磁性颗粒负载纳米TiO_2光催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛以其价廉、无毒、催化活性高、稳定性好、耐光腐蚀等优点而受到了广泛关注。但是由于TiO2的量子产率低,光响应范围窄,太阳能利用率低,催化剂分离回收困难等缺点限制其实际应用。本文针对纳米二氧化钛粉体催化剂分离回收难的问题,选择具有大的比表面积和易于磁分离的磁性纳米粉体为载体,采用溶胶凝胶法制备了一系列磁性纳米光催化剂,并通过碱土金属离子掺杂改性来拓展TiO2的光谱响应范围,提高对太阳光的利用率。以磁性颗粒负载的锐钛矿纳米二氧化钛为原料采用水热法制备了具有大比表面积的钛酸盐纳米管磁性复合材料。利用VSM、XRD、TEM、DRS、SEM等技术,研究了磁性光催化剂的结构与催化性能之间的关系,以亚甲基蓝为模拟污染物考察了催化剂的光催化性能。
     采用溶胶-凝胶法制备了磁性颗粒SiO2/MeFe2O4(SM, Me=Ni、Co、Co0.64Zn0.36)负载的复合光催化剂TiO2/SiO2/NiFe2O4(TSN)、TiO2/SiO2/CoFe2O4(TSC)和TiO2/SiO2/Co0.64Zn0.36Fe2O4(TSCZ).研究表明,TSN、TSC、TSCZ均具有亚铁磁性,易于通过磁场分离,具有良好的回收性能和重复使用性。SiO2中间层的引入极大地提高了复合光催化剂的光催化性能。光催化结果显示,TSN的紫外光催化性能最佳,TSCZ的可见光催化性能最佳。
     采用溶胶-凝胶法制备了碱土金属离子(M2+)掺杂的磁载复合光催化剂M2+-TSN(M2+=Mg2+、Ca2+、Sr2+、Ba2+),系统研究了碱土金属离子掺杂对TSN催化性能的影响。实验发现,M2+掺杂引起TiO2吸收边带红移,M2+掺杂进入晶格后引起晶格畸变,使粒径变小,Mg2+、Ca2+、Sr2+、Ba2+的最佳掺杂量分别为1.0%、1.0%、0.8%、0.8%。光催化实验显示,碱土金属离子掺杂提高了TiO2的可见光催化活性,Ba2+掺杂后样品在可见光区对亚甲基蓝的降解率比TSN提高近2倍。
     采用水热法合成了负载磁性颗粒的钛酸盐纳米管磁性复合材料(MTNT),考察了制备条件对MTNT形貌、组成、磁性和催化性能的影响。研究发现,水热反应温度和NaOH浓度对MTNT的形成有着显著的影响。MTNT主要组成为Na0.8H1.2Ti3O7。由于SiO2在强碱溶液中的溶解,MTNT的磁性比原料有所增强。在400~500℃煅烧后,钛酸盐纳米管转化为TiO2纳米管。光催化结果显示,煅烧后的MTNT活性增强。在可见光催化降解亚甲基蓝废水时,受体系pH的影响很小,MTNT的加入量为原料的1/3时,对亚甲基蓝的脱色率提高近2倍。
     采用水热法合成了Ba2+掺杂的钛酸盐纳米管磁性复合材料(Ba2+-MTNT)。考察了Ba2+掺杂对MTNT的性能的影响。Ba2+掺杂对MTNT的形貌没有明显影响,Ba2+掺杂加速了水热反应速率,提高了MTNT的热稳定性。Ba2+掺杂增大了纳米管的比表面积,提高了纳米管的可见光催化性能。Ba2+-MTNT具有良好催化性能,在可见光催化降解亚甲基蓝废水时,受体系pH的影响很小,催化剂加入量少,易于通过磁场分离,具有较好的应用前景。
In recent years, TiO2 has been studied extensively in the photocatalytic field because of its advantages comparing to other semiconductor photocatalysts, such as inexpensive, non-toxic, high photocatalytic activity, chemical inertness, strong oxidizing power. However, the practical application of TiO2 is limited due to its low quantum yield, narrow range of light responding, low utilization rate of solar energy, difficulty in separation and recovery. In this paper, aiming at the disadvantages of TiO2 powder, such as difficulty in separation and recovery and low utilization rate of solar energy, magnetic photocatalysts have been prepared by the sol-gel processing using magnetic nano-powder with a large surface area and easy magnetic separation property as the carrier. Through the doping of alkaline-earth metal ions expands the scope of TiO2 the spectral response and improves the utilization of sunlight. Magnetic composite materials of titanate nanotubes were prepared by a hydrothermal method using TiO2 coated on magnetic nanoparticles as the precursor. The relationship between the magnetic photocatalyst structure and catalytic properties was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), vibration sample magnetometer (VSM), transmission electron microscopy (TEM) and diffuse reflectance spectra (DRS). Photocatalytic activities of the products were evaluated by measuring the decolorization rates of methylene blue(MB) solution.
     The magnetic nanocomposite photocatalysts TiO2/SiO2/NiFe2O4(TSN)、TiO2/SiO2/CoFe2O4(TSC) and Ti02/Si02/Co0.64Zn0.36Fe2O4(TSCZ) was prepared by the sol-gel processing with the magnetic particles SiO2/MeFe2O4 (SM, Me= Ni, Co, Co0.64Zn0.36) as the carrier. TSN, TSC and TSCZ are ferrimagnetism, easy to recycle through the magnetic separation and with good recovery performance and reusability. The thin SiO2 layer gave rise to the increase in photocatalytic activity. The photocatalytic results showed that the TSN has the best Photocatalytic activity under the UV irradiation and The TSCZ has the best Photocatalytic activity under visible light.
     Alkaline earth metal ions (M2+) doped magnetic photo-catalyst Ba2+-TSN was prepared by the sol-gel method. The effect of M2+ on photo-catalytic activity of TSN was systematic studied. It was found that the doping of M2+ causes the absorption spectrum to red-shift, leads to the distortion of lattice and restrains the increase of the particle size of TiO2. The optimum doping of Ca2+, Mg2+, Sr2+ and Ba2+is 1.0%,1.0%,0.8%, and 0.8%. The photocatalytic results show that the doping of M2+ remarkably gives rise to the remarkable increase in visible-light photo-catalytic activity. The decolorization rate of MB improved near two times using the Ba2+-TSN as the catalyst in the visible area.
     Magnetic composite materials of titanate nanotubes coated on magnetic particles (MTNT) were prepared by a hydrothermal method using TSN as the precursor. The effects of preparation conditions on their properties of MTNT were studied. The results show that the hydrothermal temperature and concentration of NaOH has a significant impact on the formation of the products. The main components of MTNT are Na0.8H1.2Ti3O7. The magnetism of MTNT has improved than raw materials because the SiO2 was dissolved by NaOH solution. MTNT was changed to TiO2 when it was calcined at high temperature with the heat-stable range of 400-500℃. The photocatalytic results show that the catalytic activity of MTNT was enhanced after calcined. In the visible-light photo-catalytic degradation of MB, the pH value of the system has little effect. The decolorization rate of MB improved near two times when the dosage of MTNT is only 1/3 of raw materials.
     Ba2+ dopeded magnetic composite materials of titanate nanotubes coated on magnetic particles (Ba2+-MTNT) were prepared by a hydrothermal method using Ba2+-TSN as the precursor. Doping of Ba2+ had no obvious impact on the morphology of MTNT. Doping of Ba2+ accelerated the reaction rate and improved the thermal stability of MTNT. Doping of Ba2+ increased the specific surface area and enhanced the visible-light catalytic properties of MTNT. In the visible-light photo-catalytic degradation of MB, the pH value of the system has little effect, catalyst dosage is less. Ba2+-MTNT had good recovery, reuse performance and good applied outlook.
引文
[1]Hoffman M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis. Chem Rev,1995,95:69-96P
    [2]Emmanuelle Vulliet, Jean-Marc Chovelon, Chantal Guillard. Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry,2003,159:71-79P
    [3]Thomas C. K. Yang, Sea Fue Wang, Stanley H. Y. Tsai, et al. Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy. Applied Catalysis B:Environmental,2001,30:293-301P
    [4]Jean-Marie Herrmann, Chantal Guillard, Jean Disdier, et al. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Applied Catalysis B:Environmental,2002,35: 281-294P
    [5]Gordon S. Shephard, Sonja Stockenstrom, David de Villiers, et al. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Research,2002,36: 140-146P
    [6]冯震,冯小刚,陈晓东等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOC.环境科学.2006,27(9):1814-1819页
    [7]Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode. Nature,1972,238:37-38P
    [8]Carey JH, Lawrence J. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension. Bull. Environ. Contam. Toxical.,
    1976, (163):697-701P
    [9]Frank S.N, Bard A.J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution At TiO2 powder. J. Am. Chem. Soc.,1977,99(2): 303-304P
    [10]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002:14,40-51页
    [11]蔡乃才,王亚平,曹银良.负载型Pt-Ti02光催化剂的研究.催化学报.1999,20(2):177·180页
    [12]席北斗,刘鸿亮.高效负载型光催化剂制备及其加铂修饰技术.环境科学.2002;(1):66-69页
    [13]Anpo M, Shima T. size quantization effects in the photocatalytic activity for small TiO2 particles prepared by precipitation method. Chemistry Express,1987,2(3):193-196 P
    [14]Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol,1991,25(9):1522-1529P
    [15]Abdullah M, Low Gary K-C, Matthews R S. Effects of common inorganic anoins on rates of photocatalytic oxidation of organic carbon over illuminated. J phys Chem,1990,94(17):6820-6825P
    [16]Blake D M, Webb J, Turchi C, et al. Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous solution. Sol Ener Mater,1991,24(1-4):584-593P
    [17]Sangman Hwang, Myung Churl Lee, Wonyong Choi. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism. Applied Catalysis B:Environmental 2003,46: 49-63P
    [18]蔡乃才,王亚平,曹银良.负载型Pt-Ti02光催化剂的研究催化学报.1999,20(2):177-180页
    [19]侯亚奇,庄大明,张弓等.磁控溅射制备复合薄膜的光催化降解性能,清华大学学报(自然科学版).2004,44(5):589-592页
    [20]Man Sig Lee, Seong-Soo Hong, Madjid Mohseni. Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent. J. Mole. Catal. A:Chem,2005,242:135-140P
    [21]Baoping Xie, Ya Xiong, Runming Chen, et al. Catalytic activities of Pd-TiO2 film towards the oxidation of formic acid. Catalysis Communications 2005,6:699-704P
    [22]傅宏刚,王建强,王哲等.Ti02光催化剂表面修饰研究进展.黑龙江大学自然科学学报.2001,18(3):85-89页
    [23]Choi W, Termin A, Hoffmann M R. The role of mental dopants in quantumsized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry,1994,98: 13669-13679P
    [24]徐顺,杨鹏飞,杜宝石等.掺杂Ti02的光催化性能研究进展.化学研究与应用.2003,15(2):146-150页
    [25]Paola A D, Marei G, Palmisano L, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B,2002,106(3):637-645P
    [26]C M Visinescu, R Sanjines, F Le'vy, et al. Photocatalytic degradation of acetone by Ni-doped titania thin films prepared by dc reactive sputtering. Applied Catalysis B:Environmental,2005,60:155-162P
    [27]T. Ohsawaa, Y. Matsumotob H. Koinumaa. Combinatorial investigation of transition metals deposited on anatase TiO2 surface. Applied Surface Science,2004,223:84-86P
    [28]Xiaoli Ya, Jing He, David G. Evans, et.al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Applied Catalysis B:Environmental,2005,55: 243-252P
    [29]Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of aceton in air. J. Photochem. Photobiol. A:Chem.,1998,116:63-67P
    [30]Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide:effective photocatalysts for the degradation of organic pollutants. J. Mater.Sci.,1999,34:5273-5280P
    [31]Li F.B, Li X.Z, Hou M.F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control. Appllied Catalysis B:Environmental,2004,48:185-194P
    [32]岳林海,水淼,徐铸德.稀土掺杂二氧化钛的相变和光催化活性.浙江大学学报(理学版).2000,27(1):69-74页
    [33]陈建军,唐建军,赵方辉等.Yb2O3/TiO2纳米颗粒的制备及表征.稀有金属材料与工程.2003,32(7):546-549页
    [34]石稳健,郑经堂,胡燕等.Ho掺杂对纳米TiO2晶体结构和光催化性能的影响.硅酸盐学报.2007,35(2);182-186页
    [35]Jun Lin, Jimmy C Yu. An Investigation on Photocatalytic Activities of Mixed TiO2-rare Earth Oxides for the Oxidation of Acetone in Air. Journal of Photochemistry and Photobiology,1998,116(1):63-67P
    [36]Maciej Zalas, Marek Laniecki. Photocatalytic hydrogen generation over lanthanides-doped titania. Solar Energy Materials & Solar Cells,2005,89: 287-296P
    [37]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in Nitrogen-doped titaniumoxides. Science,2001; 293(5528):269-271P
    [38]Li Danzhen, Huang Hanjie, Chen Xu, et al. New synthesis of excellent visible-light TiO2-x Nx photocatalyst using a very simple method. Journal of Solid State Chemistry,2007,180:2630-2634P
    [39]Roci'o Silveyra, Luis De La Torre Sa'enz, Wilber Antu'nez Flores, et al. Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation. Catalysis Today,2005,107-108: 602-605P
    [40]Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590): 2243-2245P
    [41]Yamaki T, Umebayashi T, Sumita T. Fluorine-doping in titanium dioxide by ion implantation technique. Nucl Instrum Methods Phys Res B,2003, 206:254-258p.
    [42]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett.,2003.32:364-365P
    [43]Kumar A, Kumar J A. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole. J. Mol. Catal. A:Chem.,2001,165:265-273P
    [44]S. Biswas, T. Takahashi, Y. Kubota, et al. Photocatalytic activity of high-vacuum annealed CdS-TiO2 thin film. Thin Solid Films.2008,516: 7313-7317P
    [45]Yu Xiaodan, Wu Qingyin, et al. Jiang Shicheng Nanoscale ZnS/TiO2 composites:Preparation, characterization, and visible-light photocatalytic activity. Materials Characterization,2006,57:333-341P
    [46]Yinhua Jiang, Yueming Sun, Hui Liu, et al. Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2-ZnO. Dyes and Pigments,2008,78:77-83P
    [47]Pilkenton S, Raftery D. Solid-state NMR studies of the adsorption and
    photooxidation of ethanol on mixed TiO2-SnO2 photocatalysts. Solid State Nucl. Magri. Reson,2003,24:236-253P
    [48]Baoshun Liu, Xiujian Zhao, Naizhi Zhang, et al. Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surface Science,2005,595:203-211P
    [49]Bernaurdshaw Neppolian, Qiliang Wang, Hiromi Yamashita. Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles:Application and interparticle electron transfer process. Applied Catalysis A:General,2007,333:264-271P
    [50]Y.D. Hou, X.C. Wang, L. Wu, et al. N-Doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation.Chemosphere,2008,72:414-421P
    [51]张峰,张歆.Pt/介孔TiO2-SiO2的制备、表征及光催化性能研究.无机材料学报.2006,21(5):1268-1272页
    [52]徐顺,杨鹏飞,杜宝石等.掺杂TiO2的光催化性能研究进展.化学研究与应用.2003,15(2):146-150页
    [53]张峰,李庆霖,杨建军等.TiO2光催化剂的可见光敏化研究.催化学报.1999,20(3):329~332页
    [54]唐培松,王民权,王智宇等.半导体TiO2光催化剂及其有机光敏化研究进展.材料导报.2003,17(10):33-36页
    [55]Dillert R, Fornefett I, Siebers U, et al. Photocatalytic degradation of trinitrotoluene and trinitrobenzene:Influence of hydrogen peroxide. Journal of Photochemistry and Photobiology A:Chemistry,1996,94(2-3): 231-236P
    [56]H.M. Coleman, V. Vimonses, G. Leslie, et al. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. Journal of Hazardous Materials,2007,146(3):496-501P
    [57]钟王景,邢卫红,徐南平等.废水中有机污染物高级氧化过程的降解.化工进展,1998,4:51-53页
    [58]沈伟韧,赵文宽,贺飞等.TiO2光催化反应及其在废水处理中的应用.化学进展.1998,10(4):356-358页
    [59]杨阳,陈爱平,古宏晨等.以膨胀珍珠岩为载体的漂浮型Ti02光催化剂降解水面浮油.催化学报,2001,22(2):177-180页
    [60]张青红,高濂.高度分散的Pt/TiO2的制备及光催化活性.化学学报.2005,63(1):65-70页
    [61]罗菊仙,赵中一.半导体多相光催化氧化技术在环境保护中的应用研究进展.地球科学.中国地质大学学报,2000,25(5):536-541页
    [62]Serpone N, Texier I, Emeline A V, et al. Post-irradation effect and reductivedechlorination of chlorophenols at oxygen free TiO2 water interfaces in thepresence of prominent hol scavengers. J. Photochem. Photobiol.,2000,136(3):145-152P
    [63]陈中颖,余刚,张彭义等.碳黑改性纳米TiO2薄膜光催化降解有机污染物.科学通报,2001,46(23):1961-1965页
    [64]方佑龄,赵文宽,尹少华等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解氯烷.应用化学.1997,14(2):81-83页
    [65]王玉萍,袁俊秀,李杰,等.Mo-TiO2/AC光催化剂的制备及可见光降解L-酸的研究.环境科学.2007,28(8):1746-1751页
    [66]Marta I. Litter, Jose A. Navio.Comparision of photocatalytic efficiency of TiO2, iron oxides and mixed Ti(Ⅳ)-Fe(Ⅲ) oxides:photodegradation of oligocarboxylic acida. Journal of Photochemistry and Photobiology A: Chemistry,1994,84(2):183-193P
    [67]冯良荣,谢卫国,吕绍结等.纳米TiO2对光催化降解SDBS的影响.水处理技术.2002,28(3):149-151页
    [68]胡艳,徐晶晶,袁春伟等.负载纳米二氧化钛的弥散光纤在光催化废水处理中的应用.科学通报.2005,50(19):2169-2173页.
    [69]Umebayashi T, Yamaki T, Tamaka S, et al. Visible light-induced degradation ofmethylene blue on s-doped TiO2. Chem. Lett.,2003,32(4): 330-331P
    [70]S. Kurinobua, K. Tsurusaki, Y. Natui, M. Kimatac, et al. Decomposition of pollutants in wastewater using magnetic photocatalyst particles. Journal of Magnetism and Magnetic Materials,2007,310:1025-1027P
    [71]Shiying Zhang, Zhenhua Chen,Yunlong Li, et al. Photocatalytic degradation of methylene blue in a sparged tube reactor with TiO2 fibers prepared by a properly two-step method. Catalysis Communications,2008, 9:1178-1183P
    [72]王艳芹,张莉,程虎民等.掺杂金属离子的复合纳米粒子光催化剂-罗丹明B的光催化降解.高等学校化学学报.2000,21(6):958-960页
    [73]Kyoung-Hun Kim, Son-Ki Ihm. Characteristics of titaniasupported copper oxide catalysts forwet airoxidation of phenol. Journal of Hazardous Materials,2007,146(3):610-616P
    [74]Peill N J, Hoffmann M R. Development and optimization of a TiO2-coated fiber-optic cable reaction:photocatalytic degradation of 4-chlorophenol. Environ Sci Technol,1995,29:2974-2981P
    [75]陈士夫,梁新,陶跃武等.空心玻璃微球附载Ti02光催化降解有机磷农药.感光科学与光化学.1999,17(1):85-91页
    [76]信欣,汤亚飞.活性炭负载TiO2光降解水中敌敌畏的研究;工业用水与废水,2004,35(1):30-32页
    [77]付宏祥,吕功煊,李新勇等.重金属离子的光催化还原研究进展.感光科学与光化学.1995,13(4):325-333页
    [78]鲁秀国,翟永青,丁士文等.二氧化钛光催化还原Cr(VI)的研究.河 北大学学报(自然科学版).2000,20(1):33-37页
    [79]武正簧.TiO2薄膜在光催化处处理含铬废水.太原理工大学学报.1999,30(3):289-290页
    [80]李田,陈正夫.城市自来水光催化氧化深度净化效果.环境科学学报.1998,18(2):167-171页
    [81]Wang W, Ku Y. Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. J Photochem Photobiol A: Chem,2003,159:47-59P
    [82]丁正新,王绪绪,付贤智.Ti02基固体超强酸及其在光催化空气净化中的应用.化工进展.2003,22(12):1278-1283页
    [83]蔡邦宏,邓兴毅,高滋.阴离子掺杂TiO2气相光催化降解正己烷的研究.兰州理工大学学报.2004,30(2):70-71页
    [84]Deng X Y, Yue Y H, Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations. Appl. Catal. B.2002,39(2):135-147P
    [85]丁震,冯小刚,陈晓东等.金属泡沫镍负载Ti02光催化降解甲醛和VOCs.环境科学.2006,27(9):1814-1819页
    [86]藤屿昭.用TiO2光触媒自清洁材料.电气化学.1996,64(10):1052-1055页
    [87]杨维虎,李玉宝,吴兰等.常温制备抗菌不锈钢的研究.功能材料.2006,3(37):408-410页
    [88]陈娜,程永清.纳米TiO2光催化剂在抗菌方面应用的新进展.化学工业与工程.2005,22(6):45-449页
    [89]Trapaliscc, Keivanidisp, Kordasg, et al. TiO2(Fe3+) nanostructured thin films with antibacter properties. Thin Solid Films,2003,433:186-190P
    [90]黄岳元,米钰,郭人民等.TiO2/Ag纳米抗菌材料.西北大学学报.2003,33(5):566-571页
    [91]余家国,赵修建,赵青南.光催化多孔TiO2薄膜的表面形貌对亲水性的影响.硅酸盐学报.2000,28(3):245-250页
    [92]Watanabe T. Super-hydrophilic TiO2 photocatalyst and its application. Bull Ceram Soc Jpn.1996,31 (10):837-840P
    [93]廖振华,陈建军,姚可夫等.纳米Ti02光催化剂负载化的研究进展.无机材料学报.2004,19(1):17-24页
    [94]孙晓君,蔡伟民,井立强等.二氧化钛半导体光催化技术研究进展.哈尔滨工业大学学报.2001,33(4):535-540页
    [95]朱永法,李巍,何俣等.不锈钢金属丝上TiO2纳米薄膜光催化剂的研究.高等学校化学学报.2003,24(3):465-468页
    [96]胡晓洪,安太成,张茂林等.不同炭材料负载纳米二氧化钛催化降解甲基橙的研究.中国陶瓷.2006,42(12):21-24页
    [97]陈金媛,彭图治,肖燕风.高效二氧化钛膨润土复合材料的制备及光催化性能研究.化学学报.2003,18(6):1311-1315页
    [98]Yeon-tae Yu. Preparation of nanocrystalline TiO2-coated coal fly ash and effect of ironoxides in coal fly ash on photocatalytic activity. Powder Technology.2004,146:154-159P
    [99]Matos J, Laine J, Herrmann J M. Association of Activated Carbons of Different Origins with Titania in the Photocatalytic Purification of Water. Carbon.,1999,37:1870-1872P
    [100]S. Watson, D. Beydoum, R. Amal. Synthesis of a novel magnetic photocatalyst by ditect deposition of nanosized TiO2 crystals onto a magnetic core. Journal of Photochemistry and Photobioligy A:chemistry, 2002,148:303-313P
    [101]付乌有,杨海滨,刘冰冰等.锐钛矿TiO2/MnFe2O4核壳结构复合纳米颗粒的制备及其光催化特性.复合材料学报.2007,24(3):136-140页
    [102]Donia Beydoum, Rose Amal. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photo catalyst. Materials Science and Engineering,2002, B94:71-81P
    [103]陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能.化学学报.2004,62(20):2093-2097页
    [104]李明利,徐明霞,庞学满等.可见光活性负载Fe2O3/TiO2光催化剂的制备.硅酸盐学报.2006,34(9):1147-1150页
    [105]Yuan Gao, Baohua Chen, Hulin Li, et al. Preparation and characterization of a magnetically separated photocatalyst and its catalytic properiteies. Materials chemistry and physics,2003,80:348-355P
    [106]Jagdish Rawat, Subhasis Rana, Radhey Srivastava, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Materials Science and Engineering: C,2007,27(3):540-545P
    [107]S Rana, J Rawat, R.D.K. Misra. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell:TiO2-NiFe2O4 biomaterial system. Acta Biomaterialia.2005,1:691-703P
    [108]Y Zeng, J.T.Liu, W.J. Qian, et al. Photocatalytic performance of plasma sprayed TiO2-ZnFe2O4 coatings. Acta Metallurgica Sinica,2005,18(3): 363-368P
    [109]Wuyou Fu, Haibin Yang, Minghua Li, et al. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Materials Letters.2005,59:3530-3534P
    [110]Hong-Mei Xiao, Xian-Ming Liu, Shao-Yun Fu; Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites. Composites Science and Technology 2006,66: 2003-2008P
    [111]Wuyou Fu, Haibin Yang, Lianxia Chang, et al. Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic, photocatalyst. Colloids and Surfaces A:Physicochem. Eng. Aspects.2006,289:47-52P
    [110]Beydoun D., Amal R., Low G. K. C., McEvoy S., Novel Photocatalyst: Titania-Coated Magnetite Activity and Photodissolution. J. Phys. Chem. 2000, B104:4387-4396P
    [112]Donia Beydium, Rose Amal, Gary Low, et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. Journal of Molecular Catalysis A:Chemical,2002,180:193-200P
    [113]廖振华,陈建军,姚可夫等,磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征.无机材料学报.2004,19(4):749-754页
    [114]Tarek A. Gad-Allah, Shigeru Kato, Shigeo Satokawa, et al. Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite. Solid State Sciences,2007,9:737-743P
    [115]张敬畅,李青,曹维良.超临界流体干燥法制备TiO2/Fe2O3和TiO2/Fe2O3/SiO2复合纳米粒子及光催化性能.复合材料学报.2005,22(1):79-84页
    [116]包淑娟,张校刚,刘献明.磁载光催化剂TiO2/SiO2/γ-Fe2O3的制备及其催化氧化性能.功能材料.2004,35(1):108-110,113页
    [117]Sittinun Tawkaew, Sitthisuntorn Supothina. Preparation of agglomerated particles of TiO2 and silica-coated magnetic particle.Materials Chemistry and Physics,2008,108:147-153P
    [118]Feng Chen, xinde Xie, Jincai Zhao, et al. Photocatalytic degradation of dyes on a magnetically separated Photocatalyst under visible and UV irradiation. Chemosphere 2001,44:1159-1168P
    [119]Yun Seup chung, Seung Bin Park, Duk-Won Kang. Magnetically separable titania-coated nickel ferrite photocatalyst. Materials Chemistry Physics,2004,86:375-381P
    [120]Xu Shihong, ShangGuan Wenfeng, Yuan Jan. Preparation and Photocatalytic Properties of Magnetically Separable TiO2 Supported on Nickel Ferrite. Chin. J. Chem. Eng.,2007,15(2):190-195P
    [121]刘红,孙旋,.刘潘等.TiO2/SiO2/NiFe2O4磁性纳米材料的制备、表征及光催化性能.化工进展.2007,26(7):980-984页
    [122]许士洪,冯道伦,李登新.可磁分离二氧化钛光催化剂的制备及其光催化性能.无机化学学报.2008,24(5):785-790页
    [123]卢忠利,张慧,段雪.尿素控制前体水解法制备磁性光催化剂Ti02Si02/CoFe2O4.上海师范大学学报(自然科学版).2005,34:151-154页
    [124]高俊宁,黄英.核壳型ZiO2/CoFe2O4与TiO2 SiO2/CoFe2O4光催化剂的制备与性能研究.西北工业大学学报.2008,26(2):15-19页
    [125]Seung-woo Lee, Jack Drwieg, David Mazyck, et al. Synthesis and characterization of hard magnetic composite photocatalyst-Barium ferrite/silica/titania. Materials Chemistry and Physics.2006,96:483-488P
    [126]尹晓红,辛峰,张凤宝等.含磁性γ-Fe2O3核的TiO2/Al2O3催化剂制备及光催化性能.精细化工.2006,23(1):58-61页
    [127]王拯,张风宝.磁载光催化剂TiO2/Al2O3/γ-Fe2O3的制备与降解染料的优化模型.环境化学.2008,27(3):283-287页
    [128]Xu Maowen, Bao shujuan, Zhang Xiaogang. Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Materials Letters,2005,59:2194-2198P
    [129]包淑娟,张校刚,刘献明.磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂的制备及其光催化活性.催化学报,2003,24(12):909-913页
    [130]Xu shihong, Shangguan Wenfeng, Yuan jian, et al. Preationtions and photocatalytic properties of magnetically separble nitrogen-doped TiO2 supported on nickel ferrite. Applied Catalysis B:Environmental,2007,71: 177-184P
    [131]Xiao Xin, Zhang Jirighuan, Nan Junminreparation and photocatalytic properties of Fe (Ⅲ)-doped TiO2 magnetically separable photocatalyst. Journal of the Chinese Ceramic society.2008,36(11):1548-1552P.
    [132]侯林瑞,原长洲,彭秧.磁载光催化剂Ag-Ti02/ZnO/γ-Fe2O3的制备及其光催化性能.应用化学.2006,23(11):1278-1281页
    [133]Kasuga T, Hiramatsu M, Hoson A. et al. Formation of titanium oxide Nanotube. Langmui,1998,14:3160-3163P
    [134]Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing. Adv. Mater,1999,11(15):1307-1311P
    [135]张青红,高濂,郑珊等.制备均一形貌的长二氧化钛纳米管.化学学报.2002,60(8):1439-1444页
    [136]Edisson Morgado Jr., Marco A.S. de Abreu, Oscar R.C. Pravia, et al. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sciences,2006,8:888-900P
    [137]X. G. Xu, X. Ding, Q. Chen, et al. Modification of electronic, optical, and magnetic properties of titanate nanotubes by metal intercalation. Phys. Rev. B.2007,75,035423P
    [138]Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films,2006,496: 141-145P
    [139]ChungKung Lee, ShinShou Liu, LainChuen, et. al. Application of titanate nanotubes for dyes adsorptive removal from aqueous solution. Journal of Hazardous Materials.2007,148:756-760P
    [140]李晓红,张校刚,力虎林.纳米管的模板法制备及表征.高等学校化学学报.2001,22:130-132页
    [141]Michailowski. A. Hight regular anatase nanotube anays fabricated in porous anodic templates. Chenical Physics letter,2002,349:1-5P
    [142]Jong H J. Creation of novel helical ribbon and double-layered nanotube TiO2 sreuctures using an oranganogel templale. Chem. Mater,2002,14(4): 445-447P
    [143]Seung-Han Oh, Rita R. Finones, Chiara Daraio, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials.2005,26:4938-4943P
    [144]赖跃坤,孙岚,左娟等.氧化钛纳米管阵列制备及形成机理.物理化学学报.2004,20(9):1063-1066页
    [145]Zhang QH, Gao L, Zheng S, et al. Preparation of long TiO2 nanotubes with uniform morphology. Acta Chimica sinica,2002,60 (8):1439-1444P
    [146]李伟,王晓冬,杨建军等,高比面积TiO2纳米管的制备与表征.化学研究.2002,13(3):12-14页
    [147]Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A:Physicochem Eng.2004,241:173-183P
    [148]Zhang S, Peng L M, Chen Q., et al. Formation mechanism of H2Ti3O7 nanotubes. Phys Rev Lett.2003,91(25):1-4P
    [149]宋旭春,邓遗凡,殷好勇等.过渡金属离子置换钛酸(盐)纳米管的合成和表征.物理化学学报.2005,21(10):1076-1080页
    [150]Wang W.Z, Vargchese O.K, Paulose M, et al. A study on the growth and structure of titania nanotubes. J.M.R.2004,19(2):417-422P
    [151].王美丽,宋功保,李健.水热法制备钛酸盐纳米管的研究进展.材料导报.2006,20(11):121-123页
    [152]Edisson Morgado Jr., Marco A.S. de Abreu, Oscar R.C. Pravia, et al. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sciences,2006,8:888-900P
    [153]Sun Xiaoming, Li Yadong. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J,2003,9(10): 2292-2238P
    [154]Du G H, Chen Q, Che R C. Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett,2001,79(22):3702-3704P
    [155]王竹梅,李月明,杨小静等.钛酸盐纳米管的水热合成及晶型研究.无机化学学报.2007,23(2):225-230页
    [156]王芹,陶杰,翁履谦等.氧化钛纳米管的合成机理与表征.材料开发与应用.2004,19(5):9-12页
    [157]M. Qamar, C.R. Yoon, H.J. Oh, et al. Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catalysis Today, 2008,131:3-14P
    [158]Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotube. Appl Phys Lett.2003,82(2):281-283P
    [159]Wang Y Q, Hu G Q, Duan X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett,2002,365: 427-431P
    [160]Dmitry V Bavykin,Valentin N Parmon, Alexei A Lapkin, et al. The effect of Hydrothermal conditions on the mesoporous strustrue of TiO2 nanotubes. Materials chemistry,2004,14:3370-3377P
    [161]Wei Mingdeng, Yoshinari, Hao shenzhou, et al. Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. Solid State Communications,2005,133:493-497P
    [162]宋旭春,岳林海,徐铸德等.水热法合成掺杂铁离子的小管径Ti02纳米管.无机化学学报.2003,19(8):899-901页
    [163]宋旭春,郑遗凡,曹广胜等.过渡金属离子置换钛酸盐纳米管的制备和光催化性能.无机化学学报.2005,21(12):1897-1900页
    [164]王美丽,宋功保,李健.磁性离子掺杂钛酸盐纳米管的合成与表征.化工进展.2006,25(12):1428-1430页
    [165]Dong Hyun Kim, Ki Soo Lee, Ji Hoon Yoon, et al. Synthesis and electrochemical properities of Ni doped titanate nanotubes for lithium ion strorage. Applied Surface Scien(?)e,2008,254:7718-7722P
    [166]Xu XG, Ding X, Chen Q, et al. Modification of electronic, optical, and magnetic properties of titanate nanotubes by metal intercalation. Phys. Rev. B.,2007,75:035423P
    [167]马新起,冯彩霞,贵莉莉等.负载银纳米管钛酸催化剂的制备.影像科学与光化学.2008,26(2):104-108页
    [168]Jiang JH, Gao QM, Chen Z. Gold nanocatalysts supported on protonic titanate nanotubes and titania nanocrystals. Journal of Molecular CatalysisA:Chemical,2008,280:233-239P
    [169]Su Y L, Han S, Zhang XW, et al. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Materials Chemistry and Physics,2008,110:239-246P
    [170]石金娥,闫吉昌,尚淑霞等.二氧化钛纳米离子和纳米管的合成、表征及对硝基苯的光催化性能研究.高等学校化学学报.2007,28(7):1325-1328页
    [171]安会琴,朱宝林,吴红艳等.钛酸盐纳米管与二硫化碳修饰钛酸盐纳米管的合成、表征及其去除重金属离子性能.高等学校化学学报.2008,29(3):439-444页
    [172]郝彦忠,韩文涛.钛酸盐纳米管的制备及光电性能研究.物理化学学报.2006,22(2):221-225页
    [173]Jiaguo Yu, Huogen Yu, Bei Cheng, et al. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. Journal of Molecular Catalysis A:Chemical.2006,249:135-142P
    [174]井立强,孙晓君,辛柏福等.掺杂镧和铈的TiO2纳米粒子的结构相变.材料科学与工艺.2004,12(2):148-152页
    [175]王书亮,刘洪学,曾人杰.Mg2+掺杂对TiO2粉末晶型转变的影响与机理.厦门大学学报(自然科学版).2005,44(6):806-809页
    [176]华杰,刘梅,徐仕与等.溶胶-凝胶法制备MeFe2O4/SiO2(Me=Co,Ni,Zn纳米复合材料.吉林师范大学学报(自然科学版).2007,4:69-70,89页
    [177]N. Venkatachalam, M. Palanichamy, V. Murugesan. Sol-gel preparation andcharacterization of alkalin eearth metal doped nano TiO2:Efficient photocatalytic degradation of 4-chlorophenol. Journal of Molecular Catalysis A:Chemical,2007,273:177-185P
    [178]阎建辉,黄可龙,刘素琴等.碱土金属掺杂纳米ZiO2催化剂的制备与光催化活性的评价.无机化学学报,2004,20(3):301-306页
    [179]任民,张玉军,刘素文等.稀土离子(La3+、Y3+)掺杂对纳米ZiO2光催化性能的影响分析.陶瓷.2006,7:26-28,33页
    [180]崔玉民,范少华,张颖.稀土掺杂ZiO2纳米微粒的合成、表征及光催化活性.北京科技大学学报,2006,26(10):985-958页
    [181]Y. Suzki, S. Youshikawa. Synthesis and thermal anahysrs of TiO2-derived nanotubes prepared by the hydrothermal method. Mater. RES.2004,19: 982-985P
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.