydrate Polymers, 2004, 56(1): 77-84
    [162] Lin O. H., Kumar R.N., Rozman H.D., et al. Noor Grafting of sodium carboxymethylcellulose (CMC) with glycidyl methacrylate and development of UV curable coatings from CMC-g-GMA induced by cationic photoinitiators[J].Carbohydrate Polymers, 2005, 59(1): 57-69
    [163] Sun T., Xu P., Liu Q., et al. Graft copolymerization of methacrylic acid onto carboxymethyl chitosan[J]. European Polymer Journal, 2003, 39(1): 189-192
    [164]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社, 2000: 48-50
    [162]张建梅,韩志萍,王亚军.重金属废水的治理和回收综述[J].湖州师范学院学报, 2002, 24(3): 48-52
    [166] Navarro R R, Sumi K, Fujii N,et a1. Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine[J]. Water Research, 1996, 30(10):2488-2494
    [167]詹怀宇主编.纤维化学与物理[M].北京:科学出版社, 2005: 236
    [168] Sano C., Nagashima N., Kawakita T., et al. The effects of additives on the crystal habit of monosodium l-glutamate monohydrate[J]. Journal Of Crystal Growth, 1990, 99(1-4): 1070-1075
    [169]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社, 1983:67
    [170] Saucedo I, Guibal E, Roussy J, et al. Uranium sorption by glutamate glucan:a modified chitosan-part: equilibrium studies. Water S A, 1993, 19: 113-118
    [171] Daneshvar N, Salari D, Aber S., Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake[J]. Journal of Hazardous Materials, 2002, (B94): 49-61.
    [172] Singh Tony Sarvinder, Pant K K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(Ⅲ) on activated alumina[J]. Separation and Purification Technology, 2004, (36): 139-147.
    [173] Mckay G, Otterburn M S, Sweeney A G. The removal of colour from eluent using various adsorbents.Ⅲ. Silica rate processes[J]. Wat. Res., 1980, 14: 15-20
    [174] Leyva-Ramos J, Fuentes-Rubio L, Guerrero-Coronada R M, et al. Adsorption of trivalent chromium from aqueous solutions onto activated carbon.[J]. J. Chem. Technol. Biotechnol, 1995, 62: 64-67.
    [175] Haribabu E, Upadhya Y D, Upadhyay S N. , Removal from effluents by fly ash[J]. Int.J.Environ.Studies, 1993, 43: 169-176
    [176] Han R P, Zhang J H, Zou W H., Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column[J]. J. Hazard. Mater., 2006, 133(1-3): 262-268
    [177] Shubha K. P, Raji C. R., Anirudhan T S. Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin (IV) oxide gel having carboxylate functional groups[J]. Wat. Res., 2001, 35(1): 300-310
    [178] Bilal Acemio Glu. Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes[J]. Bioresource Technology, 2004, 93(1): 99-102
    [179] Mervette El-Batouti, Olfat M Sadek, Fayez F Assaad. Kinetics and thermodynamics studies of copper exchange on Na–montmorillonite clay mineral[J]. Journal of Colloid and Interface Science, 2003, 259(2): 223-227
    [180] Bajpai J, Shrivastava Ruma, Bajpai A K. Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 236: 81-90
    [181] Rengaraj S, Kim Y, Joo C K, et al. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium [J]. J. Colloid Interface Sci., 2004, 273(1): 14-21
    [182] Ho Y S. Removal of copper ions from aqueous solution by tree fern [J]. Water Res,2003, 37(10): 2323-2330
    [183] Panday K K, Prasad G, S ingh V N. Copper(II) removal from aqueous solutions by fly ash[J]. Water Res., 1985, 19: 869-873
    [184] Cheung C W, Porter J F, Mckay G. Sorption kinetics for the removal of copper and zinc from effluents using bone char [J]. Sep. Purif .Technol., 2000, 19(1-2): 55-64.
    [185] Chiron N, Guilet R, Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models[J]. Water Res, 2003, 37(13): 3079-3086
    [186] Ho Y S, Ng J C Y, McKay G. , Removal of lead(II) from effluents by sorption on peat using second-order kinetics[J]. Sep. Purif. Methods, 2000, 29(2): 189-232
    [187] Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris[J]. Process. Biochem., 2002, 38(1): 89-99
    [188] Sun Q, Yang L. The adsorption of basic dyes from aqueous solution on modified peat-resin particle [J].Water Res, 2003, 37(7): 1535-1544.
    [189] Lorenc-Grabowska E, Gryglewicz G. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons [J]. J. Colloid Interface Sci., 2005, 284(2): 416-423
    [190] Crini G.. Non-conventional low-cost adsorbents for dye removal: A review [J]. Bioresource Technology,2006,97: 1061-1085
    [191] Malik P. K., Saha S. K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst [J].Separation and Purification Technology, 2003, 31(3): 241-250
    [192] Ciardelli G., Corsi L., Marucci M. Membrane separation for waste water reuse in the textile industry[J].Resources Conservation Recycling, 2000, 31(2): 189-197
    [193] Walker G.M. Adsorption of dyes from aqueous solution-the effect of adsorption pore size distribution and dye aggregation[J].Chemcial Engineering Journal.,2001,83:201-206
    [194]张颖,李光明,陈玲,等.活性炭再生技术的发展[J].化学世界, 2001, 42(8): 441-444
    [195] Bulut Y., Aydin H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells[J]. Desalination 194(2006) 259–267.
    [196]孙影芝,龚仁敏,张小平等.甘蓝皮生物吸附去除水中的阳离子染料[J].中国环境科学2005, 25:61-64
    [197] Gedye R.N., Smith F.E., Westaway K., et al. The use of microwave ovens for rapidorganic synthesis[J]. Tetrahedron Lett., 1986, 27(3): 279-282
    [198]但德忠.微波溶样技术[J].化学通报, 1989, 10: 46-49
    [199]王鹏.环境微波化学技术[M].北京:化学工业出版社, 2003: 5
    [200] De Meuse M.T., Ryan C.L. The Microwave Proeessing of Polymeric Materials[J]. Advances in Polymer Technology, 1993, 12: 197-203
    [201] Chia, H.L.; Jacob,J.; Boey, F.Y.C. Microwave Radiation Effect on the polymerization of styrene[J]. J. Polym. Sci. Part A: Polym.Chem., 1996, 34(11): 2087-2094
    [202] Jacob J., Chia L.H.L., Boey F.YC. Microwave Polymerization of Poly(methylacrylate): Conversion Studies at variable power[J]. J.app1.polym.Sci. 1997, 63(6): 787-797
    [203]李杰,赵建青,沈家瑞.微波作用下的甲基丙烯酸甲醋的本体聚合[J].高分子材料科学与工程, 1999, 15(2): 155-156
    [204] Liao L.Q., Liu L.J., Zhang C., et al. Microwave-Assisted Ring-Opening Polymerization ofε-caprolactone[J]. J.Polym.Sci. partA:Polym.Chem., 2002, 40: 1749-1755
    [205]朱秀林,顾梅,路建美.高岭土一聚丙烯酸钠高吸水性复合树脂的合成及性能研究[J].高分子材料科学与工程, 1994, 10(6): 46-49
    [206]顾梅,朱秀林,路建美,等.丙烯酞胺的微波聚合研究[J].高分子材料科学与工程, 1997, 13(5): 36-39
    [207]路建美,朱秀林,顾梅.微波法合成聚丙烯酸钠高吸水性树脂[J].高分子材料科学与工程, 1996, 12(4): 55-58
    [208]路建美,朱秀林,王丽华,等.微波法合成两性高吸水性树脂[J].石油化工, 1997,,26(3): 152-155
    [209]路建美,朱秀林,余俊等.微波法合成阳离子高吸水性树脂[J].高分子材料科学与工程, 1998, 14(1): 28-30
    [210]路建美,朱秀林,朱健等.丙烯酸钠与丙烯酸胺微波辐射共聚[J].高分子材料科学与工程, 1998, 14(2): 38-40
    [211]路建美,朱秀林,胡逢吉等.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂[J].石油化工, 1999, 28(l): 36-39
    [212] Lu J.M., Zhu X.L., Zhu J., et al. Mcrowave Radiation Solid-State Copolymerization in Binary Maleie Anhydride-DibenZyl Maleate systems[J]. J.Appl.Polym.Sci., 1997, 66: 129-133
    [213] Lu J.M., Zhu X.L., Ji S.J., et al. Microwave Radiation Copolymerization in Solid State of Maleie Anhydride and Allylthiourea[J]. Appl.Polym.Sci., 1998, 68: 1563-1566
    [214]路建美,朱秀林,朱健等.马来酸醉的微波固相聚合研究[J].高分子材料科学与工程, 1999, 15(l): 158-160
    [215]路建美,姜琦松,朱秀林等.顺丁烯二酸二丁基锡与硬脂酸乙烯醋微波辐射共聚合[J].石油化工, 2000, 29(10): 764-767
    [216] Martinez-Palou R. Ionic liquid and Microwave-Assisted Organic Synthesis: A "Green" and Synergic Couple[J]. Journal of the Mexican Chemical Society, 2007, 51(4): 252-264
    [217] Timothy N. Microwave assisted synthesis of pyrroles[J].Tetrahedron Letters., 1999, 40(20): 3957-3961
    [218] Singh V., Tiwari A., Tripathi D N., Sanghi R. Microwave enhanced synthesis of chitosan-graft-polyacrylamide[J]. Polymer, 2006 , 47(1): 254-260
    [219] Vandana S., Ashutosh T., Devendra N. T., et al. Microwave assisted synthesis of Guar-g-polyacrylamide[J]. Carbohydr. Polym. 2004, 58(1): 1-6
    [220] Swatloski R. P., Spear S. K., Holbrey J. D. Dissolution of cellulose with ionic liquids[J]. J. Am. Chem. Soc. 2002, 124(18): 4974-4978
    [221] Saskia A., Galema H A. Synthesis, purification and liquid-crystalline behaviour of several alkyl 1-thioglycopyranosides[J]. Carbohydrate Research, 1997, 303(4): 423-434.
    [222] Haupt K. Molecularly imprinted polymers in analytical chemistry[J]. Aanalyst, 2001, 126(6): 747-756
    [223] Yano K.,Karube I. Molecularly imprinted polymers for biosensor applications [J]. Trends Anal.Chem., 1999, 18(3): 199-204
    [224] Ye L., Haupt K. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery[J]. Analytical and bioanalytical chemistry, 2004, 378(8): 1887-1897
    [225] Tada M., Iwasawa Y. Approaches to design of active structures by attaching and molecular imprinting of metal complexes on oxide surfaces[J]. J. Mol. Catal. A. Chem., 2003, 204-205: 27-53
    [226] Zaidi S A., Cheong W J. Robust open tubular layer of S-ketoprofen imprinted polymer for chiral LC separation[J]. Journal of Separation Science, 2008, 31(16-17): 2962-2970
    [227] Idziak L., Benrebouh A., Deschamps F. Simple NMR experiments as a means to predict the performance of an anti-17 alpha-ethynylestradiol molecularly imprinted polymer[J]. Anal.Chem.Acta, 2001, 435(1): 137-140
    [228] Muldoon M.T., Stanker L.H. Molecularly imprinted solid phase extraction of atrazinefrom beef liver extracts[J]. Anal.Chem, 1997, 69(5): 803-808
    [229] Matsui J., Fujiwara T., Ugata S., et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent[J]. J.Chromatogr. A, 2000, 889(1-2): 25-31
    [230] Mullett W.M., Drtie M.E, Lai E., et al. A 2-aminopyridine molecularly imprinted polymer surrogate micro-column for selective solid phase extraction and determination of 4-aminopyridine[J]. Anal.Chem.Act, 2000, 414: 123
    [231]裴广玲,成国祥.金属离子印迹聚合物微球的制备研究进展[J].热固性树脂, 2002, 17(4):26
    [232]曲荣君,孙向荣,王春华,等.纤维素基吸附剂的研究进展[J].林产化学与工业, 2004, 24(3): 102-106
    [233]汤烈贵,朱玉琴.纤维素的功能材料[ J].功能材料, l995, 26(2): 101-106.
    [234]程博闻,康卫民.纤维素吸附材料[ J].人造纤维, 2003, 33(6): 17-19.
    [235]刘传富,孙润仓,叶君.纤维素类吸附剂的研究进展[J].中国造纸学报, 2005, 20(2): 213-216
    [236]黄建辉,刘明华,范娟,等.纤维素吸附剂的研制和应用[J].造纸科学与技术, 2004, 23( l): 50-54
    [237] Kuchen W., Schram J. Metal-ion-selective exchange resins by matrix imprint with methacrylates[J]. Angew. Chem. Int. Ed. Engl. 1988, 27 (12) : 1695-1697
    [238] Dai S., Burleig M.C., Shin Y., et al. Imprint coating: a novel synthesis of selective functionalized ordered mesoporous sorbents[J]. Angew. Chem. Int., 1999, 38 (9): 1235-1239
    [239] Iftikhar A R, Bhatti H N, Hanifa M A,et al. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass[J]. Journal of Hazardous Materials, 2009, 161(2-3): 941-947
    [240] Ozacara M, Sengilb I A, Turkmenler H,. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin[J]. Chemical Engineering Journal, 2008, 143(1-3): 32-42
    [241]沈大娲,马林,康宏亮,等.乙基纤维素接枝聚丙烯酸叔丁酯的合成与表征[R].北京:全国高分子学术论文报告会, 2005.
    [242] Matyjaszewski K, Xia J. Atom Transfer Radical Polymerization[J]. Chem. Rev, 2001, 101:2921- 2990
    [243] Kamigaito M, Ando T, Sawamoto M. Metal-Catalyzed Living Radical Polymerization[J]. Chem. Rev, 2001, 101: 3689-3746
    [244] Carlmark A, Malmstrom E. ATRP Grafting from Cellulose Fibers to Create Block-Copolymer Grafts [J]. Biomaeromoleeules, 2003, 4: 1740-1745
    [245] Coskun R, Soykan C. Lead(II) Adsorption from Aqueous Solution by Poly(ethylene terephthalate)-g-Acrylamide Fibers [J]. Journal of Polymer Research, 2006,13(1): 1-8
    [246] Shen D, Huang Y,. The synthesis of CDA-g-PMMA copolymers through atom transfer radical polymerization[J]. Polymer, 2004, 45: 7091-7097
    [247] Vlcek P, Janata M, Latalova P, et al. Controlled grafting of cellulose diacetate [J]. Polymer, 2006, 47: 2587-2595
    [248] Heinze T, Liebert T. Unconventional methods in cellulose functionalization[J]. Prog. Polym. Sc.i , 2001, 26(9): 1689-1762
    [249] Hirano S., Kancko H., Kiagawa M. N-lower Fatty Acylderivatives of Chitosan as Adsorbents for Lysozyme and Chitinase[J]. Agric. Biol. Chem., 1991, 55 (1): 683
    [250] Sealey J. E., Frazier C. E., Samaranayake G. Novel cellulose derivatives-V: Synthesis and thermal properties of esters with trifluoroethoxy acetic acid[J]. J. Polym. Sci, Part B: Polym. Phys., 1996, 34(9): 1613-1620
    [251] Qin S.H., Matyjaszewski K., Xu H., et al. Synthesis and visualization of densely grafted molecular brushes with crystallizable poly(octadecyl methacrylate) block segments[J]. Macromolecules, 2003, 36(3): 605-612
    [252] Matyjaszewski, K., Davis, T.P. Handbook of Radical Polymerization[M]. Wiley, Hoboken, 2002.
    [253] Szwarc M., Levy M., Milkovich R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymerization[J]. J. Am.Chem Soc., 1956, 78: 2656-2657
    [254] Webster O. W., Hertler W. R., Sogah D.Y. Group Transfer Polymerization. A new concept for addition polymerization with organosilicon initiators[J]. J. Am. Chem. So., 1983, 105: 706-711
    [255] Aida T., Inoue S. Immortal polymerization. Polymerization of epoxidean d13- lactone with ether aluminum porphyrin in the presence of profic compound[J]. Macromolecules, 198l, 14: 1162-1169
    [256] Miyamoto M., Sawamoto M, Higashimura T. Living polymerization of isobutyl vinyl with the hydrogen iodide/odine initiating system[J]. Macromolecules, 1984, 18: 265-270
    [257] Faust R., Kennedy J.P. Living carbocationic polymerizationⅡ. Demonstration of theliving polymerization of isobutylene[J]. Polymer Bull, 1986, 15 (4): 317-324
    [258] Fayt R., Forte R., Teyssie P. New initiator system for the living anionic polymerization of tertalkyl acrylates[J]. Macromolecules, 1987, 20(6): 1442-1449
    [259] Reetz M. T. New methods for the anionic polymerization of a -activated olefins[J]. Angew.Chem, 1988, 100(7): 1026-1032
    [260] Mitsuni K., Masami K., Mitsuo S., et al. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) ruthenium(I1) /Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization[J]. Macromolecules,1995, 28: 1721-1723
    [261] Grimaud T., Matyjaszewski K. Controlled/"Living" Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization[J]. Macromolecules, 1997, 30: 2216-2218
    [262] Zhang Xuan, Xia Jianhui, Matyjaszewski Krzysztof. Controlled/"Living" RadicalPo lymerization of 2-(Dimethylamino)ethyl Methacrylate[J]. Macromolecules, 1998, 31: 5167-5169
    [263] Harrisson S., Mackenzie S. R., Haddleton D. M. Pulsed laser polymerization in an ionic liquid: Strong solvent effects on propagation and termination of methyl methacrylate[J]. Macromolecules, 2003, 36(14): 5072-5075
    [264] Wang X., Luo N., Ying S. Controlled radical polymerization of methacrylates at ambient temperature and the synthesis of block copolymers containing methacrylates[J]. Polymer, 1999, 40(14): 4157-4161
    [265] Wang X. S., Armes S. P. Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature[J]. Macromolecules, 2000, 33(18): 6640-6647
    [266] Perrier S., Armes S. P., Wang X. S., et al. Copper(I)-mediated radical polymerization of methacrylates in aqueous solution[J]. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(10): 1696-1707
    [267] Strehmel V., Kraudelt H., Wetzel H. Free radical polymerization of methacrylates in ionic liquids[J]. Abstract of Papers of the American Chemical Society, 2004, 227: U455
    [268] Wang J.L., Grimaud T., Matyjaszewski K. Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate[J]. Macromolecules, 1997, 30(21): 6507-6512
    [269] Percec V., Barboiu B., Neumann A., et al. Metal-Catalyzed“Living”Radical Polymerization of Styrene Initiated with Arenesulfonyl Chlorides. From Heterogeneousto Homogeneous Catalysis[J]. Macromolecules, 1996, 29(10): 3665-3668
    [270] Uegaki, H.; Kotani, Y.; Kamigato, M.; Sawamoto, M. Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate[J]. Macromolecules,1997, 30(8): 2249-2253
    [271] Healy P. C., Pakawatchai C., White A. H. Lewis-base adducts of Group 1B metal(I) compounds. Part 18. Stereo-chemistries and structures of the 1 : 1 neutral complexes of CuIX with 1,10-phenanthroline (X = I) or 2,9-dimethyl-1,10-phenanthroline (X = I, Br, or Cl)[J]. J. Chem. Soc., Dalton. Trans. 1985: 2531-2539
    [272] Shemper B S, Mathies L J. Syntheses and characterization of statistical and block fluorinated copolymers with linear and star-like architectures via ATRP[J]. European Polymer Journal, 2004, 40(4): 651-665
    [273] Zhao B. Synthesis of binary mixed homopolymer brushes by combining atom transfer radical polymerization and nitroxide-mediated radical polymerization[J]. Polymer, 2003, 44(15): 4079-4086
    [274] Grimaldi S., Finet J. P., Zeghdaoui, A ., et al. Synthesis of a new class of nitroxyl radicals and application to ''living'' free radical polymerization[J]. Polym Prepr., 1997, 38: 651-654
    [275] Yuan J.J., Ma R., Gao Q., et al. Synthesis and characterization of polystyrene/poly(4-vinylpyridine) triblock copolymers by reversible-fragmentation chain transfer polymerization and their self-assenbled aggregates in water.[J].J. Appl. Polym. Sci., 2003, 89: 1017-1025
    [276] Feng X.S., Pan C.Y. Synthesis of amphiphilic miktoarm ABC star copolymers by RAFT mechanism using maleic anhydride as linking agent[J]. Macromolecules, 2002, 35: 4888-4893
    [277] Tsujii Y., Ejaz M., Sato K. et al. Mechanism and Kinetics of RAFT-Mediated Graft Polymerization of Styrene on a Solid Surface. 1. Experimental Evidence of Surface Radical Migration[J]. Macromolecules, 2001, 34(26): 8872-8878
    [278] Baum M., Brittain W. J. Synthesis of Polymer Brushes on Silicate Substrates via Reversible Addition Fragmentation Chain Transfer Technique[J]. Macromolecules, 2002, 35(3): 610-615
    [279] Hong C. Y., You Y. Z., Pan, C. Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization[J]. Chem. Mater. 2005, 17:2247-2254
    [280] Barsbay M, Guven O, Stenzel MH, et al. Verification of controlled grafting of styrene from cellulose via adiation-induced RAFT polymerization[J]. Macromolecules, 2007,40: 7140-7147
    [281] Roy D, Guthrie J T, Perrier S. Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization[J]. Macromolecules, 2005, 38: 10363–10372
    [282] Roy D, Knapp J S, Guthrie J T, et al. Antibacterial cellulose fiber via RAFT surface graft polymerization[J]. Biomacromolecules, 2008, 9: 91-99
    [283] Earle M J, Seddon K R. Ionic Liquid-Green Solvents for the Future[J]. Pure. Appl. Chem, 2000,72(7): 1391-1398
    [284] ZhaoY. L., Zhang J.M., Jiang J., et al. Atom Transfer Radical Copolymerization of n-Hexylmaeimide and Styrene in an IonicLiquid[J]. J. Polym Sci, PartA: Polym Chem, 2002, 40(20): 3360-3366
    [285] Y.K. Chong, J. Krstina, T.P.T. Le, G. Moad, A. Postma, E. Rizzardo, S.H. Thang, Macromolecules, 2003, 36(7): 2256-2272
    [286] Coskun M., Temuz M. M. Grafting studies onto cellulose by atom-transfer radical polymerization [J]. Polym. Int., 2005, 54(2): 342-347
    [287] Roy D., Guthrie J. T., Perrier S. Graft Polymerization: Grafting Poly(styrene) from Cellulose via Reversible Addition?Fragmentation Chain Transfer (RAFT) Polymerization[J]. Macromol. 2005, 38(25): 10363-10372
    [288] Chen J., Yi J., Sun P., et al. Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization[J]. Cellulose, 2009, 16(6): 1133-1145
    [289] Kristofer J., Thurecht P. N., Gooden S. G., et al. Free-Radical Polymerization in Ionic Liquids: The Case for a Protected Radical[J]. Macromol., 2008, 41(8): 2814-2820
    [290] Harrisson S., MacKenzie S., Haddleton D. M. Unprecedented solvent-induced acceleration of free-radical propagation of methyl methacrylate in ionic liquids[J]. Chem. Commun., 2002, 23: 2850-2851
    [291] Hardacre C., Holbrey J. D., Katdare S. P., et al. Alternating copolymerisation of styrene and carbon monoxide in ionic liquids[J]. Green Chem. 2002, 4(2): 143-146
    [292] Klingshirn M. A., Broker G. A., Holbrey J. D., et al. Polar, non-coordinating ionic liquids as solvents for the alternating copolymerization of styrene and CO catalyzed by cationic palladium catalysts [J]. Chem. Commun. 2002(13): 1394-1395
    [293] Nara S. J., Harjani J. R., Salunkhe M. M.et al. Lipase-catalysed polyester synthesis in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid[J]. Tetrahed. Lett., 2003, 44(7): 1371-1373
    [294] Marcilla R., de Geus M., Mecerreyes, D., et al. Enzymatic polyester synthesis in ionic liquids[J]. Eur. Polym. J., 2006, 42(6): 1215-1221
    [295] Strehmel V., Laschewsky A., Wetzel H, et al. Free Radical Polymerization of n-Butyl Methacrylate in Ionic Liquids[J]. Macromol., 2006, 39(3):923-93
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.