锂离子电池负极材料Li_4Ti_5O_(12)的合成及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前锂离子电池广泛采用的石墨类碳负极材料不可逆容量损失较大,而且存在安全性问题。尖晶石Li_4Ti_5O_(12)作为锂离子电池负极材料时具有优异的安全性能、简单的制备工艺、低廉的成本和良好的环境特性,并且在充放电过程中结构几乎不发生变化被称为“零应变”材料,具有非常优越的循环性能,因而引起人们的广泛关注。然而,Li_4Ti_5O_(12)材料较低的电子电导率和离子传导率(固有电导率仅为10~(-9) Scm~(-1))影响其电化学性能特别是高倍率下的电化学性能,而成为它实现工业化应用的最大障碍。本文旨在通过Nb掺杂、表面石墨烯包覆等技术途径,提高其电导率进而改善其电化学性能。为了进一步挖掘尖晶石型Li_4Ti_5O_(12)的可逆容量和倍率性能,本文还研究了其在低电位下的电化学行为并阐述了导电剂对材料电化学行为的影响。
     第一章综述了锂离子电池及其负极材料的研究进展和尖晶石Li_4Ti_5O_(12)负极材料的研究现状,提出了本论文的选题意义以及需要解决的相关科学问题。
     第二章简要的介绍了制备尖晶石型Li_4Ti_5O_(12)及其改性样品过程中所采用的化学药品、实验仪器及测试电池过程中所采用的仪器及表征手段。
     第三章采用醋酸溶胶凝胶法制备了尖晶石型Li_4Ti_5O_(12)及一系列铌掺杂的Li_4Ti_5O_(12),研究不同掺杂量对Li_4Ti_5O_(12)电化学性能的影响,深入研究了最佳掺杂量时材料的电化学性能。研究结果表明,通过用Nb~(5+)部分取代Ti~(4+)后,所得材料导电性提高,充放电容量有所增大,循环性能得到了很大提高。该法合成的Li_4Ti_(4.95)Nb_(0.05)O_(12)材料的循环伏安曲线具有较高的氧化还原峰值,并且对称性也较Li_4Ti_5O_(12)的好,具有良好的循环性能。组装成测试电池的电化学阻抗结果和导电率测试结果都显示,Li4Ti4.95Nb0.05O12材料具有较Li_4Ti_5O_(12)材料更高的锂离子传导速率和电子传导速率。
     第四章运用柠檬酸溶胶-凝胶法合成了Li_4Ti_5O_(12)和Li_4Ti_(4.95)Nb_(0.05)O_(12)材料,重点对其深度放电行为进行研究,将放电截止电压由1.0 V扩至0 V后,尖晶石型钛酸锂的可逆容量得到了提高。本章还就铌掺杂对Li_4Ti_5O_(12)材料深度放电行为的影响作了深入探讨。为钛酸锂材料容量挖潜提供了有益参考。
     第五章通过一种简单的溶胶凝胶法合成石墨烯包覆的Li_4Ti_5O_(12)材料。利用石墨烯片在溶液中的特殊作用,合成了Li_4Ti_5O_(12)颗粒细小且粘附在石墨烯片上的Li_4Ti_5O_(12)/石墨烯复合电极材料。元素分析结果显示该复合电极材料碳含量约为7.8%wt,XRD分析表明石墨烯包覆的钛酸锂材料仍表现为单一的尖晶石结构。扫描电镜结果显示,钛酸锂和石墨烯具有协同作用。石墨烯的加入可以阻止Li_4Ti_5O_(12)的团聚,Li_4Ti_5O_(12)分布于石墨烯片层之间和孔洞结构中也可以阻止石墨烯片的堆积。因此Li_4Ti_5O_(12)/石墨烯复合电极材料中Li_4Ti_5O_(12)颗粒更细小。石墨烯包覆的Li_4Ti_5O_(12)材料表现出了良好的电化学性能,尤其是大倍率下的电化学性能。在10 C倍率下,Li_4Ti_5O_(12)/石墨烯复合材料第100次的放电比容量是110.3 mAhg~(-1),高于Li_4Ti_5O_(12)的84.6 mAhg~(-1)。循环伏安测试结果显示, Li_4Ti_5O_(12)/石墨烯复合电极材料有更好的导电性和循环性能。
Lithium-ion batteries have been widely utilized as a power source for portable electronic devices. Recently, much effort has been made to promote their application in hybrid electric vehicles and dispersed energy storage systems, which demand light weight, small volume, high energy density and safety. As a promising anode material for the lithium-ion batteries, spinel Li_4Ti_5O_(12) exhibits many advantages compared to the currently used graphite. For example, there is negligible change in the unit cell volume of Li_4Ti_5O_(12) during lithium insertion and extraction, so it was named as zero strain material. It also has very flat voltage plateau at around 1.55 V vs. Li/Li+, which is higher than the reduction potential of most organic electrolytes. Therefore, Li_4Ti_5O_(12) is much safer and more stable than carbon-based materials. Despite the advantages mentioned above, however, there are some obstacles for the development and commercialization of Li_4Ti_5O_(12). One of the main obstacles is its low electronic conductivity, which leads to its low rate capacity. In order to improve the conductivity, three methods were proposed: (1) improving the synthesis route to get nano-sized particles, because small particle size will shorten lithium ion diffusion path and broaden the electrode/electrolyte contact surface obviously; (2) adding a second conductive phase into the Li_4Ti_5O_(12), such as metal powder and carbon; (3) substituting Li or Ti by other metal cations, such as Cr3+, V5+, Mn4+, Fe3+, Al3+, Ga3+, Co3+, Ta5+, Cu2+. In this dissertation, sol-gel synthesis methods were carried out to prepare electrode materials. Nb-doping and grephene coating are mainly used to enhance the electrical conductivity of Li_4Ti_5O_(12) materials and then improve the electrochemical performance.?To further extend the reversible capacity, we also investigated the deep discharge electrochemical behavior of Li_4Ti_5O_(12) and modified Li_4Ti_5O_(12) materials.
     In the first chapter, the current survey on lithium ion batteries anode?materials, especially on spinel Li_4Ti_5O_(12) material was introduced. And correlative scientific problems needed to solve were brought forward.
     In the second chapter,?a brief introduction to the chemicals used in the synthetic process, experimental equipments and analysis technics were declared in this part.
     In the third chapter, Nb doped lithium titanate with the composition of Li_4Ti_(4.95)Nb_(0.05)O_(12) has been prepared by a sol-gel method. X-ray diffraction (XRD) and scanning electron microscope (SEM) are employed to characterize the structure and morphology of Li4Ti4.95Nb0.05O12. The Li_4Ti_(4.95)Nb_(0.05)O_(12) electrode presents a higher specific capacity and better cycling performance than the Li_4Ti_5O_(12) electrode prepared by the similar process. The Li_4Ti_(4.95)Nb_(0.05)O_(12) exhibits an excellent rate capability with a reversible capacity of 135 mAh g-1 at 10 C, 127 mAh g-1 at 20 C and even 80 mAh g~(-1 )at 40 C. Electrical resistance measurement and electrochemical impedance spectra (EIS) reveal that the Li_4Ti_(4.95)Nb_(0.05)O_(12) exhibits a higher electronic conductivity and faster lithium ion diffusivity than the Li_4Ti_5O_(12), which indicates that niobium doped lithium titanate (Li4Ti4.95Nb0.05O12) is promising as a high rate anode for the lithium-ion batteries.
     In the fourth chapter, Li_4Ti_5O_(12) and Li_4Ti_(4.95)Nb_(0.05)O_(12) has been synthesized by a citric acid-assistant sol-gel method. The structures of the samples were confirmed by X-ray diffraction (XRD). The electrochemical performance of the Li_4Ti_5O_(12) down to 1.0 V, 0.5 V and 0 V has been investigated. Cyclic voltammograms (CV) and XRD show that the Li_4Ti_5O_(12) electrode possesses a good stability during the process of the Li+ deep intercalation and extraction. The electrochemical performances of the Li_4Ti_(4.95)Nb_(0.05)O_(12) and the Li_4Ti_5O_(12) in the range from 0 to 2.5 V are also investigated. The Li_4Ti_(4.95)Nb_(0.05)O_(12) presents a higher specific capacity and better cycling stability than the Li_4Ti_5O_(12) due to the improved conductivity. The Li_4Ti_(4.95)Nb_(0.05)O_(12) exhibits a capacity as high as 231.2 mAh g-1 after 100 cycles, which is much higher than the Li_4Ti_5O_(12) (111.1 mAh g-1). The effect of Nb-doping on electrochemical performance of Li_4Ti_5O_(12) discharged to 0 V has also been discussed.
     In the fifth chapter, Li_4Ti_5O_(12)/graphene composite was prepared by a facile sol-gel method. The lattice structure and morphology of the composite were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The electrochemical performances of the electrodes have been investigated compared with the pristine Li_4Ti_5O_(12) synthesized by a similar route. The Li_4Ti_5O_(12)/graphene composite presents a higher capacity and better cycling performance than Li_4Ti_5O_(12) at the cutoff of 2.5 - 1.0 V, especially at high current rate. The excellent electrochemical performance of Li_4Ti_5O_(12)/graphene electrode could be attributed to the improvement of electronic conductivity from the graphene sheets. When discharged to 0 V, the Li_4Ti_5O_(12)/graphene composite exhibited a quite high capacity over 274 mAhg~(-1) below 1.0 V, which was quite beneficial for not only the high energy density but also the safety characteristic of lithium-ion batteries.
引文
[1]涂健.掺杂和表面改性尖晶石LiMn2O4用作离子电池正极材料的研究[D].浙江:浙江大学, 2006
    [2]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社, 1996: 1-464
    [3] Tarascon J. M., Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367
    [4] Chan C. K., Peng H. L., Liu G., et al. High-performance lithium battery anodes using silicon nanowires [J]. Nature Nanotechnology, 2008, 3(1): 31-35
    [5] Wakihara M. Recent developments in lithium ion batteries [J]. Materials Science & Engineering R-Reports, 2001, 33(4): 109-134
    [6] Whittingham M. S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104:4271-4301
    [7] Grey C. P., Dupre M. NMR studies of cathode materials for lithium-ion rechargeable batteries [J]. Chemical Reviews, 2004, 104:4493-4512
    [8] Armand M., Murphy D. W., Broadhead J., Steele B. C. H. Materials for advanced batteries [J]. The second edition, 1980, New York: Plenum Press
    [9] Thackeray M. M., David W. I. F., Bruce P. G., Goodenough J. B. Lithium insertion into manganese spinels [J]. Materials Research Bulletin, 1983, 18 (4):461-472
    [10]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社, 2002:1-369
    [11]郭炳昆,徐徽,王友先等.锂离子电池[M].长沙:中南工业大学出版社, 2002:1-260
    [12] Ogura S., Kawama I., Sakurai T., et al. Development of oil filled pressure compensated lithium-ion secondary battery for DSV Shinkai 6500 [A]. IEEE. Oceans 04 MTS/IEEE Techno-Ocean 04, Vols 1- 2 [C]. New York: 345 E 47th ST, 2004:1720-1726
    [13] Wang J., Raistrick I. D., Huggins R. A. Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes [J]. Journal of The Electrochemical Society, 1986, 133 (3):457-460
    [14] Besenhard J.O., Yang J., Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J]. Journal of Power Sources, 1997, 68 (1):87-90
    [15] Nagaura T., Tozawa K. Lithium ion rechargeable battery [J]. Progress in Batteries and Solar Cells, 1990, 9 (2):209-217
    [16]周恒辉,慈云祥.锂离子电池电极材料研究进展[M].化学进展, 1998, 10 (1):85-94
    [17] Armstrong A. R., Bruce P. G. Synthesis of layered LiMnO2 as an electrode forrechargeable lithium batteries [J]. Nature, 1996, 381 (1038):499-500
    [18] Dahn J. R., Zheng T., Liu Y., et al. Mechanisms for Lithium Insertion in Carbonaceous Materials [J]. Science, 1995, 270 (5236):590-593
    [19] Sato K., Noyuchi M., Demachi A., et al. Mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264 (5158):556-558
    [20] Scrosati B. Challenge of portable power [J]. Nature, 1995, 373 (1038):557- 558
    [21]汪继强.锂离子电池技术进展及市场[J].电源技术, 1996, 20 (4):147-151
    [22]赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料[J].化学研究与应用, 1998, 10 (1):21-26
    [23]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社, 2004: 1-400
    [24]杨军,解晶莹,王久林.化学电源测试原理与技术[J].北京:化学工业出版社,2006:1-346
    [25] Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition-metal oxides as negative - electrode materials for lithium-ion batteries [J]. Nature, 2000, 407 (350): 496-499
    [26]陈杨,周振君,童昀.锂离子电池正极材料的研究进展与展望[J].稀有金属与硬质合金, 2007, 35 (3): 54-57
    [27] Linden D., Reddy T. B. Handbook of batteries [M].第三版.汪继强.北京:化学工业出版社, 2007: 723-786
    [28]李玉增,钱九红.锂离子电池材料的最新进展[J].稀有金属, 1995, 19 (6): 448-453
    [29]高海春.锂离子电池[J].盐湖研究, 1994, 2 (4): 54-59
    [30] Fujimoto M., Kida Y., Nohma T., Takahashi M., Nishio K., Saito T. Electrochemical behavior of carbon electrodes in some electrolyte solutions [J]. Journal of Power Sources, 1996, 63:127-130
    [31]仇卫华,张刚,卢世刚,等.锂离子电池负极材料-树脂包覆石墨的性能[J].电源技术. 1999, 23 (1): 7-9
    [32] Xing W. B., Xue J. S., Dahn J. R. Optimizing Pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries [J]. Journal of The Electrochemical Society, 1996, 143 (10):3046-3052
    [33] Kenji Sato, Minoru Noguchi, Atsushi Demachi, et al. A mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264 (5158):556-558
    [34] Dahn J. R., Xing W., Gao Y. The“falling cards model”for the stucture of micro-porouscarbons [J]. Carbon, 1997, 35 (6):825-830
    [35] Bulel E., Dahn J. R. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries [J]. Journal of The Electrochemical Society, 1998, 145 (6):1977-1981
    [36] Liu Y. H., Xue J. S., Zheng T., et al. Mechanism of lithiuxn insertion in hard carbons Prepared by Pyrolysis of epoxy resins [J]. Carbon, 1996, 34 (2):193-200
    [37] Zheng T., MeKinnon W. R., Dahn J. R. Hysteresis during lithitnn insertion in hydrogen-containing carbons [J]. Journal of The Electrochemical Society, 1996, 143 (7):2137-2145
    [38] Mabuchi A., Tokumitsu K., Fujimoto H., Kasuh T. Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures [J]. Journal of The Electrochemical Society, 1995, 142 (4):1041-1046
    [39] Jean M., Tranchant A., Messina R. Reactivity of lithiurn interealated into petroleum coke in carbonate electrolytes [J]. Journal of The Electrochemical Society, 1996, 143 (2):391-394
    [40] Tatsumi K., Zaghib K., Sawada Y. Anode performance of vapor-grown carbon fibers in secondary lithium-ion batteries [J]. Journal of The Electrochemical Society, 1995, 142 (4):1090-1096
    [41] Yamamoto O., Imanishi N., Takeda Y., Kashiwagi H., Rechargeable carbon anode [J]. Journal of Power Sources, 1995, 54 (1):72-75
    [42] Hara M., Satoh A., Takami N., et al. Surface structures and charge-dischare characteristics of mesocarbon microbeads as the anodes for secondary lithium-ion batteries [J]. TANSO, 1994, 165:261-267
    [43] Jean M., Desnoyer C., Tranchant A., Messina R. Electrochemical and structural studies of petroleum coke in carbonate-based electrolytes [J]. Journal of The Electrochemical Society, 1995, 142 (7):2122-2125
    [44] Tatsumi K., Akai T., Imamura T., Zaghib K., Iwashita N., Higuchi S., Sawada Y. Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads [J]. Journal of The Electrochemical Society, 1996, 143 (6):1923-1930
    [45] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354:56-58
    [46] Beguin F. Leroux F., Metenier K., Gautier S., Frackowiak E., Bonnamy S. Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes [J]. Journal of Power Sources, 1999, 81:317-322
    [47] Wu G. T., Wang C. S., Zhang X. B., et al. Lithium inserting into CuO/carbon nanotubes[J]. Journal of power sources, 1998, 75:175-179
    [48] Zhang G., Huang K. L., Liu S. Q., Zhang W., Gong B. L. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders [J]. Journal of Alloys and Compounds, 2006, 426 (1-2):432-437
    [49] Winter M., Besenhard J. O. Electrochemical lithiation of tin-based intermatallics and composites [J]. Electrochimica Acta, 1999, 45 (1-2):31-50
    [50] Zuo P. J., Yin G. P., Zhao J., Ma Y. L., Cheng X. Q., Shi P. F., Takamura T. Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries [J]. Electrochimica Acta, 2006, 52 (4):1527-1531
    [51] Wang K., He X. M., Ren J. G., Wang L., Jiang C. Y., Wan C. R. Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides [J], Electrochimica Acta, 2006, 52 (3):1221-1225
    [52] Yuan L., Guo Z. P., Konstantinov K., Liu H. K., Dou S. X. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries [J]. Journal of Power Sources, 2006, 159 (1):345-348
    [53] Limthongkul P., Jang Y., Dudny N. J., Chiang Y. M. Electrochemicallly-driven solid-state amorphization in lithium-metal anodes [J]. Journal of Power Sources, 2003, 119-121:604-609
    [54] Lee Y. S., Lee J. H., Kim Y. W., Sun Y. K., Lee S. M., Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries [J]. Electrochimica Acta, 2006, 52 (4):1523-1526
    [55] Grey I. E., Bordet P., Li C., Roth R. S. Phase stability and non-stoichiometry in M-phase solid solutions in the system LiO0.5-NbO2.5-TiO2 [J]. Journal of Solid State Chemistry, 2004, 177 (3):660-669
    [56] Hu J., Li H., Huang X. J., Chen L. Q. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries [J]. Solid State Ionics, 2006, 177 (26-32):2719-2799
    [57] Nishi Y. Lithium ion secondary batteries: past 10 years and the future [J]. Journal of Power Sources, 2001, 100:101-106
    [58] Tarascon J. M., Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 144:359-367
    [59] Whittingham M. S. Insertion electrodes as SMART materials the first 25 years and future promises [J]. Solid State Ionics, 2000, 134:169-178
    [60] Fang T., Hsiao L. Y., Duh J. G., Sheen S. R. A novel composite negative electrode consist of multiphase Sn compounds and mesophase graphite powders for lithium ionbatteries [J]. Journal of Power Sources, 2006, 160:536-541
    [61] Nobili F., Dsoke S., Mecozzi T., Marassi R. Metal-oxidized graphite composite electrodes for lithium-ion batteries [J]. Electrochimica Acta, 2005, 51:536-544
    [62] Nam S. C., Paik C. H., Cho W. I., Cho B. W., Chun H. S., Yun K. S. Electrochemical characterization of various tin-based oxides as negative electrodes for rechargeable lithium batteries [J]. Journal of Power Sources, 1999, 84:24-31
    [63] Sun H., He X. M., Li J. J., Ren J. G., Jiang C. Y., Wan C. R. Hard carbon/Li2.6Co0.4N composite anode materials for Li-ion batteries [J], Solid State Ionics, 2006, 177 (15-16):1331-1334
    [64] Gregory D. H., O’Meara P. M., Gordon A. G., Siddons D. J., Blake A. J., Barker M. G., Hamor T. A., Edwards P. P. Layered ternary transition metal nitrides: synthesis, structure and physical properties [J]. Journal of Alloys and Compounds, 2001, 317-318:237-244
    [65] Nishijima M., Kagohashi T., Takeda Y., Imanishi M., Yamamoto O. Electrochemical studies of a new anode material, Li3-xMxN(M=Co, Ni, Cu) [J]. Journal of Power Sources, 1997, 68 (2):510-514
    [66] Takeda Y., Nishijima M., Yamahata M., Takeda K., Imanishi N., Yamamoto O. Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode [J]. Solid State Ionics, 2000, 130 (l-2):61-69
    [67] Liu Y., Matsumura T., Imanishi N., Ichikawa T., Hirano A., Takeda Y. Lithium transition metal nitrides with the modified morphology characteristics as advaneed anode materials for lithiumion batteries [J]. Electrochemistry Communications, 2004, 6 (7):632-636
    [68] Ohzuku T., Yamamoto A. Zero-Strain Insertion Material of Li4Ti5O12 for Rechargeable Lithium Cell. Journal of the Electrochemical Society [J]. 1995, 142 (5):1431-1435
    [69] Colbow K. K., Dahn J. R., Haering R. R. Polymerizable Aromatic Additives for Overcharge Protection in Non-aqueous Rechargeable Lithium Batteries [J]. Journal of Power Sources, 1989, 26(3-4):97
    [70] Kanamura K., Umegaki T., Naito H., Takehara Z., Yao T. Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries [J]. Journal of Applied Electrochemistry, 2001, 31:73-78
    [71] Scharner S., Weppner W., Schmid-Beurmann P.?Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode [J]. Journal of the Electrochemical Society, 1999, 146:857-861
    [72] Ronci F., Reale P., Scrosati B., et al. High-Resolution in-Situ Structural Measurements of The Li4/3Ti5/3O4“Zero-Strain”Insertion Materia[J]. The Journal of Physical ChemistryB, 2002, (106):3082-3086
    [73]卢俊彪,唐子龙,张中太.锂离子二次电池正极材料晶体结构与电化学性能[J].稀有金属材料与工程. 2005, 34 (11):1681-1685
    [74] Bach S., Pereira R. J. P., Baffier N. Electrochemical Properties of Sol-Gel Li4/3Ti5/3O4 [J]. Journal of Power Sources, 1999, (81-82):273-276
    [75] Sutomuo T., Tsushiu A., Orihiroy N. Zero-Strain Insertion Material of Li4Ti5O12 for Rechargeable Lithium Cell [J]. Journal of the Electrochemical Society, 1995, 140:1431-1435
    [76] Charners S., Eppnerw W., Shmid B. Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 [J]. Journal of the Electrochemical Society, 1999, 146 (3):857-861
    [77] Prosini P. P., Mancini R., Petrucci L. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J]. Solid State Ionics, 2001, 144:185-192
    [78] Jansen A. N., Kahaian A. J., Kepler K. D. Developmentof a high-power lithium-ion battery [J]. Journal of Power Sources, 1999, 81-82:902-905
    [79]高玲,仇卫华,赵海雷.合成温度对Li4Ti5O12电化学性能的影响[J].电池, 2004, 34(5): 351-352
    [80]杨建文,钟晖,钟海云. Li4Ti5O12的合成及其影响因素[J].中南大学学报, 2005, 36(1): 55-59
    [81] Nakahara K., Nakajima R., Matsushima T. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells [J]. Journal of Power Sources, 2003, 117: 131-136
    [82]郝艳静.锂离子电池负极材料Li4Ti5O12的制备、改性及电化学性能研究[A].博士学位论文,四川大学, 2006
    [83] Kiyoshi K., Takeshi C. Kaoru D. Preparation of Li4Ti5O12 Spherical Particles for Rechargeable Lithium Batteries [J]. Journal of the European Ceramic Society, 2006, (26):577-581
    [84] Kim D. H., Ahn Y. S. Polyol-Mediated Synthesis of Li4Ti5O12 Nanoparticle and Its Electrochemical Properties [J]. Electrochemistry Communications, 2005, (7):1340-1344
    [85] Hao Y. J., Lai Q.Y., Lu J. Z., Wang H. L., Chen Y. D., Ji X. Y. Synthesis and Characterization of Spinel Li4Ti5O12 Anode Material by Oxalic Acid-Assisted sol-gel Method [J]. Journal of Power Sources, 2006, 158:1358-1364
    [86] Sorensen E. M., Barry S. J., Jung H. K. Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties [J]. Chemistry Materials, 2006, 18:482-485
    [87] Wang D., Ding N., Song X. H., Chen C. H. A simple gel route to synthesize nano-Li4Ti5O12 as a high-performance anode material for Li-ion batteries [J]. Journal of Materials Science, 2009, 44:198-203
    [88] Ha H. W., Jeong K. H., Kim K. Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis [J]. Journal of Power Sources, 2006, 161:606-611
    [89] Cheng L., Liu H. J., Zhang J. J., et al. Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors [J]. Journal of the Electrochemical Society, 2006, 1538:1472-1477
    [90] Fu J., Bai Y., Liu C., et al. Physical Characteristic Study of Li4Ti5O12 Prepared by Molten Salt Synthesis Method [J]. Materials Chemistry and Physics, 2009, 115 (1):105-109
    [91] Chen C. H., Vaughey J. T., Jansen A. N., et al. Studies of Mg Substituted Li4-xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries [J]. Journal of The Electrochemical Society, 2001, 148 (1):A102-A104
    [92] Yi T. F., Shu J., Zhu Y. R., Zhu X. D., Yue C. B., Zhou A. N., Zhu R. S. High-performance Li4Ti5?xVxO12 (0≤x≤0.3) as an anode material for secondary lithium-ion battery [J]. Electrochimica Acta, 2009, 54:7464-7470
    [93] Sun Y. K., Jung D. J., Lee Y. S., et al. Synthesis and Electrochemical Characterization of Spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 Anode Materials [J]. Journal of Power Sources, 2004, 125 (2):242-245
    [94] Huang S. H., Wen Z. Y., Gu Z. H., et al. Preparation and Cycling Performance of Al3+ and F- Co-Substituted Compounds Li4AlxTi5-xFyO12-y [J]. Electrochimica Acta, 2005, 50:4057-4062
    [95] Qi Y. L., Huang Y. D., Jia D. Z., Bao S. J., Guo Z. P. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials [J]. Electrochimica Acta, 2009, 54:4772-4776
    [96]阮艳莉,唐致远,彭庆文.尖晶石型Li4Ti5O12电极材料的合成与电化学性能研究[J].无机材料学报. 2006, 21 (4):873-879.
    [97] Guerfi A., Sevigny S., Lagace M., et al. Nano-Particle Li4Ti5O12 Spinel as Electrode for Electrochemical Generators [J]. Journal of Power Sources, 2003, (119-121):88-94
    [98] Guerfi A., Charest P., Kinoshita K., Perrier M., Zaghib K. Nano electronically conductive titanium-spinel as lithium ion storage negative electrode [J]. Journal of Power Sources, 2004, 126:163-168
    [99] Zaghib K., Gauthier M., Brochu F., et al. Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12 Particles, Processes for Obtaining Same and Use as Electrochemical Generators [P]. US:20040202934. 2004, 10:141-149
    [100]何则强,刘文萍,熊利芝.锂离子电池用Li4Ti5O12-碳复合材料的制备与电化学性能[J].无机化学学报. 2007, 23:732-737.
    [101] Huang S. H., Wen Z. Y., Zhang J. C., et al. Preparation and Electrochemical Performance of Ag doped Li4Ti5O12 [J]. Solid State Ionics, 2006, 177:851-858
    [102] Huang S. H., Wen Z. Y., Zhang J. C. Improving the Electrochemical Performance of Li4Ti5O12/Ag Composite by an Electroless Deposition Method [J]. Electrochimica Acta, 2006, 52:3704-3708
    [103] Huang S. H., Wen Z. Y., Lin B., Han J. D., Xu X. G.?The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries [J].? Journal of Alloys and Compounds, 2008, 1-2:400-403
    [104]刘永辉.电化学测试技术[M].北京:北京航空学院出版社, 1987:1-503
    [105] Singh D., Kim W. S., Craciun V., et al. Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition [J]. Applied Surface Science, 2002, 197:516-521
    [106]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002:1-194
    [107]吴升晖,尤金跨,林祖赓.锂离子电池碳负极材料的研究[J].电源技术, 1998, (1):35-39
    [108] Flandrois S., Simon B. Carbon materials for lithium-ion rechargeable batteries [J]. Carbon, 1999, (37):165-180
    [109] Endo M., Kim C., Nishimura K., Fujino T., Miyashita K. Recent development of carbon materials for Li-ion batteries [J]. Carbon, 2000, (38):183-197
    [110] Shi Z., Liu M., Naik D., et al. Electrochemical Properties of Li-Mg alloy electrodes for lithium batteries [J]. Journal of Power Sources, 2001, 92:70-80
    [111]殷声.燃烧合成[M].北京:冶金工业出版社,1999:24-25
    [112] Bach S., Pereira-Ramos J., Baffier N.?Electrochemical properties of sol-gel Li4/3Ti5/3O4 [J], Journal of Power Sources, 1999, 81-82(1-2):273-276
    [113] Rho Y. H., Kanamura K., Fujisaki M., et al.?Preparation of Li4Ti5O12 and LiCoO2 thinfilm electrodes from precursors obtained by sol-gel method [J]. Solid State Ionics, 2002, 151:151-157
    [114] Shen C. M., Zhang X. G., Zhou Y. K., et al.? Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method [J]. Materials Chemistry and Physics, 2003, 78:437-441
    [115] Robertson A. D., Tukamoto H., Irvine J. T. S. Li1+xFe1-3xTi1+2xO4 (0.0 <= x <= 0.33) based spinels: Possible negative electrode materials for future Li-ion batteries [J]. Journal of The Electrochemical Society, 1999, 146:3958-3962
    [116] Robertson A. D., Trevino L., Tukamoto H., et al.?New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries [J]. Journal of Power Sources, 1999, 81:352-357
    [117] Kubiak P., Garcia A., Womes M., et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion - Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe [J]. Journal of Power Sources, 2003, 119:626-630
    [118] Chen C. H., Vaughey J. T., Jansen A. N., et al.?Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 <= x <= 1) for lithium batteries [J]. Journal of The Electrochemical Society, 2001, 148:A102-A104
    [119] Sun Y. K., Jung D. J., Lee Y. S., et al.?Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 anode materials [J]. Journal of Power Sources, 2004, 125:242-245
    [120] Zhao H. L., Li Y., Zhu Z. M., Lin J., Tian Z. H., Wang R. L.? Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries [J]. Electrochimica Acta, 2008, 53:7079-7083
    [121] Wolfenstine J., Allen J. L.?Electrical conductivity and charge compensation in Ta doped Li4Ti5O12 [J]. Journal of Power Sources, 2008, 180:582-585
    [122] Huang Y. D., Jiang R. R., Bao S. J., Dong Z. F., Cao Y. L., Jia D. Z., Guo Z. P. Synthesis and electrochemical properties of nanostructured LiAlxMn2-xO4-yBry particles [J]. Journal of Solid State Electrochemistry, 2009, 13:799-805
    [123] Wang D., Ding N., Song X. H., Chen C. H. A simple gel route to synthesize nano-Li4Ti5O12 as a high-performance anode material for Li-ion batteries [J]. Journal of Materials Science, 2009, 44:198-203
    [124] Yi T. F., Shu J., Zhu Y. R., Zhu X. D., Zhu R. S., Zhou A. N.?Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V [J]. Journal of Power Sources, 2010, 195:285-288
    [125] Shenouda A. Y., Murali K. R.? Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries [J]. Journal of Power Sources, 2008, 176:332-339
    [126] Yuan T., Cai R., Wang K., Ran R., Liu S. M., Shao Z. P. Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery [J]. Ceramics International, 2009, 35:1757-1768
    [127] Li X., Qu M. Z., Yu Z. L.Structural and electrochemical performances of Li_4Ti_(5-x)ZrxO_(12) as anode material for lithium-ion batteries [J]. Journal of Alloys and Compounds, 2009, 487:L12-L17
    [128] Shenouda A. Y., Liu H. K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode [J]. Journal of Alloys and Compounds, 2009, 477:498-503
    [129] Shenouda A. Y., Liu H. K., Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems [J]. Journal of Power Sources, 2008, 185:1386-1391
    [130] Shaju K. M., Subba Rao G. V., Chowdari B. V. R. Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2 [J], Journal of The Electrochemical Society, 2004, 151:A1324-A1332
    [131] Huang H., Faulkner T., Barker J., Saidi M. Y. Lithium metal phosphates, power and automotive applications [J]. Journal of Power Sources, 2009, 189:748-751
    [132] Rui X. H., Ding N., Liu J., Li C., Chen C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material [J]. Electrochimica Acta, 2010, 55:2384-2390
    [133] Ge H., Li N., Li D. Y., Dai C. S., Wang D. L.? Study on the Theoretical Capacity of Spinel Lithium Titanate Induced by Low-Potential Intercalation [J]. The Journal of Physical Chemistry C, 2009, 113:6324-6326
    [134] Xiang H. F., Zhang X., Jin Q. Y., Zhang C. P., Chen C. H., Ge X. W. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells [J]. Journal of Power Sources, 2008, 183:355-360
    [135] Shu J. Electrochemical behavior and stability of Li4_Ti_5O_(12) in a broad voltage window [J]. Journal of Solid State Electrochemistry, 2009, 13:1535-1539
    [136] Borghols W. J. H., Wagemaker M., Lafont U., Kelder E. M., Mulder F. M. Size Effects in the Li4+xTi5O12 Spinel [J]. Journal of the American Chemical Society, 2009, 131:17786-17792
    [137] Jung K. N., Pyun S., Kim S. W. Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti_(5/3)Li_(1/]O_4 film electrode [J]. Journal of Power Sources, 2003, 119:637-643
    [138] Zhong Z. Y., Ouyang C. Y., Shi S. Q., Lei M. S.? Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries [J]. ChemPhysChem, 2008, 9:2104-2108
    [139] Kavan L., Prochazka J., Spitler T. M., Kalbac M., Zukalova M., Drezen T., Gratzel M. Li Insertion into Li4Ti5O12 Spinel? Charge Capability vs. Particle Size in Thin-Film Electrodes [J].?Journal of The Electrochemical Society, 2003, 150:A1000-A1007
    [140] Ma J. X., Wang C. S., Wroblewski S.? Kinetic characteristics of mixed conductive electrodes for lithium ion batteries [J]. Journal of Power Sources, 2007, 164:849-856
    [141] Lu W., Belharouak I., Liu J., Amine K.?Electrochemical and thermal investigation of Li4/3Ti5/3O4 spinel [J]. Journal of The Electrochemical Society, 2007, 154:A114-A118
    [142] Takami N., Inagaki H., Kishi T., Harada Y., Fujita Y., Hoshina K. Electrochemical Kinetics and Safety of 2-Volt Class Li-Ion Battery System Using Lithium Titanium Oxide Anode [J]. Journal of The Electrochemical Society, 2009, 156:A128-A132
    [143] Croce F., Appetecchi G. B., Persi L., Scrosati B. Nanocomposite polymer electrolytes for lithium batteries [J]. Nature, 1998, 394:456-458
    [144] Yao X. L., Xie S., Nian H. Q., Chen C. H.? Spinel Li4Ti5O12 as a reversible anode material down to 0 V [J]. Journal of Alloys and Compounds, 2008, 465:375-379
    [145] Huang Y. D., Jiang R. R., Bao S. J., Dong Z. F., Cao Y. L., Jia D. Z., Guo Z. P. Synthesis and electrochemical properties of nanostructured LiAlxMn2-xO4-yBry particles [J]. Journal of Solid State Electrochemistry, 2009, 13:799-805
    [146] Li Y. M., Lv X. J., Lu J., Li J. H. Preparation of SnO2-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability [J]. Journal of Physical Chemistry C, 2010, 114:21770-21774
    [147] Wang J. Z., Zhong C., Chou S. L., Liu H. K. Flexible free-standing graphene-silicon composite film for lithium-ion batteries [J]. Electrochemistry Communications, 2010,?12:1467-1470
    [148] Wang H. L., Cui L. F., Yang Y. A., Casalongue H. S., Robinson J. T., Liang Y. Y., Cui Y., Dai H. J. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries [J]. Journal of the American Chemical Society, 2010, 132:13978-13980
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.