电场膜生物反应器耦合处理工业园区综合废水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着我国经济的快速发展,我们生存所依赖的水环境受到的污染却日趋加剧,为了保护好我们的生存环境,对水污染的控制和治理已刻不容缓。目前,城镇污水处理技术相对成熟,厂矿企业排放的工业废水处理技术也有了长足的进步,但目前国内诸多工业园区,从不同企业流出的各种工业废水混合在一起排放,不仅污染物具有多样性,而且会产生复合污染,致使目前常用的处理工艺难以满足国家要求的达标排放,或处理成本太高,业主难以承受。本论文旨在开发一种处理效果好、运行费用低的处理工艺,能有效地去除工业园区内的含重金属有机物复合废水中的污染物。
     本课题来源于“国家水体污染控制与治理科技重大专项”--“湘江水环境重金属污染整治关键技术研究与综合示范性课题”。本课题首先长时间详细地调查了湖南省某工业园区的外排水水质,确定了研究对象。研究了电絮凝作为预处理去除重金属、有机物的去除效率及其影响因素;研究了硅藻土吸附重金属的影响因素,吸附动力学和吸附等温线;对比研究了颗粒生物膜—膜生物反应器和普通的膜生物反应器对低浓度重金属、氨氮、总氮、有机物的去除效率,研究了两种不同反应器的膜通量、污泥颗粒和混合液黏度的不同;研究了电场—膜生物反应器的去除效果。本课题在该工业园区的综合污水处理厂内专门建立了一套中试装置,用于验证本课题研究的应用效果,同时这种平行试验已用于指导处理厂的日常运行管理。试验结果表明:
     (1)电絮凝能有效地除去废水中的重金属,对模拟废水的Cu2+、Zn2+、Pb2+去除效率可达到96.0%以上,对Cd2+的去除率能达到82.0%以上。研究了电絮凝工艺去除重金属的最佳条件,结果表明,初始pH值对去除效率有重要的影响,当pH达到6最佳值时,同时电流密度为6A/dm2,极板间距为3cm,电絮凝时间30min,则可达到较理想的处理效果。电絮凝对废水中的COD去除也卓有成效。试验证明,在pH值为7,电流密度为10A/dm2,电絮凝时间为30min时,可以达到75%以上的COD去除率,因此,电絮凝处理工艺作为综合废水的预处理是适当的。
     (2)本课题研究了电絮凝除磷的可行性,试验证明,在设定的条件下磷的去除效率可以达到75%以上,因此,电絮凝能有效地去除废水中的磷。
     (3)硅藻土能有效地吸附废水中的重金属,同时硅藻土的使用量对重金属废水的处理效果具有重要影响,试验室数据和中试结果都表明,在硅藻土投加量为8g/L时,当进水中Cu2+、Zn2+、Pb2+、Cd2+浓度分别为5.0mg/L、5.Omg/L.2.0mg/L、0.2mg/L时,测定出水中的重金属浓度分别为0.73mg/L、.40mg/L、0.17mg/L、0.07mg/L,即Cu2+、Zn2+、Pb2+、Cd2+的去除率分别达到了85.38%、72.00%、91.70%和65.71%,去除效果显著,为后续的生物处理处理奠定了基础。
     (4)影响硅藻土吸附效果的主要因素是pH值和进水中重金属浓度。pH值是影响硅藻土吸附效果的重要因素,实验表明,在酸性条件下吸附效果较差,在中性或弱碱性条件下效果较好,如:在pH值=6±0.2时,Cu2+、Zn2+、Pb2+和Cd2+的去除率分别达到了90.00%、77.54%、94.07%和72.14%,但是进一步提高pH值对去除率的影响不大。吸附量随着重金属离子浓度的升高呈上升趋势变化。在重金属离子浓度超过1.0mmol/L后,吸附量则增加缓慢。
     (5)硅藻土对Cu2+、Zn2+和Cd2+的吸附规律相近,数据显示:前30min吸附速率都很快,分别达到85.38%、78.77%和68.57%,基本接近吸附峰值;30min后,增幅开始变小。然而,硅藻土吸附Pb2+体现了不同的变化规律,对Pb2+的吸附速度非常迅速,在5min时,溶液中Pd2+的去除率便达到81.48%,10min时吸附率为88.15%,基本接近饱和值。
     (6)当硅藻土对Cu2+、Zn2+、Cd2+、Pb2+四种金属离子吸附达到稳定平衡时,改性硅藻土对Pb2+的吸附量明显大于对Cu2+、Zn2+、Cd2+的吸附。如在吸附时间为5min时,硅藻土对Cu2+、Zn2+、Cd2+、Pb2四种重金属的吸附量分别为4.21、3.46、6.80和11.00mg/L,吸附量大小顺序是Pb2+>Cd2+>Cu2+>Zn2+。说明硅藻土吸附剂对重金属离子具有一定的选择性。
     (7)研究了硅藻土吸附Cu2+、Zn2+、Cd2+、Pb2+四种不同重金属的吸附等温线,并对其做了回归分析,Langmuir吸附等温线方程拟合的回归系数R2值大于0.94,而Freundlich吸附等温线模型拟合的R2值在0.78-0.81之间,显然Langmuir方程的拟合效果优于Freundlich方程的拟合效果。
     (8)对比研究了颗粒生物膜—膜生物反应器和普通膜生物反应器的去除效果,两个反应器对重金属、COD、氨氮的去除效果都很明显,重金属、COD、氨氮的出水浓度都满足《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级B的要求。但两种反应器对总氮的去除效率不高,其主要原因是处理系统采用了连续曝气的运行方式,抑制了反硝化菌的成长。
     (9)本实验中,颗粒生物膜—膜生物反应器与普通的膜生物反应器相比,在去除重金属、COD、氨氮和总氮方面都有较好的去除效果,表明投加硅藻土可以强化去除有机物、重金属和氨氮的去除效果。
     (10)投加硅藻土可以延缓膜通量的下降速度。投加硅藻土可以改善微生物的生存环境,使污泥浓度增长更快,污泥絮体平均粒径增大了77.37%,污泥黏度减小了41.18%,从而减缓了泥饼层的形成速度,并且使泥饼层变得较疏松、透水性好、可滤性强。因此,投加硅藻土可减缓过膜压力的增长,减轻膜污染,延长了膜组件的使用周期。
     (11)电场—膜生物反应器对COD去除效果显著,去除率一直稳定在90.0%以上,改变电流密度对其影响不大。
     (12)冲击负荷不会影响电场—膜生物反应器对氨氮的去除效率,表明该系统具有很强的自身调节能力。
     (13)电流密度对TN去除率有较大的影响,电流密度从110mA到150mA,TN去除率逐步升高,最高去除效率达到83.8%;但当进一步增加电流密度时,TN去除率开始下降。另外,冲击负荷对TN去除率有一定的影响,系统进水中TN浓度从46mg/L上升到88mg/L,系统去除效果较好;但当TN浓度超过90mg/L后,系统去除率有所下降。
     研究结果表明:电絮凝+电场膜生物反应器能有效地处理好工业园区综合废水的复合污染。
Along with the rapid development of Chinese economy, water environment which our lives depend on tends worse than ever resulting from pollution. It is urgent to make action for water pollution controlling and handling so as to protect our common homeland. At present, technique for municipal wastewater treatment is relatively abundant, simultaneously substantial progress has been made for treatment technique on industrial wastewater treatment. However, in so many industrial parks of cities or towns, a variety of wastewater is discharged and mixed together from different factories with the complexity and diversity of pollutants. Due to mixture with heavy metals and organic compounds and even resulting in multiplex pollution, it is too difficult to find good solution for handling such complicated wastewater by normal process and fit the national stand, otherwise it will cost too much which the customer cannot stand. Therefor, the purpose of this paper is to develop a treatment process for handling successfully such mixing industrial wastewater with heavy metals and organic compounds, and with high treatment efficiency and lower costs for operation. This study has gotten the support by National Special Water Research named Research For Key Technique and Synthesized Pilot Project For Heavy Metal Pollution Controlling in Xiang River. Firstly the detailed investigation for water quality of the final discharged wastewater has been made for a long time in an industrial park with heavy pollution in Hunan Province so that the study object was defined. In this study, Removal efficiency for heavy metals and organic matter and its influencing factors were researched on electro-flocculation as pretreatment, adsorption kinetics, adsorption isotherms, and its influencing factors on diatomite adsorption for heavy metals has also been researched. Comparative study on removal efficiency between particle biofilm-membrane bioreactor and membrane bioreactor for low concentrations of heavy metals, ammonia nitrogen, total nitrogen and organic matter has been done, as well as the difference about the membrane flux, particles of sludge, viscosity of mixture liquid between the two bioators has been studied. Finally, the study on removal efficiency of the electric field-membrane bioreactor has been done. In order to testify the application purpose for this study, a pilot experimental facility has been build up in the integrated wastewater treatment plant, which is still giving figures as a guidance for daily operation and management of this plant.some achievements of the experiment are shown as below.
     (1) It is effective for electric flocculation to remove heavy metals, and the removal efficiency is more than96.0%of Cu2+, Zn2+, Pb2+, as well as more than82.0%of Cd2+from simulated wastewater. The optimal condition for electric flocculation process to remove heavy metals has been studied, it is shown that the initial pH value is much important for removal efficiency and the optimal pH is6, current density is6A/dm2, plate space is3cm, and the time for electric flocculation is30min. It is proved that electric flocculation process has excellent removal efficiency for COD removal. The efficiency for COD removal can be more than75%under the conditions with pH7, current density10A/dm2, flocculation30min. Therefore, the the process of electric flocculation as a pre-treatment unit is appropriate for mixed industrial wastewater treatment.
     (2) The feasibility for electric flocculation to remove phosphorus from simulated wastewater was also studied. It is proved that phosphorus removal efficiency can be more than75%under optimized condition.
     (3)Diatomite can adsorb heavy metals effectively from wastewater, meanwhile the dosage of diatomite has an important impact on the efficiency for heavy metal removal. It is proved that the removal efficiency for heavy metals of Cu2+, Zn2+, Pb2+and Cd2+are85.38%,72.00%,91.70%and65.71%respectively, when thr dosage of diatomite is8g/L. That is, the efficiency is very high. An example can be shown more clearly. When the concentration of Cu2+, Zn2+, Pb2+and Cd2+were5.0mg/L,5.0mg/L,2.0mg/L and0.2mg/L in the influent wastewater, respectively, the corresponding concentration of heavy metals were tested in the effluent as0.73mg/L,1.40mg/L,0.17mg/L and0.07mg/L, respectively, through the electric flocculation process. Thus it gives a good foundation for further removal of heavy metals by subsequent biological treatment.
     (4)The main influence factors on adsorption efficiency for heavy metal by diatomite were pH value and concentration of heavy metals in the influent wastewater, and especially for pH value. Normally the dsorption effect is poor under acidic condition, whereas ideal result can be gotten under neutral or weakly alkaline condition. An example can be shown. When pH value is given6±0.2, the removal efficiency for Cu2+, Zn2+, Pb2+and Cd2+will be90.00%,77.54%,94.07%and72.14%, respectively. However, the removal efficiency is almost no change along with the pH value further increasing. When the concentration of heavy metal ion in solution is low, the adsorption amount for a diatomite unit is also low reasonably. Along with increasing of the concentration of heavy metal, more space of diatomite starts to make action with heavy metal ions until tending adsorption saturation point. This means that the adsorption amount will keep increasing along with the concentration ascending of heavy metal. However, once the concentration of heavy metal ion is over1.0mmol/L, the increasing extent of adsorption amount is slowdown.
     (5)The adsorption trend is similar for diatomite to adsorb Cu2+, Zn2+and Cd2+, that is, the adsorption efficiency for the three ions are85.38%,78.77%and68.57%, respectively, in the first30minutes. Subsequently, the increasing extend starts to decrease. However, the adsorption trend for diatomite to adsorb Pb2+is so different compared with the above three ions. The action is very rapid so that the adsorption efficiency is more than81.48%in the first5minutes and88.15%in10minutes, which is tending the utmost for removal.
     (6)When the stable equilibrium is reached for diatomite adsorbing the four heavy metal ions of Cu2+, Zn2+、Cd2+、Pb2+, it is shown that the adsorbed amount of Pb2+is much more than the others. For example, when the adsorption amount for the four heavy metal ions of Cu2+、Zn2+、Cd2+、Pb2+is tested in the first5minutes, it will be4.21,3.46,6.80and11.0mg/L, respectively, that is, the sequence of adsorption amount for the four heavy metals is Pb2+> Cd2+>Cu2+>Zn2+.This is also means that diatomite as an adsorbent has an obvious selectivity for different heavy metal ions.
     (7)Experimental study on adsorption isotherms for diatomite adsorbing the above4heavy metals was done, and regression analysis was also made with Langmuir and Freundlich Equation in the same time. It is shown that Langmuir adsorption isotherm equation can fit the result better than Freundlich adsorption isotherm, with the fitting regression coefficient R2value0.94, and among0.78to0.81, respectively.
     (8)The comparative study has been done on the removal effect on particulate biofilm-membrane bioreactor and ordinary membrane bioreactor. Experimental result is shown that both of them have an outstanding effect for pollutants removal including heavy metals, COD and ammonia, and can fit the demand of the national standard--Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002). However, both of bioreactors have a low efficiency for TN removal, resulting from the continuous aeration and prohibiting the growth of denitrifying bacteria.
     (9)In this study, compared with ordinary membrane bioreactor, particulate biofilm-membrane bioreactor has gotten a more efficient effect on heavy metal, COD, ammonia and TN removal, due to the enhancement of adding diatomite.
     (10)The rate of decline of membrane flux can be delayed by adding diatomite in the MBR reactor. It is proved that adding diatomite can improve the living environment for microorganism, so that the sludge concentration can increase faster with average particle size of flocs increasing up to77.37%, sludge viscosity reducing with41.18%. Thus it will decrease the formation velocity for sludge cake layer. In the meantime, adding diatomite can make sludge cake layer more loosen, permeable, and filterable. In a word, it is important for adding diatomite to decrease the growth rate of enduring pressure for membrane, slow down pollution of membrane, and extend the life cycle for membrane module.
     (11)Electricity-membrane bioreactor has a higher efficiency for COD removal and the removal rate can keep more than90.0%. There is no much influence for removal effect by changing current density.
     (12)Even with impact load, there is little influence on the efficiency for electricity-membrane bioreactor removing ammonia. It is shown such system has a very strong capacity of self regulation.
     (13)It has a great influence on the efficiency for electricity-membrane bioreactor to remove TN by changing current density. For example, current density is changed from110mA to150mA, the remove rate will be improved until the maximum83.8%. If keeping increasing current density, the remove rate for TN starts to decline. Impact load will have some influence for the removal rate of TN. It is shown that the system can keep ideal operation when the concentration of TN of influent wastewater is changed from46mg/L to88mg/L. but when the value of TN is up to90mg/L, efficiency for the system removing TN starts to decline. The experiment result is shown that the assembled unit within electric flocculation and electric membrane bioreactor can treat effectively complicated wastewater discharged from industrial zone.
引文
[1]钱易,杨鸿霄.水体颗粒物和难降解有机物的特性与控制技术原理(D).北京:中国环境出版社,2000.1-5.
    [2]全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用[J].环境科学研究,1999,12(3):22-27.
    [3]Sandrin T R, Maier R M. Impact of metals on the biodegradation of organic pollutants [J]. Environment Health Perspect,2003,111(8).1093-1101.
    [4]Yoo J Y, Cho J Y, Lee T Ym,et al. Organobentonite for sorption and degradation of phenol in the presence of heavy metals [J]. Water Air Soil Poll,2004,154:225-237.
    [5]Lin Q, Shen K L, Zhao H M, et al. Growth response of Zea mays L.inpyrene-copper co-contaminated soil and the fate of pollutants [J]. J Hazard Mater,2008,150:515-521.
    [6]Sparks D. Environmental Soil Chemistry [M]. San Francisco:Academic Press,1995.
    [7]谢晓梅,胡洲.镉对苄嘧磺隆在水稻土中降解动力学特性的影响[J].实验室研究与探索,2005,24(1):21-22.
    [8]Francis A J, Dodge C J, Gillow. Biodegradation of metal citrate complexes and implications for toxic-metal mobility [J]. Nature,1992,356:140-142.
    [9]陈皓,陈玲,王虹,等.Ni2+对2-氯酚厌氧降解系统的影响[J].环境科学研究,2006,19(5):126-131.
    [10]Jin S, Drever J I, Colberg P J S. Effects of copper on sulfate reduction in bacterial consortia enhances from metal-contaminated and uncontaminated sediments [J]. Environ Toxicol Chem,2007,26(2):225-230.
    [11]Amatya P L, Hettiaratchi J P A, Joshi R C. Interaction effects of metals and salinity on biodegradation of a complex hydro carbon waste [J]. J Air Waste Manage Assoc,2006, 56:97-205.
    [12]高敏苓,戴树桂.土壤中有机污染物生物可利用性研究进展[J].华中农业大学学报,2006,25(3):34-340.
    [13]Lin C W, Cheng Y W, Tsai S L. Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi [J]. Chemosphere,2007,69(9):1485-1491.
    [14]Lin C W, Chen S Y, Cheng Y. WEffect of metals on biodegradation kinetics for methyltert-butyl ether [J]. Bioch Eng J,2006,32:25-32.
    [15]Hong H B, Nam I H, Kim Y M, et al. Effect of heavy metals on the biodegradation of dibenzofuran in liquid medium[J]. J Hazard Mater,2007,140:145-148.
    [16]王婷,尹华,彭辉,等.低浓度重金属对蜡状芽孢杆菌复合菌降解BDE209性能的影响[J].环境科学,2008,29(7):1967-1972.
    [17]Weissmahr K W, Sedlak D L. Effect ofmetal complexation on the degradation of dithiocarbamate fungicides [J]. Environ Toxicol Chemical,2000,19(4):820-826.
    [18]Jin S, Drever J I, Colberg P J S. Effects of copper on sulfate reduction in bacterial consortia enhances from metal-contaminated and uncontaminat-ed sediments [J]. Environ Toxicol Chem,2007,26(2):225-230.
    [19]Zumriye A, Deyra A P, Competitive biosorption of Phenol and chromium (Ⅵ) from binary mixtures onto dried anaerobic activated sludge [J]. Biochemical engineering Jurnal, 2001,7(3):183-193.
    [20]刘晓波,何国建.活性炭三维电极对印染废水的处理研究[J].环境污染治理与设备,2004,5(3):59-62.
    [21]李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状[J].电镀与精饰,2003,25(4):30-32.
    [22]林海,营小东,李天听.活性炭纤维电化学处理染料废水[J].北京科技大学学报,2003,25(2):124-126.
    [23]梁郁强,贾宗剑,江凤仪.活性污泥吸附重金属Cr6+的研究[J].环境技术,2004,22(1):33-34.
    [24]冯逸仙,杨世纯.反渗透水处理工程[M].北京:中国电力出版社,2000:187-195.
    [25]孟令芝.纤维素-铝-硅复合物的制备及对重金属离子的吸附[J].环境科学与技术,2000,89(2):24-26.
    [26]张凤君.硅藻土加工与应用[M].北京:化学工业出版社,2006.
    [27]胡家燕.硅藻土的矿物岩石行特征.www.mining120.com/html/0704/20070426_8883.asp.
    [28]蒋小红,喻文熙,曹达文,等.改性硅藻土处理城市污水技术的可行性研究[J].环境科学与技术,2007,30(3):76-78.
    [29]蒋小红,曹达文,周恭明,等.硅藻土处理城市污水技术[J].重庆环境科学,2003,25(11):73-75.
    [30]徐泾,徐高田,曹达文等.硅藻土原土处理城镇污水试验研究[J].中国给水排水,2007,23(17):46-49.
    [31]金伟,赵雅萍,徐祖信,等.硅藻土复合生物反应器处理生活污水[J].同济大学报(自然科学版),2005,33(12):1629-1629.
    [32]徐文征,金伟,曹达文,等.悬浮硅藻土生物反应器的低温启动[J].净水技术,2006,25(1):3-15.
    [33]Khraisheh M A M, Al-degs Y S, Mcminn W A M.Remediation of wastewater containing heavy metals using raw and modified diatomite [J]. Chemical Engineering Journal,2004, 99:177-184.
    [34]Broom G P. Treatment of heavy metal effluent by crossflow microfiltration[J]. Journal of Membrane Science,1994,87(1-2):219-230.
    [35]Al-degs Y. Sorption of lead ions on diatomite and manganese oxides modified diatomite [J]. Water Research,2001,35(15):3724-3728.
    [36]T. N. De Castro Dantas, A. A. Dantas Neto, M. C. P. De A. Moura. Removal of chromium from aqueous solutions by diatomite treated with microemulsion [J]. Water Research, 2001,35:2219-2224.
    [37]赵黔榕,刘应隆,李璧玉,等.改性硅藻土对Cu(Ⅱ)吸附性能的研究[J].云南师范大学学报(自然科学版),2000,20(6):55-57.
    [38]刘频,赵黔榕.改性硅藻土对Pb(Ⅱ)的吸附作用[J].云南化工,2003,30(5):11-13.
    [39]罗道成,刘俊峰.改性硅藻土对废水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].中国矿业,2005,14(7):69-71.
    [40]夏士朋,石诚.改性硅藻土处理废水中重金属离子[J].河南化工,2002(5):24-26.
    [41]杨宇翔,张亚匡,等.硅藻土脱色机理及其在印染废水中应用的研究[J].工业水处理,1999,19(1):15-17.
    [42]吴吉昆.硅藻土处理印染废水的研究[Z].全国环境化学导向问题研究学术讨论会议论文,1987.
    [43]彭书传.硅藻土复合净水剂处理印染废水[J].环境科学及技术,1998,80(1):24-25.
    [44]Chen W J, Chen T N, Cheng Y C. Polyelectrolyte conditioning for iron-hydroxide-eontaining Sludge Produced form electroflocculation of fermentation waste [J]. Journal of Environ Scienee Health A Tox Hazard Substance EnvironEngineer.2002, 37(7):1277-1293.
    [45]M Yousu, fA. Mollha, RobertSehennach, et al. ElectroCoagulation-science and application [J]. Journal of Hazardous Maetrials, B84,2001,1:2941.
    [46]Vik Eilen A, Carlson Dale A, Eikum Arild S, et al. Electrocoagaulation of potable water [J]. Water Research,1984,18(11):1355-1360.
    [47]马志毅,刘瑞强,等.电凝聚对悬浮物和有机物去除功效的试验研究[J].给水排水,1998,24(11):3741.
    [48]Lin S H. Treatment of textile wastewater by electrochemical method [J]. Water Research, 1994,28(2):277-282.
    [49]Lin S H, et al. Continuous Treatment of textile waste water by combined coagulation, elecrto-chemieal oxidation and a cativated sludge[J]. Water Research,1996,30(3): 587-592.
    [50]Demmin T R, Unrieh K D, Timoth. Y. Improving carpet wastewater treatment [J]. American Dyestuff Report,1988,77(6):13-14,17-18,32.
    [51]Kenedy M. Electrochemical wastewater treatment technology of rtextile [J]. Ameriena Dyestuff Report,1991,80 (9):26,28,94.
    [52]熊方文.脉冲电解处理工业污水技术[J].工业水处理,1990,10(2):10-12.
    [53]杜锡康,尹英敏.电镀混合废水的处理及回用[J].山西机械,1999,9(3).
    [54]张希衡.水污染控制工程(第2版)[M].冶金工业出版社.
    [55]Calvin. P. C Poon. Electroflocculatation of groundwater decontamination [J]. Journal of Hazardous Materials,1997,55(1-3):159-120.
    [56]魏平方,邓皓.阴离子对电絮凝浮选处理钻井废水的影响研究[J].化学工程师,2005,114(3):38-40.
    [57]M. Qiu, in:L.A. Kul'skii, P.P. Strokach, V.A.S lipchenko, et al. Water Purification by Electrocoagulation [M]. Shanghai Jiaotong University Press,1988.
    [58]H.M.Wong, C. Shang, Y.K. Cheung, et al. Chloride Assisted Electrochemical Disinfection [J]. Proceedings of the Eighth Mainland-Taiwan Environmental Protection Conference, Tsin Chu, Taiwan,2002.
    [59]黄雅裕.电化学凝聚法处理工业废水[J].辽宁城乡环境科技,1998,18(6):65-67.
    [60]刘忠,张有志,王亚力.交流电凝聚及其在油田污水处理方面的应用研究[J].油气田环境保护,1994,4(2):43-47.
    [61]梅建辉.磁场协同交变脉冲电化学法处理印染废水的研究[D].武汉理工大学硕士学位论文,2005.
    [62]孙立成.电凝聚法饮用水除氟的研究[J].水处理技术,1984,10(2).
    [63]高德胜,高延耀.微电解水处理的实验研究[J].中国给水排水,1998(3).
    [64]M.Yousuf A, Robert S, JoseR.Paraga, David L. Electroeoagulation(EC)-seience and application [J]. Journal of Hazardous Materials,2001,84:29-41.
    [65]巴宾克夫著,郭连起译.论水的凝聚[M].北京:中国建筑工业出版社,1989.
    [66]刘欣.膜生物反应器在水处理中的应用][J].化工文摘,2007,(3):50-53.
    [67]程钟,邱谨楠.膜生物反应器的研究及在废水处理中的应用[J].污染防治技术,2006,19(3):30-33.
    [68]T.Melin, B.Jefferson, D. Bi xio, et al. Membrane bioreactor technology for wastewater treatment and reuse[J]. Desalination,2006,187(1-3):271-282.
    [69]杨帆,宋志伟.膜生物反应器在污水处理中的应用现状及展望[J].污染防治技术, 2006,19(5):36-39.
    [70]王仲旭,汤兵,郑艳芬,等.膜生物反应器在废水处理中的研究现状[J].环境保护科学,2005,31(6):24-26.
    [71]Tom S, Simon J, Bruce J, et al著,张树国,李咏梅译.膜生物反应器污水处理技术[M].北京:化学工业出版社,2003.
    [72]李凤亭,王亮,刘华等.膜生物反应器在水处理中的应用和新发展[J].工业水处理,2005,25(1):10-13.
    [73]刘颖,高艳玲,吕立宏.MBR技术在污水处理中的应用[J].沈阳大学学报,2006,18(2):70-72.
    [74]杨红群,周艳玲.膜生物反应器的技术研究[J].环境保护科学,2006,32(3):13-15.
    [75]Eric M L, W. A J, Audra M. A biotic transport in a membrane aerated bioreactor [J]. Journal of Membrane Science,2007,298(1-2):110-116.
    [76]Michael S, Denise H. Studies of a membrane aerated bioreactor for wastewater treatment [J]. Membrane Technology,1999,1999(111):9-13.
    [77]吴俊奇,于莉,曹健.膜生物反应器的研究现状[J].北京建筑工程学院学报,2004,20(3):12-15.
    [78]李静,杜启云,戴海平.污水处理中膜生物反应器的研究进展[J].天津工业大学学报,2003,22(6):18-21.
    [79]Boris L, Tor O L, Rita H, et al. MBR:Technology gets timely EU cash boost [J]. Filtration and Separation,2006,43(9):20-23.
    [80]万金保,伍海辉.降低膜生物反应器中膜污染的研究[J].工业用水与废水,2003(34),5-8.
    [81]林丰,张林生.MBR脱氮工艺的研究进展[J].污染防治技术,2003(4),42-44.
    [82]王志良,吴志超,李国平,等.膜生物反应器中膜污染的研究[J].污染防治技术,2003(4),4-6.
    [83]李丹,赵庆祥,周军等.膜生物反应器高度净化有机物的特性[J].城市环境与城市生态,2003(5),86-88.
    [84]于水利,赵方波.膜生物反应器技术发展沿革与展望[J].工业用水与废水,2006,37(2):1-3.
    [85]刘锐,黄霞,陈吕军.一体式膜生物反应器处理洗浴污水[J].中国给水排水,2001,17(1):6-9.
    [86]付婉霞,李蕾.膜生物反应器处理盥洗废水运行参数的选择[J].北京建筑工程学院学报,2002,18(2):22-25.
    [87]付国楷,余健,郑宪明,等.膜生物反应器的研究与展望[J].工业水处理,2003,23(10):1-3.
    [88]H. Kishino, H. Ishida, H. Iwabu, et al. Domestic wastewater reuses using a submerged membrane bioreactor [J]. Desalination,1996,106(1-3):115-119.
    [89]Muhammad H. Al-Malack. Performance of an immersed membrane bioreactor (IMBR) [J]. Desalination,2007,214(1-3):112-127.
    [90]彭亚男.膜生物反应器的研究[J].化学工程师,2004,108(9):58-60.
    [91]鲍建国,卢学实.一体式膜生物反应器处理港口污水及回用[J].中国给水排水,2002,18(9):37-38.
    [92]常颖,王宝贞,高欣.复合式膜生物反应器的小区污水回用试验研究[J].哈尔滨工业大学学报,2003,35(2):152-156.
    [93]徐元勤,丛广治,刘德滨,等.膜生物反应器用于城市污水处理与回用的试验研究[J].膜科学与技术,2003,23(3):46-48.
    [94]彭若梦,王艳.A/O膜生物反应器处理炼油废水并回用[J].中国给水排水,2002,18(8):78-80.
    [95]贾海涛,杨开,贾之辉.应用膜生物反应器处理电镀厂废水的研究[J].环境科学与技术,2003,26(2):38-41.
    [96]宁平,王宏,周旭.餐饮废水膜一生物反应器[J].膜科学与技术,2002,2(1):36-38.
    [97]樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究[J].环境科学学报,1997,1(1):68-73.
    [98]王维军,周红星,刘大江.污水再生利用处理技术-膜生物反应器[J].河北建筑工程学院学报,2005,23(3):8-10.
    [99]杨小丽,王世和.膜生物反应器研究现状及展望[J].污染防治技术,2002,15(4):28-30.
    [100]况家瓒,刘海滨,赵高菲,等.污水处理中膜生物反应器的应用研究[J].矿业工程,2005,3(6):54-56.
    [101]何静,万新南.膜生物反应器在废水处理中的应用及研究[J].广州微量元素科学,2006,13(9):16-22.
    [102]李天成.重金属有机废水电生物修复及生物膜结构与生物吸附模拟[D].天津大学博士论文,2003.
    [103]刘瑞轩.电生物膜法净化含重金属离子的苯酚废水[D].天津大学硕士论文,2003.
    [104]张敬.微电解-生物膜法处理含重金属离子电镀废水[D].天津大学硕士论文,2003.
    [105]Feleke Z, Sakakibara Y. A bioelectrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide [J]. Water Research,2002,36:3092-3102.
    [106]Flora J R V, Suidan M T, Islam S et al. Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification[J]. Water Science and Technology,1994,29(10-11): 517-524.
    [107]S. Song, Z.He, J.Qiu, et al. Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution:An investigation of the effect of operational parameters[J]. Separation and Purification Technology,2007,55(2):238-245.
    [108]Manuel Carmona, Mohamed Khemis, Jean-Pierre Leclerc et al. A simple model to predict the removal of oil suspensions from water using the electrocoagulation technique[J]. Chemical Engineering Science,2006(61):1237-1246.
    [109]高艳娇,黄继国,沈照理,等.电絮凝工艺处理垃圾填埋场渗滤液[J].水处理技术,2006,32(1):48-50.
    [110]Mahmut B, Murat E, Mehmet K. Treatment of the textile wastewater by electrocoagulation economical evaluation[J]. Chemical Engineering Journal 128(2007):155-161.
    [111]Xinhua X, Xiangfeng Z. Treatment of refectory oily wastewater by electro-coagulation process [J]. Chemosphere 56(2004)889-894.
    [112]Bayramoglu, M. Kobya, O. T. Can, et al. Operating cost analysis of electrocoagulation of textile wastewater [J]. Separation and Purification Technology,2004,37(2):117-125.
    [113]Angela F. Danil de Namor. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water [J]. Journal of Hazardous Materials,2012(241):14-31.
    [114]S.D.J. Inglethorpe. Industrial minerals laboratory manual:diatomite [J]. BSG Technical Report WG/92/39,1993.
    [115]M. Aivalioti, I. Vamvasakis, E. Gidarakos. BTEX and MTBE adsorption onto raw and thermally modified diatomite [J]. Journal of Hazardous Mater.2010 (178):136-143.
    [116]丁社光.硅藻土对铅离子的静态吸附实验研究[J].重庆工商大学学报(自然科学版),2007,24(1):51-55.
    [117]刘频,赵黔榕,袁朗白.改性硅藻土对Pb(Ⅱ)的吸附作用[J].云南化工,2003,30(5):11-13.
    [118]T. N. De Castro Dantas, A. A. Dantas Neto, M. C. P. De A. Moura. Removal of chromium from aqueous solutions by diatomite treated with microemulsion[J]. Water Research,2001,35:2219-2224.
    [119]罗道成,刘俊峰.改性硅藻土对废水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].中国矿业,2005,14(7):69-71.
    [120]Necla C, Ali R K, Salih A et al. Adsorption of Zinc(Ⅱ) on diatomite and manganese-oxide-modified diatomite:A kinetic and equilibrium study[J]. Journal of Hazardous Materials 193 (2011):27-36.
    [121]杨文,王平,朱健.PAM表面改性硅藻土吸附废水中Pb2+[J].非金属矿,2011,34(2):54-58.
    [122]朱健,王平.液/固体系中硅藻土对Pb2+和Cd2+的吸附机制[J],环境工程学报,2012,6(11):4123-4128.
    [123]朱健,王平.硅藻土对污染土壤中铅的固定效果及机制的研究[J].中国农学通报2012,28(14):240-245.
    [124]高钦, 膜生物反应器中的膜污染模式的研究[J].工业水处理,2009,22(2):25-28.
    [125]Hung Y T, Zachopoulus S A, Horsfall F L. Effect of Bioaug-mentation Process on Sludge Production in Activated Sludge Reactors for Municipal Wastewater Treatment [J]. Western Canada Water and Wastewater Assoc. Proc,39th Ann, Conf. Saskatoon: Saskatchewan,1987,125(4):63-74.
    [126]吴志超,尹星,王志伟.浸没式膜-生物反应器污泥组分对膜污染的影响[J].环境工程学报,2009,3(1):93-97.
    [127]李菊,唐书娟,王志伟.温度对膜生物反应器运行特性及膜污染的影响[J].环境科学与管理,2010,35(5):109-104.
    [128]王志伟,吴志超,顾国维.平板膜生物反应器操作运行条件对膜污染特性的影响[J].膜科学与技术,2005,25(5):25-30.
    [129]Tang C Y, Chong T H, Fane A G. Colloidal interactions and fouling of NF and RO membranes:A review [J]. Adv. Colloid Interface.2011,164:126-143.
    [130]Waite T D, Schafer A I, Fane A G. Colloidal fouling of ultrafiltration membranes:impact of aggregatestructure and size [J]. J. Colloid Interface Sci.,1999,212:264-274.
    [131]Ripperger S, Altmann J. Crossflow microfiltration-state of the art [J]. Sep. Purif. Technol., 2002,26(1):19-31.
    [132]Zhong Z X, Li W X, Xing W H, Xu N P. Crossflow filtration of nanosized catalysts suspension using ceramic membranes [J]. Sep. Sci. Technol.,2011,76(3):223-230.
    [133]Zhong Z X, Chen R Z, Xing W H, Xu N P. Application of nickelcatalysts in the system combining catalytic reaction with membrane separation [J]. Journal of Chemical Engineering of Chinese Universities,2008,21(1):49-54.
    [134]Sim L N, Ye Y, Chen V, A. Fane G. Crossflow sampler modified fouling index ultrafiltration (CFS-MFI-UF)-an alternative fouling index [J]. J. Membr. Sci.,2010,360: 174-184.
    [135]王志伟,吴志超,顾国维.厌氧膜-生物反应器抽吸模式对膜过滤性能的影响[J].环境科学学报,2005,25(4):534-539.
    [136]张海丰,孙宝盛.贫营养条件下膜生物反应器污泥混合液可滤性分析[J].中国环境科学,2009,29(4):368-373.
    [137]Rabie H.R., Cote P., Singh M., et al. Cyclic aeration system for submerged membrane modules [P]. United States Patent.2003,6,684,406.
    [138]Miyashita S., Honjyo K., Kato O. et al Gas diffuser for aeration vessel of membrane assembly [P]. United States Patent.2000,6,328,886.
    [139]Cote P., Inverted air box aerator and aeration method for immersed membrane [P]. United States Patent,2002,6,863,823.
    [140]Mayer M., Braun R., Fuchs W. Comparison of various aeration devices for air sparging in crossflow membrane filtration [J]. J. Membr. Sci.,2006,277(1-2):258-269.
    [141]Kuroda M, Watanabe T, Umedu Y. Simultaneous oxidation and reduction treatments of polluted water by a bio -electro reactor [J]. Wat Sci Tech,1996,34(9):101-108.
    [142]黄显怀,包立宁,马利民.电极生物膜法处理水中硝酸盐氮的实验研究[J].哈尔滨工业大学学报,2003,35(12):1486-1488.
    [143]Sakakibara Y, Araki K, Watanabe T, et al. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate contaminated groundwater[J]. Wat Sci Tech,1997,36(1):61-68.
    [144]Prosnansky M, Sakskibara Y, Kuroda M. High-rate denitrification and SS rejection by biofilm-electrde reactor (BER) combined with micro filtration[J]. Wat Res,2002,36 (19):4801-4810.
    [145]曲久辉,范彬,刘锁祥.固定床—微电解反硝化去除饮用水中的硝酸盐氮[J].环境科学,2002,23(6):105—107.
    [146]鲍立宁,黄显怀,攀美珍,等.电极生物膜反应器中反硝化菌的初步研究[J].生物学杂志,2005,22(6):33-35.
    [147]Melor R B, Ronnenberg J, Campbell W H, et al. Reduction of nitrate and nitrite in water by immobilized enzymes [J]. Nature,1992,355:717-719.
    [148]庞朝晖,刘迎云,刘文碧.温度和电流对电极生物膜反硝化效果的影响[J].南华大学学报,2007,21(2):62-63.
    [149]徐亚同.废水反硝化除氮[J].上海环境科学,1994,13(10):8-12.
    [150]黄民生,高廷耀.电极生物膜法反硝化的实验研究[J].上海环境科学,1996,5(6):25-27.
    [151]鲍连升,郝文胜.电极-生物膜法去除硝酸盐氮的试验研究[J].工业用水与废水,2006,37(6):46-47.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.