水稻高亲和硝酸盐转运蛋白基因OsNRT2.3a/b生物学功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是全世界最重要的粮食作物之一,占全球谷类作物种植面积的1/3,世界上约有50%的人口以稻米为主食。在作物所有必需营养元素中,氮是限制植物生长和形成产量的首要因素。氮(N)素是作物从土壤中吸收量最多的元素,其对作物的生命活动和产量形成具有重要意义。土壤中植物所利用的主要氮素形式是铵态氮(NH4+)和硝态氮(NO3-)。尽管在淹水条件下土壤中氮素主要以铵态氮形式存在,但是有研究表明水稻根系能够泌氧,从而在硝化细菌作用下将根际土壤中铵态氮转化为硝态氮,在潮湿土壤状况下水稻根系吸收硝态氮占总氮量的25%~40%。植物为了能够适应土壤中N03-浓度梯度差异环境,进化出N03高、低亲和吸收转运系统。近年来人们从分子水平上对硝态氮的吸收系统进行了大量研究。已发现两类基因NRT1和NRT2分别于与低亲和硝态氮转运系统(LATS)和高亲和硝态氮转运系统(HATS)有关。目前已从多种植物中克隆了高、低亲和硝态氮运输系统的基因,特别是对模式植物拟南芥的研究较为深入。
     尽管在水稻中已经克隆到了五个NRT2家族的硝酸盐转运蛋白基因,但是对它们功能特性的研究还十分有限。本试验以水稻高亲和硝酸盐转运蛋白基因OsNRT2.3a和OsNRT2.3b为研究对象,利用超表达及RNAi技术获得OsNRT2.3a/b超表达和OsNRT2.3a RNAi转基因材料;通过RT-PCR.qRT-PCR、TAIL-PCR.Southern blot、 Western blot等方法分析转基因材料超表达及沉默效果;15N同位素示踪分析转基因材料对硝酸盐的吸收及转运;田间试验分析转基因材料的产量性状以及利用基因芯片对转基因材料全基因组表达进行分析,研究了水稻OsNRT2.3a/b基因的生物学功能,所获得的主要研究结果如下:
     1.通过生物信息学分析表明水稻高亲和硝酸盐转运蛋白基因OsNRT2.3在转录过程中通过选择性剪切产生OsNRT2.3a和OsNRT2.3b两个转录本,OsNRT2.3a和OsNRT2.3b在cDNA序列上差异非常小,OsNRT2.3b相对OsNRT2.3a有一个90bp长的内含子,且5’端和3’端非编码区都长于OsNRT2.3a;芯片结果表明田间生长条件下OsNRT2.3a/b在根部表达量最高,地上部叶片也有表达,其他部位表达量较低;从完整生育期来看,OsNRT2.3a/b在叶片中的表达量随着植株的生长而增高,在植株营养生长向生殖生长过渡的阶段达到最大值,之后表达量降低到一个相对稳定的范围;水稻原生质体亚细胞定位实验表明OsNRT2.3a和OsNRT2.3b都是细胞质膜定位的跨膜蛋白,与生物信息学预测结果一致。
     2.通过水稻转基因分别得到了OsNRT2.3a、OsNRT2.3b的超表达转基因水稻材料和OsNRT2.3a RNAi沉默转基因水稻材料,通过RT-PCR鉴定了目的基因超表达及RNAi的阳性株系,并且通过southern blot和TAIL-PCR筛选到了独立的单拷贝插入在基因组非编码区的转基因株系,进一步通过Western blot验证了蛋白水平上的超表达及沉默效果,通过繁种获得了遗传性状稳定的超表达及沉默转基因株系。
     3.通过OsNRT2.3a和OsNRT2.3b的超表达转基因水稻植株的表型发现单独超表达OsNRT2.3a基因的转基因植株与野生型水稻相比没有明显的表型差异,而单独超表达OsNRT2.3b基因的转基因植株与野生型水稻相比株型显著增大。对超表达植株中OsNRT2s和OsNAR2.1的表达分析表明,OsNRT2.3a超表达并没有影响OsNRT2.1、 OsNRT2.2和OsNAR2.1的表达;OsNRT2.3b超表达植株中OsNRT2.1. OsNRT2.3a和OsNAR2.1的表达都显著上调,而OsNRT2.4的表达量基本不受影响.在水稻中单独超表达OsNRT2.3a基因并不能明显影响水稻的生长,也没有提高水稻对氮素的吸收;在不同浓度及形态的氮素处理条件下,OsNRT2.3b超表达植株生物量都显著大于野生型植株,而总氮浓度除了在高浓度铵态氮处理下与野生型无显著差异外,其他条件下均较野生型低,但整个植株的总氮含量在OsNRT2.3b超表达植株中都要显著高于野生型。
     4.对OsNRT2.3b超表达植株与野生型在不同施氮水平下的田间试验表明,OsNRT2.3b超表达水稻长势在各个施氮水平下均要好于野生型,且平均单株产量和氮素利用效率都显著高于野生型。同时我们也发现,OsNRT2.3b超表达水稻的生育期相比野生型有所推迟,其差异主要体现在抽穗期比野生型推迟,且随着施氮量的增加,OsNRT2.3b超表达水稻生育期推迟的天数也随着增加。进一步对OsNRT2.3b超表达植株生育期差异的研究表明,OsNRT2.3b超表达不仅能提高水稻干物质积累总量和后期干物质转运量,而且能显著提高水稻后期干物质转运率和转运干物质贡献率;OsNRT2.3b超表达不仅能提高水稻氮素积累总量和后期氮素转运量,而且能显著提高水稻后期氮素转运率和转运氮贡献率。
     5.通过对OsNRT2.3a RNAi沉默突变体的分析表明,OsNRT2.3a基因沉默不会显著影响外界低NO3-条件下水稻根系对NO3-的吸收,同时OsNRT2.3a也没有参与硝酸盐从老叶(氮源)到新叶(氮库)的再移动,但OsNRT2.3a基因的沉默会抑制N03-从地下部往地上部的转运,从而导致水稻根系NO3-的积累,进而间接下调OsNRT2.1/2.2的表达量,最终导致水稻根系减少从外界环境中吸收硝酸盐。
     6.对OsNRT2.3a超表达及沉默突变体的全基因组表达谱芯片分析表明OsNRT2.3a沉默突变体由于地上部氮素含量不足影响植株碳氮循环,进而影响到植株的光合作用,导致干物质积累减少、植株生长矮小;OsNRT2.3b超表达植株全基因组表达谱芯片分析表明OsNRT2.3b基因超表达可能适当抑制了光呼吸的同时提高了植株体内抗氧化活性,从而延缓植株的衰老,提高植株干物质的积累及产量。
     综上所述,水稻高亲和硝酸盐转运蛋白基因OsNRT2.3a主要在硝酸盐从地下往地上部的运输过程中起关键作用;OsNRT2.3b超表达能够显著提高水稻前期对氮素的积累和后期对氮素的转运,进而提高水稻氮素利用效率和增加产量。
Rice(Oryza. sativa L.) is one of the most important staple food crops that provides food for more than half of the world's population, accounting for1/3of the global cereal crop acreage. Nitrogen is one of the major factors limiting crop growth and yield among the necessary nutrient elements for plant. Both ammonium and nitrate are the major sources of soil N for plants, however, ammonium is the predominant form of N in a paddy soils. Some physiological experiments have shown that lowland rice was exceptionally efficient at acquiring NO3-formed by nitrification in the rhizosphere, and nitrate was main source of N in soil at later growth and development stages of rice under the intermittent irrigation. It has been predicted that25%~40%of the total N taken up by rice roots grown under wetland conditions might be in the form of nitrate and the rate of nitrate uptake can be comparable with that of ammonium. To meet the different NO3-concentration in the soil, higher plants have low-affinity nitrate transport system (LATS) and high-affinity nitrate transport system (HATS) to uptake nitrate. In higher plants, the molecular basis of root nitrate uptake has been the matter of intensive studies during the last decade. So far, two gene families have been identified:the NRT1and NRT2families involved in the low-affinity nitrate transport system (LATS) and high-affinity nitrate transport system (HATS), respectively. Many genes involved in LATs and HATs have been cloned and studied in multiple plant species, especially in model plant Arabidopsis.
     Five genes involved in nitrate transport which belonged to NRT2gene family have been cloned in rice, however, the functional properties study of these genes was unclear. In this thesis, we focus on the high-affinity nitrate transport gene OsNRT2.3a/b in rice. In order to understand the in planta function of OsNRT2.3a/b, the over-expression and RNA interference transgenic mutant plants were obtained. RT-PCR, qRT-PCR, TAIL-PCR, Southern blot and Western blot methods were employed to identify the transgenic plants. The nitrate uptake and translocation of transgenic plants were analyzed by15N labeled NH4+and NO3". The yields of transgenic plants and the potential genes directly or indirectly regulated by OsNRT2.3a/b were also analyzed in the thsis. The main results were as follows:
     1. Sequence alignment between genomic and cDNA sequences showed that one gene OsNRT2.3was mRNA spliced into two genes, OsNRT2.3a and OsNRT2.3b. There was only90bp difference between OsNRT2.3a and OsNRT2.3b. The results of rice chip database showed that OsNRT2.3a/b were mainly expressed in roots and little in shoots under field condition. Also, the expression level was increaseed gradually as the plant growth, up to the most at the stage of vegetative growth to reproductive growth. The protoplast subcellular localization showed that OsNRT2.3a and OsNRT2.3b were both localized on plasma membrane.
     2. Over-expression of OsNRT2.3a/b and knock-down of OsNRT2.3a transgenic plants were successfully obtained through transgenic manipulation. RT-PCR, TAIL-PCR, Southern blot and Western blot methods were employed to identify the stably inherited transgenic lines.
     3. There was no significant difference in phenotype when over-expression OsNRT2.3a alone; but the OsNRT2.3b over-expression plants were obviously higher and bigger than WT. Expression patterns of OsNRT2s and OsNAR2.1were analyzed in over-expression transgenic plants. OsNRT2.3a over expression did not affect the expression of OsNRT2.1, OsNRT2.2and OsNAR2.1. The expression of OsNRT2.1, OsNRT2.3a and OsNAR2.1were up-regulated in OsNRT2.3b over expression plants, however, the expression of OsNRT2.4was not affected. Over expression of OsNRT2.3a alone could not improve the growth of rice plants and enhance the nitrate uptake in rice. The biomass of OsNRT2.3b over expression plants was increased a lot compared with WT, and the whole plant nitrogen content of OsNRT2.3b over expression plants was significantly higher than WT, but the total nitrogen concentration was lower than WT under low nitrogen condition.
     4. The field experiment with different nitrogen level showed that OsNRT2.3b over expression plants grow better than WT in all nitrogen level, the yields and nitrogen use efficiency were higher than WT both. However, delaying Heading stage of OsNRT2.3b over expression plants resulted in longer growth period than WT. Further study of the growth period difference between OsNRT2.3b over expression plants and WT showed that over expression of OsNRT2.3b in rice not only increased accumulation and transfer amounts of dry matter but also increased the ratio of dry matter transfer to grain and contribution ratio of transferred dry matter to grain. It also revealed that over expression of OsNRT2.3b in rice not only increased accumulation and transfer amounts of nitrogen but also increased the ratio of nitrogen transfer to grain and contribution ratio of transferred nitrogen to grain.
     5. The analyses of OsNRT2.3a RNAi mutants showed that knockdown of OsNRT2.3a did not significantly affect nitrate uptake by rice roots with low nitrate supply. However, knockdown of OsNRT2.3a in rice suppressed nitrate transport from root to shoot under low nitrate condition, resulted in nitrate accumulation in rice roots and down regulation of OsNRT2.1/2.2, which decreased nitrate uptake by rice roots.
     6. The results of the whole-genome expression of OsNRT2.3a over expression plants and OsNRT2.3a knockdown mutants showed that Carbon and Nitrogen cycle was suppressed in osnrt2.3a knockdown mutants due to nitrogen deficiency in shoots, furthermore, knockdown of OsNRT2.3a affected the plants photosynthesis and resulted in decreasing accumulation of dry matter and growth retardation. The results of the whole-genome expression of OsNRT2.3b over expression plants showed that suppressing photorespiration appropriately and improving antioxidant activity in OsNRT2.3b over expression plants may resulted in the delayed aging and increased biomass and yields.
     Taken together, high-affinity nitrate transporter gene OsNRT2.3a was a key factor in nitrate transport from root to shoot. Over expression of OsNRT2.3b can improve nitrate transportation significantly, and then improve nitrogen use efficiency and yields in rice.
引文
曹云,范晓荣,孙淑斌,徐国华,沈其荣,狄廷均.增硝营养对不同基因型水稻苗期硝酸还原酶活性及其表达量的影响.植物营养与肥料学报,2007,13(1):99-105.
    陈根云,廖轶,蔡时青等.水稻田稗草叶片光合作用对开放式空气CO2浓度增高(FACE)的适应.应用生态学报,2002,13(10):1201-1204.
    程建峰,戴廷波,曹卫星,姜东,潘晓云.不同氮收获指数水稻基因型的氮代谢特征.作物学报,2007,33(3):497-502.
    段英华,张亚丽,沈其荣,陈红云,张勇.增硝营养对不同基因型水稻苗期氮素吸收同化的影响.植物营养与肥料学报,2005,11(2):160-165.
    段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态氮营养.土壤学报,2004,41(5):803-809.
    段英华,范晓荣,李奕林,王芳,张亚丽,徐国华,沈其荣.水稻增硝营养的生理与分子生物学机制.中国农业科学,2008,41:1708-1716.
    范晓荣.水稻硝态氮跨膜运输的生理与分子机制.博士学位论文,2005.
    封克,汪小丽,陈平,等.水稻苗期不同时段N03-吸收特点及其受NH4+的影响.中国农业科学,2003,36(3):307-312.
    封克,汪晓丽,陈平,盛海君.水稻苗期不同时段N03-吸收特点及其受NH4+的影响.中国农业科学,2003,35:490-494.
    胡霭堂.植物营养学[M]2版.北京:中国农业大学出版社,2003:52-53.
    胡培松和翟虎渠.中国水稻生产新特点与稻米品质改良.中国沪农业科友寻粥,2002,4(4):33-39.
    李晓方,毛兴学,罗文永,肖听,刘彦卓,王晓玲,方正武,邢丹英.水稻收获指数相关性状的研究.广东农业科学,2007,3:3-6.
    李振高,俞慎,潘映华等.水稻根际硝化-反硝化作用生态因子的水平空问变异.土壤学报,1999,36(1):111-116.
    潘晓华,邓强辉.作物收获指数的研究进展.江西农业大学学报,2007,29(1):1-5.
    彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Buresh, Christian Witt.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35:1095-1103.
    清水正治.不同条件对稻种抽穗期的影响.育种学杂志,1960,10(1):52-59.
    田大成,雷龙坤,兰廷明,秦春林,赵小刚,周天牧.水稻不同生育阶段营养条件与抽穗期的关系.杂交水稻,2004,19(4):59-65.
    王东升,张亚丽,陈石,段英华,沈其荣.不同氮效率水稻品种增硝营养下根系生长的响应特征.植物营养与肥料学报,2007,13(4):585-590.
    谢祖彬,朱建国,张雅丽等.水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N、P施肥的响应.应用生态学报,2002,13(10):1223-1230.
    严明.水稻硝运输辅助蛋白基因OsNAR2.1表达特征和功能分析.博士毕业论文,2010.
    尹晓明,范晓荣,贾莉君,曹云,沈其荣.水稻幼苗根系吸收N03-对细胞膜电位的影响.植物营养与肥料学报.2006,12(4):500-505.
    张辰明,徐烨红,赵海娟,图尔迪,沈其荣,张亚丽.不同氮形态对水稻苗期氮素吸收和根系生长的影响.南京农业大学学报,2011,34(3):72-76.
    张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选.土壤学报,2004,41(4):571-576.
    Almagro A., Lin SH.,Tsay YF.2008. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell,20:3289-3299.
    Arth I., Frenzel P., Conrad R.1998. Denitrification coupled to nitrification in the rhizosphere of rice Soil. Biology and Biochemistry,30:509-515.
    Aurelio M., Briones J., Satoshi Okabe., et al.2003. Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant and Soil, 250:335-348.
    Barlaan EA., Sato H., Ichii M.1998. Nitrate reductase activities in rice genotypes in irrigated lowlands. Crop Science,38:728-734.
    Cai CH., Wang JY., Zhu YG., Shen QR., Li B., Tong YP., Li ZS.2008. Gene structure and expression of high-affinity nitrate transport system in rice roots. Journal of Integrative Plant Biology, 50:443-451.
    Campble WH.1999. Nitrate reductase structure, function and regulation:bridging the gap between biochemistry and physiology. Annual Review of Plant Physiology,50:277-303.
    Cardenas-Navarro R., Adamowicz S., Robin P.1998. Plant:test of a feedback-based model. Journal of Experimental Botany,49:721-730.
    Cassman K G., Peng S., Olk D C., et al.1998. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems Field Crop Research,56:7-39.
    Cernusak LA., Aranda J., Marshall JD., Winter K.2007. Large variation in whole plant water-use efficiency among tropical treespecies. New Phytologist,173,294-305.
    Chen Y., Fan X., Song W., Zhang Y., Xu G.2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY 1. Plant Biotechnol J, 10(2):139-49.
    Chiu CC., Lin CS., Hsia AP., Su RC., Lin HL., Tsay YF.2004. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiology,45:1139-1148.
    Cosk J H., Yoshida S.1972. Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Proceedings Crop Science Society in Japan,41:226-234.
    Crawford NM., Glass ADM.1998. Molecular and physiology aspects of nitrate uptake in plants. Trends in Plant Science,3:389-395.
    Daniel-Vedele F., Filleur S., Caboehe M.1998. Nitrate transport:a key step in nitrate assimilation. Current Opinion in Plant Biology,1:235-239.
    De Angeli A., Monachello D., Ephritihine G., Frachisse JM., Thomine S., Gambale F., Barbier-Brygoo H.2006. The nitrate/proton antiporter AtCLC-a mediates nitrate accumulation in plant vacuoles.Nature,442:939-942.
    Delhon P., Gojon A., Tillard P., et al.1995. Diurnal regulation of NO3- uptake in soybean plants I. Changes in NO3- influx, efflux and N utilization in the plant during the day/night cycle. Journal of Experimental Botany,46:1585-1594.
    Delhon P., Gojon A., Tillard P., et al.1996. Diurnal regulation of NO3- uptake in soybean plants III. Implication of the Dijkshoorn-Ben Zioni model in relation with the diurnal changes in NO3-assimilation. Journal of Experimental Botany,47:893-900.
    Duan YH., Zhang YL., Shen QR., Wang SW.2006. Nitrate effect on rice growth and nitrogen absorption, and assimilation at different growth stages. Pedosphere,16(6):707-717.
    Duan YH., Zhang YL., Shen QR.2005. Effect of nitrate on the ammonium up take and growth of different genotypes of rice (Oryza sativa) at the seedling stage. ActaPedologicaSinica,42 (2): 260-265.
    Fan SC., Lin CS., Hsu PK., Lin SH., Tsay YF.2009. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 21:2750-2761.
    Fan XR., Shen QR., Ma ZQ., et al.2005. A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars. Science in China,2005.
    FAO. Statistical databases. Food and Agrieulture Organization (FAO) of the United Nations http://www.fao.org.2001.
    Feng HM., Yan M., Fan XR., Li BZ., Shen QR., Miller AJ., Xu GH.2011. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany,62:2319-2332.
    Ferrario-Mery S., Masclaux C., Suzuki A., et al.2001. Glutamine and alpha-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamin-alpha-keto glutarate aminotransferase. Planta,213:265-271.
    Fileur S., Dorbe MF., Cerezo M., Orsel M., Granier F., Gojon A., Daniel-Vedele F.2001. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Letters, 489:220-224.
    Filleur S., Daniel-Vedele F.1999. Expression analysis of a high-affinity nitrate transporter isolated from. Planta,207:461-469.
    Forde B.G.2000. Nitrate transporters in plants:structure, function and regulation. Biochimica et Biophysica Acta,1465:219-235.
    Fraisier V., Gojon A., Tillard P. and Daniel-Vedele F.2000. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia:evidence for post-transcriptional regulation by a reduced nitrogen source. Plant Journal,23:489-496.
    Geelen D., Lurin C., Bouchez D., Frachisse JM., Lelievre F., Courtial B., Barbier-Brygoo H., Maurel C.2000. Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrati content. Plant Journal,21:259-267.
    Gerdol R., Iacumin P., Marchesini R., Bragazza L.2000. Water-and nutrient-use efficiency of a deciduous species, Vaccinium myrtillus, and an evergreen species, V. vitis-idaea, in a sub-alpine dwarf shrub heath in the southern Alps, Italy. Oikos,88:19-32.
    Glass ADM., Jon ES., Leon VK.1992. Studies of the uptake of nitrate in barley. Plant Physiology,99: 456-463.
    Guo FQ., Wang RC., Chen MS., Crawford NM.2001. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell,13:1761-1778.
    Guo FQ., Yong J., Crawford NM.2003. The nitrate transporter AtNRT1.1(CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell,15:107-118.
    Halliwell B.1999. Antioxidant defence mechanisms:from the beginning to the end (of the beginning). Free Radical Reserach,31 (4):261-272.
    Hansch R., Fessel D. G., Witt C., et al.2001. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation. Journal of Experimental Botany,52(359):1251-1258.
    Heckathorn SA., DeLucia EH., Z ielinski RE.1997. The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiologia Plantarum,101:173-182.
    Ho CH., Lin SH., Hu HC., Tsay YF.2009. CHL1 functions as a nitrate sensor in plants. Cell,138:1184-94.
    Huang NC, Liu KH., Lo HJ., Tsay YF.1999. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell,11:1381-1392.
    Jensen K., Revsbech NP., Nielsen LPN.1993. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Applied Environmental Microbiology, 59:3287-3296.
    Jiang CZ., Ishihara K., Satoh K., Katoh S.1999. Loss of the photosynthetic capacity and protein in senescence leaves at positions of two cultivars of rice in relation to source capacity of the leaves for carbon and nitrogen. Plant and Cell Physiology,40:496-503.
    Jiang SY., Bhalla R., Ramamoorthy R., Luan HF., Venkatesh PN., Cai M., Ramachandran S.2011. Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Reserach, PMID:22038450.
    Julie Dechorgnat., Chi Tam Nguyen., Patrick Armengaud., Mathieu Jossier., Eugene Diatloff., Sophie Filleur., and Franc xoise Daniel-Vedele.2011. From the soil to the seeds:the long journey of nitrate in plants. Journal of Experimental Botany,62(4):1349-1359.
    Kaeim AQMR., Iamis JV.1962. Comparative study of the effect of ammonium and nitrate nitrogen in the nutrition of rice. Plant and Soil,16:32-41.
    Kaiser WM., Huber SC.2001. Post-translational regulation of nitrate reductase mechanism physiological relevance and environmental triggers. Journal of Experimental Botany,52:1981-1989.
    Karst AL., Lechowicz MJ.2007. Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist,173:306-312.
    Katayama H., Mori M., Kawamura Y., Tanaka T., Mori M., Hasegawa H.2009. Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Science,59:237-243.
    Katyal JC., Xarter MF., Vlek PLG.1988. Nitrification activity in submerged soils and its relation to denitrification loss. Biology and Fertility of Soils,7:16-22.
    Kirk GJD.2001. Plant-mediated processes to acquire nutrients:Nitrogen uptake by rice plants. Plant and Soil,232:129-134.
    Kirk GJD. And Kronzucker HJ.2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants:a modeling study. Annals of Botany,96:639-646.
    Kobata T., Sugawara M., Takatu S.2000. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agronomy Journal,92:411-417.
    Kozaki A., Takeba G.1996. Photorespiration protects C3 plants from photooxidation. Nature, 384:557-560.
    Krapp A., Fraisier V, Scheible WR., Quesada A., Gojon A., Stitt M., Caboche M., Daniel-Vedele F. 1998. Expression studies of Nrt2.1Np,a putative high-affinity nitrate transporter:ecvidence for its role in nitrate uptake. Plant Journal,14:723-731.
    Kronzucker HJ., Glass ADM., Siddiqi MY., et al.2000. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice:implications for rice cultivation and yield potential. New Phytologist,145:471-476.
    Kronzucker HJ., Kirk GJD., Siddiqi MY., et al.1998. Effects of hypoxiaon 13NH4+ flux in rice roots: Kinetics and compartmental analysis. Plant Physiology,116:581-587.
    Kronzucker HJ., Siddiqi MY., Glass ADM., et al.1999. Nitrate-ammonium synergism in rice:A subcellular flux analysis. Plant Physiology,119:1041-1045.
    Krouk G., Lacombe B., Bielach A., Perrine-Walker F., Malinska K., et al.2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, 18:927-37.
    Lam HM., Coschigano KT., Oliveira IC., Melo-Oliveira R., Coruzzi GM.1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology,47:569-593.
    Lattanzi FA., Schnyder H., Thornton B.2005. The sources of carbon and nitrogen supplying leaf growth Assessment of the role of stores with compartmental models. Plant Physiology,137: 383-395.
    Lebot J., Kirkby EA.1992. Diurnal uptake of nitrate and potassium during the vegetative growth of tomato plants. Journal of Plant Nutrition,15:247-264.
    Lejay L., Tillard PM., Lepetit FD., et al.1999. Molecular and functional regulation of two NO3-uptake systems by N and C status of Arabidopsis plant. Plant Journal,! 8:509-519.
    JY Li., YL Fu., SM Pike., J Bao., W Tian., et al.2010. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell,22: 1633-1646.
    Li Q., Chen F., Sun LX., Zhang ZQ., Yang YN., He ZH.2006. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology,68:51-60.
    Li W., Wang Y., Okamoto M., Crawford NM., Siddiqi MY., Glass AD.2007. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology,143:425-433.
    Liang T., Wang H., Kung HT. and Zhang CS.2004. Agriculture land-use effects on nutrient losses in west Tiaoxi watershed, China. Journal of the American water resources association,40:1499-1510.
    Lin CM., Koh S., Stacey G., Yu SM., Lin TY., Tsay YF.2000. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRTl, from rice. Plant Physiology,122:379-388.
    Lin SH., Kuo HE., Canivenc G., Lin CS., Lepetit M., Hsu PK., Tillard P., Lin HL., Wang YY., Tsai CB., Gojon A., Tsay Y.F.2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell,20:2514-2528.
    Little DY., Rao H., Oliva S., Daniel-Vedele F., Krapp A., Malamy JE.2005. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues.Proceedings of the National Academy of Science.USA,102:13693-13698.
    Liu K.H., Tsay Y.F. 2003. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO Journal,22:1005-1013.
    Liu KH., Huang CY., Tsay YF.1999. CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell,11:865-874.
    Liu LH., Ludewig U., Gassert B., Frommer WB., von Wiren N.2003. Urea transport by nitrogen regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology,133:1220-1228.
    Mae T.1997. Physiological nitrogen efficiency in rice:nitrogen utilization, photosynthesis, and yield potential. Plant and Soil,196:201-210.
    Martin A., Lee J., Kichey T., Gerentes D., Zivy M., et al.2006. Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell,18(11): 3252-3274.
    Masclaux C., Valadier MH., Brugiere N., et al.2000. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta,211:510-518.
    Masclaux-Daubresse C., Daniel-Vedele F., Dechorgnat J., Chardon F., Gaufichon L., Suzuki A. 2010. Nitrogen uptake, assimilation and remobilization in plants:challenges for sustainable and productive agriculture. Annals of Botany,105:1141-57.
    McClure PR., Kochian LV., Spanswick RM.1990. Evidence for cotransport of nitrate and protons in maize rots. Plant Physiology,93:281-289.
    Michaelis.1925. Contribution to the theory of permeability of membranes for electrolytes. Journal of General Physiology,8:33-59.
    Miller AJ and Smith SJ.1996. Nitrate transport and compartmentation in cereal root cells. Journal of Experimental Botany,47:843-854.
    Miller AJ and Smith SJ.1992. The mechanism of nitrate transport across the tonoplast of barley root cells. Planta,187:554-557.
    Miller AJ., Fan XR., Orsel M., Wells DM.2007. Nitrate transport and signaling. Journal of Experimental Botany,58:2297-2306.
    Miller AJ., Shen QR., Xu GH.2009. Freeways in the plant:transporters for N, P and S and their regulation. Current Opinion in Plant Biology,12:284-290.
    Mittler R., Vanderauwera S., Gollery M., et al.2004. Reactive oxygen gene network of plant. Trends in Plant Science,9(10):490-498.
    Moll RH., Kamprath EJ., Jackson WA.1982. Analysis and interpret at ion of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal,74:562-564.
    Muflos S., Cazettes C., Fizames C., Gaymard F., Tillard P., Lepetit M., Lejay L., Gojon A.2004. Transcript profiling in the chll-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell,16(9):2433-2447.
    Nakano H., Makino A., Mae T.1997. The effect of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and nitrogen content in rice leaves. Plant Physiology,115:191-198.
    Norman R J., Guindo O., Wells B R., et al.1992. Seasonal accumulation and partitioning of nitrogen-15 in rice. Soil Science Society of America Journal,56:1521-1527.
    Ntanos D A., Koutroubas S D.2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research,74:93-101.
    Okamoto M., Vidmar JJ., Glass AD.2003. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision. Plant Cell Physiology,44(3):304-17.
    Okamoto M., Kumar A., Li W., Wang Y., Siddiqi MY., Crawdford NM., Glass AD.2006. High-aflfinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiology,140:1036-1046.
    Orsel M., Chopin F., Leleu O., Smith SJ., Krapp A., Daniel-Vedele F., Miller AJ.2006. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiology,142:1304-1317.
    Orsel M., Chopin F., Leleu O., Smith SJ., Krapp A., Daniel-Vedele F., Miller AJ.2007. Nitrate signaling and the two component high affinity uptake system in Arabidopsis. Plant Signal and Behavior,2:260-262.
    Orsel M., Eulenburg K., Krapp A., Daniel-Vedele F.2004. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta,219:714-721.
    Peng S B., Huang J L., Zhong X H., et al.2002. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agricultural Sciences in China,1(7): 776-785.
    Pourtau N., Jennings R., Pelzer E., Pallas J., Wingler A.2006. Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis.Planta,224(3):556-568.
    Quesada A., Galvan A., Fernandez E.1994. Identification of nitrate transporter in Chlamydomonas reihardtii. Plant Journal,5:40-419.
    Ranganayaki Nandanavanam.2011. Investigations on the contribution of AtNRT2.6 gene to nitrate transport in Arabidopsis thaliana. MASTER OF SCIENCE in The Faculty of Graduate Studies THE UNIVERSITY OF BRITISH COLUMBIA.
    Raun WR and Johnson GV.1999. Imporving nitrogen use efficiency for cereal production. Agronomy Journal,91:357-363.
    Remans T., Nacry P., Pervent M., Girin T., Tillard P., et al.2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology,140:909-21.
    Revsbech NP., Pedersen O., Reichardt W., Briones A.1999. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils,24:379-385.
    Sasakawa H., Yamamoto Y.1978. Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiology,62:665-669.
    Sato Y., Antonio BA., Namiki N., Takehisa H., Minami H., Kamatsuki K., Sugimoto K., Shimizu Y., Hirochika H., Nagamura Y.2011. RiceXPro:a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Reserach,39(Database issue):Dl 141-8 (ISSN:1362-4962).
    Siddiqi MY., Glass ADM., Ruth TJ., Rufty T.1990. Studies of the uptake of nitrate in barley:Kinetics of 13NO3-influx. Plant Physiology,93:1426-1432.
    Takashima T., Hikosaka K., Hirose T.2004. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environment,27:1047-1054.
    Takatoshi K., Feria-Bourrellier A., Lafouge F., Lezhneva L., Boutet-Mercey S., Orsel M., Brlhaut V., Miller AJ., Daniel-Vedele F., Sakakibara H., and Krapp A.2012. The Arabidopsis Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants. Plant Cell, doi/10.1105/tpc.111.092221.
    Takei K., Takahashi T., Sugiyama T., et al.2002. Multiple routes communicating nitrogen availability from roots to shoots:A signal transduction path mediated by cytokinin.Journal of Experiment Botany,53:971-977.
    Tasy Y., Schroeder JI., Feldmann KA., Crawford NM.1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter.Cell,72:705-713.
    Thibaud JB., Grignon C.1981. Mechanisms of nitrate uptake in corn roots. Plant Science Letters, 22:279-289.
    Tingey DT., Mckane RB., Olszyk DM., Johns on MG., Rygiewicz P., Lee EH.2003. Elevated CO2 and temperature alter nitrogen allocation in Douglas 2 fir. Global Change Biology,9:1038-1050.
    Todd CD., Zeng P., Huete AM., Houos ME., Polacco JC.2004. Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis.Planta,219:1003-1009.
    Tong YP., Zhou JJ., Li ZS and Miller AJ.2005. A two-component high-affinity nitrate uptake system in barley. Plant Journal,10:1365-1374.
    Trueman LJ., Richardson A., Forde BG. 1996. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii. Gene,175:223-231.
    Tsay YF., Chiu CC., Tsai CB., Ho CH., Hsu PK.2007. Nitrate transporters and peptide transporters. FEBS Letters,581:2290-2300.
    Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J.2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science,314:1298-1301.
    Ullrich WR. And Novacky A.1981. Nitrate-dependent membrane potential changes and their induction in lemna gibba.Plant Science Letters,22:211-217.
    Unkles S.E., Hawker K.L., Grieve C.1991. crnA eneodes a nitrate transporter in AsPergillus nidulans. Proceedings of the National Academy of sciences of the United states of America.,88:204-208.
    Vidma JJ., Zhou D., Siddiqi MY., Schjoerring JK., Touraine B.2000. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology,123:307-318.
    Vincentz M., Caboche M.1991. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO Journal,10:1027-1035.
    Walch-Liu P., Neumann G., Engels C.2001. Response of shoot and root growth to supply of different nitrogen forms is not related to carbohydrate and nitrogen status of tobacco plants. Plant Nutrition and Soil Science,164:97-103.
    Wang XB., Wu P., Hu B., Chen QS.2002. Effects of nitrate on rice lateral root morphology and nitrogen absorption in rice(Oryza Sativa L.). Acta Botanica Sinica,44:678-683.
    Wang YY., Tsay YF.2011. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport. Plant Cell,23:1945-1957.
    Wenjing Song., Kousar Makeen., Dongsheng Wang., Chenming Zhang., Yehong Xu., Haijuan Zhao., Erdi Tu., Yali Zhang., Qirong Shen., Guohua Xu.2011. Nitrate supply affects root growth differentially in two rice cultivars differing in nitrogen use efficiency. Plant Soil,343:357-368.
    Williams LE., Miller AJ.2001. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu.Rev.Plant Physiol. Plant Molecular.Biology,52:659-688.
    Wirth J., Chopin F., Santoni V., Viennois G., Tillard P., Krapp A., Lejay L., Daniel-Vedele F., Gojon A.2007. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. Journal of Biological Chemistry,282:23541-23552.
    Xu G., Fan.X., Miller.AJ.2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology,63:153-82.
    Yan M., Fan X.R., Feng H.M., Miller A.J., Sheng Q.R., Xu G.H.2011. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell and Environment,34:1360-1372.
    Ying J., Peng S., Yang G., Zhou N., Visperas RM., Cassman KG. 1998. Comparison of high yield rice tropical and subtropical environments Ⅱ. Nitrogn accumulation and utilization efficiency. Field Crop Reserach,57:85-93.
    Zhang H., Forde BG. 2000. Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany,51 (342):51-59.
    Zhang H., Jennings A., Barlow PW., Forde BG.1999. Dual pathways for regulation of root branching by nitrate. Plant Biology,96:6529-6534.
    Zhang HM., Forde BG.1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science,279:407-409.
    Zhou JJ., Theodoulou FL., Muldin I., Ingemarsson B., Miller AJ.1998. Cloning and functional characterization of a Brassica napus transporter which is able to transport nitrate and histidine.Journal of Biologica.Chemistry,273:12017-12023.
    Zhou JJ., Trueman LJ., Boorer KJ., et al.2000. A high affinity fungal nitrate carrier with two transport mechanisms. Journal of Biological Chemistry,275:39894-39899.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.