纳米稀土磷酸盐发光材料的合成以及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的迅速发展,纳米发光材料由于具有高的发光强度和高的量子效率等特性,已经成为人们关注和研究的热点。在众多纳米发光材料中,以稀土磷酸盐为基质的纳米发光材料在紫外光以及真空紫外光激发下具有很好的发光性质,而且在恶劣工作环境下具有很好的稳定性,因而在各种照明和显示仪器具有广泛的应用前景。
     本文综述了纳米发光材料的研究现状,系统介绍了镧系离子的光谱理论及镧系掺杂发光纳米微粒的研究背景,概括和评述了近年来镧系掺杂发光磷酸盐纳米微粒的合成和表面修饰所取得的进展和面临的问题,并对其今后的研究方向进行了总结和展望。在此基础上,我们针对场发射显示器(FED)和等离子平板显示器(PDP)对发光材料的要求,以稀土磷酸盐纳米发光材料作为研究对象,采用共沉淀法,成功制备了多种具有不同光学性质的稀土磷酸盐纳米晶。应用X射线衍射(XRD)、场发射扫描电镜(SEM)、透射电镜(TEM)、光致发光光谱(PL)、傅立叶变换红外光谱(FT-IR)、发光衰减曲线和寿命等手段研究了合成条件和掺杂离子浓度等对稀土磷酸盐纳米微粒的晶体结构、形貌和尺寸、表面化学性质、掺杂离子的固溶度和掺杂格位以及发光性能的影响和控制规律,另外,对于不同基质中Eu~(3+)的发光性质进行了讨论,同时重点讨论了YPO_4基质中Ce~(3+)离子对Tb~(3+)离子的敏化作用机理,取得了一系列重要的结论和创新性成果,为稀土磷酸盐纳米发光材料成为一种极具发展前景的新型发光材料打下了坚实的基础。
     采用水热法,通过控制水热条件分别可控合成了四方相,六方相和单斜相的LnPO_4纳米和纳米颗粒,分析了水热合成条件以及结构导向剂CTAB对于样品的结构以及形貌的影响以及热力学过程对于其成核的影响,比较了不同形貌以及不同相的Re~(3+)掺杂的LnPO_4的发光性质,并对发光机理进行了探讨。并证明这些纳米晶的光谱性质与基质材料的晶体结构和形貌密切相关,为通过结构设计实现对稀土纳米材料光学性能的调控提供了新思路。
With the technical development of FED and PDP, the requirement including crystal size distribution, stability, luminescence efficiency, brightness, and conductivity of the luminescent powder also has been improved. Meanwhile, with the development of nanotechnology, nanoscale luminescent materials are likely to be the next generation novel luminescent materials due to their numerous unique properties. Among many nano-materials, rare-earth phosphates are ideal to be the fluorescence host material for their good chemical and thermal stability. However, up to now, the investigation of the fluorescence properties of these materials is limited. In this paper, rare-earth phosphate fluorescence nano-materials were prepared through many different ways, and the fluorescence properties were also systematically investigated. These results are helpful for us to find a new type of high-powered fluorescence materials.
     1. In the first chapter, we briefly expound the research condition of fluorescence nano-materials; systematically introduce the spectrum theory of rare earth ions and the research background of rare earth ions doped fluorescence nano-materials; besides that, we generalize and comment the improvement of the synthesis and surface modification of fluorescence nano-materials, as well as the problem which confronts; moreover, the research direction also be prospected and summarized.
     2. In order to improve the properties for application of YPO_4:Re~(3+), We have synthesized a series of nano-scale YPO_4: Re~(3+) (Re = Eu, Dy)through the improved co-precipitation method with Li_2CO_3 as a flux. At the same time, we have investigated the best synthesis conditions: such as pH, the concentration of Re~(3+), the additional concentration of Li_2CO_3 and the anneal temperature. The optimum luminescent intensity could be achieved when the concentration of Eu~(3+) was 6%, the concentration of Li_2CO_3 is 10%, the annealed temperature is 950℃and the value of pH is 2. The nanoparticles we synthesized have a well crystalline morphology with nanometer dimension and the particle sizes of obtained nanocrystals were distributed in the range of 20-100 nm without Li_2CO_3 flux through XRD. Under the irradiation of UV, we studied the fluorescence properties of the powder, YPO_4: Eu、YPO_4: Dy nanocrystals imply orangish and white-emitting, which is corresponding to transitions of ~5D_0 - ~7F_1 and ~4F_(9/2)→~6H_(15/2). Furthermore, a small shift of the excitation bands could be observed for the YPO_4: Eu nanoparticles, duing to the small particle size of the sample. When the flux Li_2CO_3 is used, the crystallization of samples is improved, and the particle size is increased. Furthermore, the energy loss of non-radiative is descreased, and the activate ions are easy to enter the lattice to form the luminescence centers, which result in the strong luminescent intensity.
     3. At the same time, we also prepared Eu~(3+) iron doped LaPO_4 nanocrystalline by co-precipitation method at 950℃, 3 h. The obtained LaPO_4 have nano-crystalline, particle size of about 70 nm, and the improvement of the calcination temperature can be increased the degree of crystallization of the samples. X-ray powder diffraction confirmed the structure of LaPO_4 monoclinic, cell parameters a = 6.84, b = 7.08, c = 6.46,β= 103.85°, is P2_1 / n (No·14) space group. The PL properties of the Eu~(3+)-doped LaPO_4 nanocrystals were discussed. Fluorescence spectra indicate that: the charge transfer excited states of LaPO_4 can effectively transfer energy to the Eu~(3+) ions. Four emission peaks, which are at 592, 612 nm emission peak near the two split both phenomena, description of the Eu~(3+) ion doped in the crystal LaPO_4 have not the same coordination environment, that Eu~(3+) ions exsite sites D_(2d) or C_3 symmetry. The optimum quantity of concentration Eu~(3+) is 5%. The concentration quenching is due to Eu~(3+) ions exchange interaction.
     4. Ortherwise, the luminescence of Eu~(3+) in different host was deduced. Eu~(3+) -doped (Y_xLa_(1-x))_(0.95)Eu_(0.05)PO_4 and (La_xGd_(1-x))_(0.95_Eu_(0.05)PO_4 phosphors were prepared by a facile co-precipitation method. It is found that (La, Gd) PO_4:Eu~(3+) phosphors have the same crystal structure as LaPO_4:Eu~(3+), which is monoclinic with a little different lattice parameters. In the case of (La, Y) PO_4:Eu~(3+) phosphors, however, the gradual change from monoclinic to tetragonal structure of host lattice was observed as the amount of Y ion increased. Finally, we investigate (Y_xLa_(1-x))_(0.95)Eu_(0.05)PO_4 and (La_xGd_(1-x)) _(0.95)Eu_(0.05)PO_4 phosphor samples ~5D_0→~7F_1 under the source of excitation at different excitation and the emission intensity changes of X values, results showed that (Y_xLa_(1-x))_(0.95)Eu_(0.05)PO_4, with the addition of Y~(3+), the first increase in emission intensity in the X = 0.5 at the maximum, and then decrease. Then (La_xGd_(1-x)) 0.95Eu0.05PO_4 first emission intensity of samples with increasing concentrations of Gd3 + and enhanced in the X = 0.5 at maximum, and then with the Gd~(3+) concentration further increased, emission intensity started to decline, that is, quenching concentration of X = 0.5, show that the Gd~(3+) to Eu~(3+) has a significant energy transfer. Consequently, it was found that Gd or Y ions in orange-emitting LaPO_4:Eu~(3+) phosphor affected the site symmetry around Eu~(3+) ion, which influenced the PL intensity and PL spectra of Eu~(3+)-activated orthophosphate phosphors. The 5D0→7F1 emission intensity of (Y_xLa_(1-x)) _(0.95)Eu_(0.05)PO_4 phosphor samples is increased by 70% than LaPO_4: Eu intensity, while emission intensity of (LaxGd1-x) _(0.95)Eu_(0.05)PO_4 phosphor samples is increased 30% than LaPO_4: Eu.
     5. In order to study the energy of Ce~(3+) to Tb~(3+) in YPO_4, co- precipitation was applied as the method to attain the nanosized luminescent grains YPO_4: Ce~(3+), YPO_4: Tb~(3+) and YPO_4: Ce / Tb, the doped Re~(3+) and the calcination temperature on the structure to determine the phase transition temperature was studied . The results show that with the increasing of heat treatment temperature, the crystallization of the product increased, but the particle size does not grow significantly, and the particles,non-aggregation and 20 -100 nm size. The luminescence properties of Ce~(3+)-doped YPO_4 samples with ~5d→~2F_(5/2) and ~5d→~2F_(7/2) transitions have broad band, its excitation and emission spectra are broad band spectrum; Tb~(3+)-doped YPO_4 samples under the UV excitation, the emissioon spectra of samples is is divided into two parts, represents the 4f–5d transition of Tb~(3+) and the 4f– 4f transition of Tb~(3+). The emissions from Tb doped YPO_4 mainly result from the transitions of ~5D_3 and ~5D_4 to ~7F_J (where J = 1- 6). With an increase of Tb concentration, the emissions from ~5D_3 to ~7F_J level are quenched gradually by the cross relaxation process; For Ce~(3+) and Tb~(3+) co-doped YPO_4 sample, as monitoring the emission of Tb~(3+) at 542 nm, the strong allowed f– d transitions in the 250 nm ~ 290 nm of Ce~(3+) and the weak forbidden f–f transitions of Tb~(3+) ions were observed, maximum excitation peak cemtered at 272 nm, demonstrated the phenomenon of blue shift of spectral peaks, which is more conducive to Ce~(3+)→Tb~(3+) energy transfer. Under 272 nm excitation, the emission spectrum has four emission peaks for 490 nm, 542 nm, 589 nm, 626 nm, attributed to Tb~(3+) the ~5D_4→~7F_J (J = 6, 5, 4, 3) transitions launch, which launched the strongest transition for the ~5D_4→~7F_5, there is no characteristic of Ce~(3+) emission peaks appeared, show that the Ce~(3+) ion effectively sensitized luminescence of Tb~(3+). With the increase in concentration, the ~5D_4→~7F_5 increase in luminous intensity, Ce~(3+) doping concentration of 4 percent of the time in the emission intensity of the strongest, Ce~(3+) to increase the amount of doping, the luminescence intensity decreased. The energy transfer process, energy transfer efficiency, and the dynamic process of Ce~(3+) and Tb~(3+). The results showed that the effective, energy transfer efficiency of codoping YPO_4 material exists in the Ce~(3+) to Tb~(3+) energy transfer is 70%.
     6. Lanthanide orthophosphate 1D nanostructures with different crystalline phases and morphologies have been successfully synthesized using a hydrothermal method under mild conditions. It has been shown that the obtained LaPO_4 and GdPO_4 have a monoclinic and hexagonal structure, while YPO_4 exists in the tetragonal structure. When CTAB after accession, GdPO_4 the structure into a monoclinic structure, while YPO_4 the structure into a hexagonal structure。Irregularly LnPO_4 (Ln = La, Gd) nanorods with diameters of 50– 100 nm and lengths ranging from several hundreds of nanometres to several micrometres were obtained. The FE-SEM also indicates that the presence of CTAB can also promote oriented growth of the hexagonal and tetragonal structure. The possible growth mechanism of LnPO_4 (Ln = La, Gd, Y) with CTAB nanomaterial was explored. A study of the photoluminescence in Eu~(3+) and Tb~(3+)-doped lanthanide phosphates has shown that the optical properties of these nanophosphors are strongly dependent on their crystal structures and morphologies. It was indicating the possibility of modiyfing their optical properties by structural design. These Re~(3+)-doped rare-earth phosphate can also change the optical properties of other rare earth elements, and is expected to fluorescent light, UV excitation of the new plasma display devices, as well as other important biological fluorescent labeling technology has been applied.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社,2001.
    [2] Fievet F, et al. Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process[J]. J. Mater. Chem, 1993, 9: 627.
    [3] Fievet M, Lagier J P, et al. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process[J]. MRS Bull, 1989, 14: 29.
    [4] Dvolaitky M, et al. Influence of diffusion on excitation energy transfer in solutions by gigahertz harmonic content[J]. J. Dispersion Sci.Technol, 1983, 4: 29.
    [5] Hu J Q, Lu Q Y, Tang K B, Yu S H, Qian Y T, Zhou G E, Liu X M. Synthesis and characterization of SiC nanowires through a reduction-carburization route[J]. J. Am. Chem. Soc, 2000, 83: 268.
    [6] Hong B H, Bae S C, Lee C W, Jeong S, Kim K S. Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase[J]. Science, 2001, 294: 348.
    [7]钱逸泰等,氢氩混合气还原复合氧化物制备合金微粉[J].金属学报, 1991, 27: B446.
    [8] Xie Y, Qian Y T, et al. A novel solventothermal synthetic route to nanocrystalline CdE (E= S, Se, Te) and morphological[J]. Science, 1996, 272: 1926.
    [9] Yang Q, Tang K B, Wang C R, Zhang D Y, Qian Y T. Growth of dendritic cobalt nanocrystals at room temperature[J]. J. Solid. State. Chem, 2002, 164: 104.
    [10]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science 1996, 271: 933.
    [11] Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes[J]. Acc. Chem. Res, 1999, 32: 435.
    [12] Xie Y, Yan P, Lu J, Qian Y T, Zhang S Y. Synthesis and characterization of MSe (M= Zn, Cd) nanorods by a new solvothermal method[J]. Chem. Commun, 1999, 56: 1969.
    [13]Mirkin C, Taton T. Material chemistry: Semiconductors meet biology[J]. Nature, 2000, 405: 626.
    [14] Ahmadi T, Wang Z L, et al. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles[J]. Science, 1996, 272: 1924.
    [15] Qian X, et al. Large-Scale Synthesis of Aligned Carbon Nanotubes[J]. J. Mater. Chem, 2001, 11: 2504.
    [16] Vollath D, Sickafus K E, Synthesis of nanosized ceramic nitride powders by microwave-supported plasma reactions[J]. Nanostru. Mater, 1993, 2: 451.
    [17] Klinger N, et al. Thermodynamics of Si-CO System[J]. J. Am. Ceram. Soc, 1966, 49: 369.
    [18] Hu J, et al. Chemistuy and physic in one dimension: Synthesis and properties ofnanowires and nanotubes[J]. J. Solid State Chem, 1999, 148: 325.
    [19] Hu J, et al, Observation of an Exotic Baryon with S = +1 in Photoproduction from the Proton[J]. Chem. Lett, 2005, 5: 74.
    [20]张克从,近代晶体学基础[J].科学出版社, 1998.
    [21] Eychmuller A. Structure and Photophysics of Semiconductor Nanocrystals[J]. J. Phys Chem, 2000, 104: 6514.
    [22] Rossetti R, Nakahara S, and Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution[J]. J. Chem. Phys, 1983, 79: 1086.
    [23] Kubo R, Kawabata A, Kobayshi S, Annu. Electronic Properties of Small Particles[J]. Rev. Mater. Sci, 1984, 14: 49.
    [24] Halperin W P, Quantum size effects in metal particles[J]. Rev. Mod. Phys, 1986, 58: 533.
    [25] Lu J, and Tinkhan M,Ⅱ类超导体相变特征热力学探析,物理[M],北京: 1998, 27: 137.
    [26] Feldhein D L, Keating C D, Nano-patterns of polylstyrene-block-butyl acylcde block copolymer brushes on the surfaces[J]. Chem. Soc. Rev, 1998, 27: 1.
    [27]周永慧,林君,张洪杰.纳米发光材料研究的若干进展[J].化学研究与应用,2001,15: 117-122.
    [28] Chen S J, Chen X T, Yu Z, Hong J M., Xue Z L, You X Z, Preparation and characterization of fine Sr2CeO4 blue phosphor powders[J]. Solid State Commun, 2004, 3-4: 281-285.
    [29] vanDijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A. The luminescence of nanocrystalline ZnO particles: The mechanism of the ultraviolet and visible emission[J]. J. Lumin, 2000, 87-89: 454-456.
    [30]张立德,牟季美著.纳米材料和纳米结构[M],北京:科学出版社出版,2001.
    [31]徐长远,王永生,黄最明,等.发光材料研究进展[J].光电子技术与信息, 1997, 10: 8-12.
    [32]刘行仁,王晓君,何大伟.加入WTO我国稀土发光材料面临的机遇和挑战[J].中国稀土学报,2002,20(6): 491-494.
    [33] Wegh R T,Donker H,Oskam K D. Visible guantum cutting in LiGdF4:Eu3+ though downconversion [J]. Seience,1999,283:663.
    [34] Huang L H, Liu X R, Liu H et al. Room temperature intense emission at 1534 nm in Er-doped Gd3Al2Si3O12 glass [J]. Appl. Phys. Lett, 2000, 77(18):2849.
    [35]苏锵.稀土化学[M].郑州:河南科学出版社1989.
    [36]邱关明,耿秀娟,陈永杰,等.纳米稀土发光材料的光学特性及软化学制备[J].中国稀土学报,2003,21(2): 109-114.
    [37]翟庆洲,裘式纶,肖丰收,等.纳米材料研究进展Ⅰ-纳米材料结构与化学性质[J].化学研究与应用, 1998, 10(3): 226-235.
    [38] Moune O K, Faucher M D., Edelstein N. Optical spectrum, crystal field analysis of Pr3+ in YPO4[J]. J.Alloy.Comp, 2001, 323-324: 783-787.
    [39] Nedelec J M, Mansuy C, Mahiou R. Sol-gel derived YPO4 and LuPO4 phosphors, a spectroscopic study[J]. J. Mol. Struct, 2003, 651-653: 165-170.
    [40] Ropp R C. Phosphors based on rare earth phosphates Spectral properties of some rare earth phosphates[J]. J. Electrochem. Soc, 1968, 115:841-845.
    [41]徐文国,田一光,刘淼,刘海棠,方光华,庞文琴.高等学校化学学报[J]. 1996, 17(10): 1513.
    [42]朱汇,熊光楠. Chinese J. Lumin(发光学报) [J]. 2003, 24(3): 234.
    [43] Meyssamy H, Riwotzki K, Kornowski A, Naused S, Haase M. Wet-Chemical Synthesis of Doped Colloidal Nanomaterials: Particles and Fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb[J]. Adv. Mater, 1999, 11(10): 840.
    [44] Riwotzki K, Meyssamy H, Kornowski A, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln=Eu, Sm, Dy)[J]. J. Phys. Chem B, 2000, 104(13): 2824.
    [45]杨丽格,周泊),陆天虹,蔡称心.应用化学[J], 2008, 25(6): 697.
    [46]刘琼,苏毅国,于洪生,韩炜.水热法合成YPO4∶Eu及基质的结构研究[J].中国稀土学报, 2007, 25(6): 656-661.
    [47] Wu X, You H, Cui H, et al. Vacuum ultraviolet optical properties of (La, Gd)PO4: RE3+ (RE = Eu, Tb)[J]. Mater. Resear.Bull, 2002, 37: 1531-1538.
    [48] Riwotaki K, Meyssamy H, Kornowisk A, Haase M. Liquid-phase synthesis of doped nanoparticles: colloids of luminescence LaPO4: Eu and CePO4: Tb particles with a narrow particle size distribution[J]. J.Phys.Chem.B, 2000, 104: 2824-2828.
    [49] Zhang Y, Guan H, Hydrothermal synthesis and characterization of hexagonal andmonoclinic CePO4 single-crystal nanowires[J]. J. Crystal. Grow, 2003, 256: 156-161.
    [50] Riwotzki K, Meyssamy H, Schnablegger H, Haase M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4: Ce, Tb nanocrystals [J], Angew Chem. IntEd, 2001, 40: 573.
    [51] Yu L X, Song HW, Liu Z X, Yang LM,Lu S Z, Zheng Z H. Luminescent Properties of LaPO4: Eu Nanoparticles and Nanowires[J]. J.Phys.Chem.B[J], 2005, 109(23): 11450.
    [52] Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescence LaPO4: Ce, Tb nanocrystals [J]. Chem, Int. Ed., 2001, 40(3): 573.
    [53] Meyssamy H, Riwotzki K.Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce and LaPO4:Ce,Tb [J]. Adv. Mater, 1999, 11: 840.
    [54] Rambabu U, Buddhudu S. Optical properties of LnPO4: Eu (Ln=Y, La and Gd) powder phosphors[J]. Optical. Mater, 2001, 17: 401-408.
    [55] Rambabu U, Amalnerkar D P, Kale B B, Buddhudu S. Optical properties of LnPO4:Tb3+ (Ln=Y, La and Gd) powder phosphors[J]. Mater. Chem. Phys, 2001, 70: 1-6.
    [56] Yu M, Lin J, Fu J, Han Y C. Sol-gel fabrication, patterning and photoluminescent properties of LaPO4:Ce3+, Tb3+ nanocrystalline thin films[J]. Chem. Phys. Lett, 2003, 371: 178-183.
    [57] Daun X F, Huang Y, Cui Y, Wang J F, Lieber C M. Nature,2001, 409: 66.
    [58] Kind H, Yan H, Law M, Messer B, Yang P. Nanowire Ultraviolet Photodetectors and Optical Switches[J]. Adv. Mater, 2002, 14: 158.
    [59] Kong Y C, Yu D P, Zhang B, Fang W, Feng S Q. UV-emitting ZnO nanowires synthesized by a PVD approach[J]. Appl.Phys.Lett, 2001, 78:4.
    [60] Cui Y, Wei Q, Park H, Lieber C M. Science, 2003, 199:1874.
    [61] Song H, Yu L, Lu S, Wang T, Liu Z, Yang L. Remarkable differences in photoluminescent properties between LaPO4: Eu one-dimensional nanowires and zero-dimensional nanoparticles[J]. Appl. Phys. Lett, 2004, 85: 470-472.
    [62] Peng X G. Mechanisms for the shape-conrtol and shape-evolution of colloidal semiconductor nanocrystals[J]. Adv. Mater, 2003, 15: 459-463.
    [63] Cao M H, Hu C W, Wu Q Y, et al. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires[J]. Nanotechnology, 2006, 16: 282–286.
    [64] Yan R X, Sun X M, Wang X, et al. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials[J]. Chem. Eur. J, 2005, 11: 2183– 2195.
    [65] Nedelec J M, Avignant D, Mahiou P. Soft chemistry routes to YPO4-based phosphors: dependence of textural and optical properties on synthesis pathways[J]. Chem.Mater, 2002, 14: 651-655.
    [66] Fang Y P,Xu A W,Song R Q,et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. J.Am.Chem.Soc, 2003,125: 16025-16034.
    [67]徐文国,田一光,刘淼,刘海棠,方光华,庞文琴.高等学校化学学报[J], 1996, 17(10): 1513.
    [68] Bühler G, Feldmann C. Microwave-Assisted Synthesis of Luminescent LaPO4 : Ce, Tb Nanocrystals in Ionic Liquids[J]. Angew. Chem. IntEd [J], 2006, 45(29): 4864.
    [1]肖林久,孙彦彬,邱关明等,纳米稀土发光材料的研究进展[J].稀土, 2002, 23 (4) : 46.
    [2] Syouhei N, Takayuki H, Komasawa I. The preparation of rare earth phosphate fine particles in an emulsion liquid membrane system [J]. Mater. Chem, 2002, 12:1053.
    [3] Di Weihua, Chen Jianyong, Wang Xiaojun, Chen Baojiu. Investigations of phase structure transformation and VUV excitation of YPO4: Tb synthesized by solution precipitation route [J]. Chemistry Letters, 2004, 33(11): 1448.
    [4]杨定明,朱达川,戴亚堂,庄稼,涂铭旌.稀有金属材料与工程[M]. 2005, 34(3): 436.
    [5] Di Weihua, Wang Xiaojun, Chen Baojiu, Zhao Xiaoxia. Anew sol-gel route to synthesize YPO4∶Tb as a green-emitting phosphor for the plasma display panels [J]. Chemistry Letters, 2005, 34: 4.
    [6] Zhang Youjin, Guan Hangmin.The growth of lanthanum phosphate (rhabdophane) nanofibers via the hydrothermal method [J]. Materials Research Bulletin, 2005, 40: 1536.
    [7] Lucas S, Champion E, Bernache-Assollant D, Leroy G. Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y) II. Thermal behavior [J]. Journal of Solid State Chemistry, 2004, 177: 1312.
    [8] Jüstel T, Huppertz P, Mayr W, Wiechert D U. Temperature-dependent spectra of YPO4∶Me (Me=Ce, Pr, Nd, Bi) [J]. Journal of Luminescence, 2004, 106: 225.
    [9] Breitinger D K, Brehm G, Mohr J, Colognesi D, Parker S F, Stolle A, Pimpl Th H, Schwab R G. Vibrational spectra of synthetic crandallite-type minerals-optical and inelastic neutron scattering spectra [J]. Raman Spectrosc, 2006, 37: 208.
    [10] Bushiri M J, Jayasree R S, Fakhfakh M, Nayar V U. Raman and infrared spectral analysis of thallium niobyl phosphates: Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7[J]. Materials. Chemistry and Physics, 2002, 73: 179.
    [11]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2002, 80: 124.
    [12]任慧娟,洪广言,宋心远,等.均苯三甲酸铕发光配合物的合成与表征[J].功能材料, 2004, 35(2): 228-230.
    [13] Igrashi T, M. Ihara, T. Kusunoki, K. Ohno, Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor[J]. Appl. Phys. Lett, 2000, 76: 1549-1551.
    [14]周银建,杜晨霞,侯彦辉,等.三元铕配合物Eu(DBM)3L1的合成,晶体结构及发光性能[J].化学研究, 2005, 16(3): 6-9.
    [15] Jain S R, Adiga K C, Verneker V R P, A new approach to thermochemicalcalculations of condensed fuel-oxidizer mixtures[J]. Combust. Flame, 1981, 40: 71-79.
    [16] Su Q,Pei Z W,Lin J,Xue F,Luminescence of Dy~(3+) enhanced by Sensitization[J]. J. Alloys Cmop, 1995,225: 103-106.
    [17] Choi H, Kim C H, Pyun C H,Kim S J,Luminescence of (Ca,La) S: Dy[J]. J. Lumine, 1999,82: 25-32
    [18] Blasse G. Chemistry and physics of R-activated phosphors [J]. Handbook on the Physics and Chemistry of Rare Earths, 1979, 4:237-274.
    [19] Hreniak D, Strek W, Anlmai J,et al. The size-effect on luminescence properties of BaTiO3:Eu~(3+) nanocrystallites prepared by the sol-gel method [J]. J. Alloys and Compounds, 2004, 380:348-351.
    [20] Qi Pangm,Jianxin Shi,Yu Liu,et al. A novel approaeh for preparation of Y2O3:Eu~(3+) nanoparticles by microemulsion-microwave heating [J]. Materials Scienee and Engineering B, 2003, 103: 57-61.
    [21] Wu C, Qin W,Qin G, Zhao D,Zhang J,Hunag S,Photoluminescence from surfactant-assembled Y2O3: Eu nanotubes [J]. Appl. Phys. Lett, 2003, 82: 520-522.
    [22]杨水金,袁良杰,孙聚堂.掺杂Eu~(3+)离子LaPO4的合成及其发光特性研究[J].发光学报,2003,245: 527-530.
    [23] Park J K, Park S M, Kim C H,et al. Photolmuinescence properties of the Eu~(3+) in La2O3[J]. J. Mater. Sci. Lett, 2001,20: 2231-2232.
    [1] Wegh R T, Donker H, Oskam K D, et al. Visible quantum cutting in LiGdF4∶Eu~(3+) through downconversion [J]. Science, 1999, 283: 663.
    [2] Wegh R T, Donker H, Oskam K D, et al. Visible quantum cutting in Eu~(3+)-doped gadolinium fluorides via downconversion[J]. J. Lumin, 1999, 82: 93.
    [3] Ronda C. Luminescent materials with quantum efficiency larger than 1, status and prospects [J]. J. Lumin, 2002, 100: 301.
    [4] Rijssenbeek J T, Rose D J, Haushalter R C, et al. Novel clusters of transitionmetals andmain group oxides in the alkylamine/oxovanadium /borate system [J].Angew Chem IntEdEng, 1997, 36: 1008-1010.
    [5] Shionoya S, William Y M. (Eds), Phosphor Handbook[M ], CRC Press, 1994.
    [6] Rambabu U, Buddhudu S. Optical properties of LnPO4: Eu (Ln=Y, La and Gd) powder phosphors[J]. Optical. Mater, 2001, 17: 401-408.
    [7] Rambabu U, Amalnerkar D P, Kale B B, Buddhudu S. Optical properties of LnPO4:Tb~(3+) (Ln=Y, La and Gd) powder phosphors[J]. Mater. Chem. Phys, 2001, 70: 1-6.
    [8]任慧娟,洪广言,宋心远,等.均苯三甲酸铕发光配合物的合成与表征[J].功能材料, 2004, 35(2): 228-230.
    [9] Blasse G and Grabmaier E C, [M] Luminescent Materials, Berlin:Springer, 1994, 17-18.
    [10] Blasse G and Dirksen G J. The luminescence of several activators in SrLa2BeO5, a partially disordered compound, [J] Journal of the Electrochemical Society, 1989, 136:1550-1557。
    [11] Blasse G., B. C. Grabmaier, 1994. Luminescent Materials [M].(Springer, Berlin).
    [12]周银建,杜晨霞,侯彦辉,等.三元铕配合物Eu(DBM)3L1的合成、晶体结构及发光性能[J].化学研究, 2005, 16(3): 6-9.
    [13] Dexpert-Ghys J, Mauricot R, Faucher M D. Spectroscopy of Eu~(3+) ions inmonazite type lanthanide orthophosphates LnPO4, Ln=La or Lu [J]. J. Lumin, 1996, 69: 203.
    [14] Krupa J C and Quefelec M, UV and VUV Optical Excitations in Wide Band Gap Materials Doped with Rare Earth Ions:4f-5d Transitions [J]. Journal of Alloys and Compounds, 1997, 205: 287-292.
    [15] Wang L S, Liu X M, Quan Z W, Kong D Y, Yang J and Lin J, Luminescence properties of Y0.9-XGdXEu0.1Al3(BO3)4 (0≤X≤0.9) phosphors prepared by spray pyrolysis process [J]. Journal of Luminescence, 2007, 122-123: 36-39.
    [16]Warren C J, Rijssenbeek J T, Rose D J, et al. Hydrothermal synthesis and characterization of an unusual polyoxovanadium borate cluster: structure of Rb4[(VO)6{B10O16(OH)6}2] 0.5H2O [J]. Polyhedron,1998, 17: 2599-2605.
    [17] Blass G. The ultraviolet absorption bands of Eu in oxides [J]. J. Solid State Chem., 1972, 4(1): 52.
    [18] Hoefdraad H E. The charge-transfer absorption band of Eu~(3+) in oxides [J]. J. Solid State Chem, 1975, 15(2): 175.
    [19] Jubera V, Chaminade J P, Garcia A, et al. Luminescent properties of Eu~(3+)-activated lithium rare earth borates and oxyborate [J]. J. Lumin, 2003, 101: 1.
    [20] Yokosawa N, Nakazawa E. The Excitation Processes of Sensitized Luminescence in YAl3(BO3)4: Eu~(3+), Gd~(3+) Phosphors[J]. Jpn. J. Appl. Phys, 2003, 42: 7373.
    [21] Anderson F G, Weidner H, Summers P L, Peale R E, Zhang X X, Shai B H T, Spectroscopy and crystal-field analysis for Nd~(3+) in GdLiF4[J]. J. Lumin, 1994, 60-61: 150.
    [22] Peacock R D, Struct. Bond. 22, 83.
    [23] Jong Hyuk Kang, Won Bin Im, Dong Chin Lee, et al. Correlation of photoluminescence of (Y, Ln)VO4: Eu~(3+) (Ln=Gd and La) phosphors with their crystal structures[J]. Solid State Comm, 2005, 133: 651–656
    [1]刘南生,孙日圣,彭宏博,等.共沉淀法制备不球磨稀土磷酸盐绿色荧光粉研究[J].发光学报, 2001,22(4):412-416.
    [2]黄金全,王淑彬,铁绍龙,等. NaZnLa(PO4)2中Ce~(3+)和Tb~(3+)的发光[J].发光学报. 2000, 21(4):288-292.
    [3]丁士进,张卫,徐宝庆,等. Ln(BO3, PO4)[Ln=La, Y]基质中Ce~(3+), Tb~(3+), Gd~(3+)的光谱[J].光谱学与光谱分析. 2001,21(3): 275-278.
    [4]将洪川,杨仕清,张文旭,等.溶胶凝胶法合成Y3Al5O12:Ce~(3+),Tb~(3+)稀土荧光粉的研究[J] 2001, 16(3): 720-722.
    [5]赵凤英,周建国,赵宝林,等. Eu~(3+)和Tb~(3+)掺杂的Y2SiO3体系发光特性研究[J].发光学报,2002,23(6): 607-610.
    [6] Botden Th P. J Philips Res Rep [J], 1952, 7:197.
    [7] Dexpert-Ghys J, Mauricot R, Faucher M. Spectroscopy of Eu~(3+) ions in monazite type lanthanide orthophosphates LnPO4, Ln=La or Eu [J]. J. Lumin.1996, 69(4): 203-215.
    [8] Kijkowska R, Cholewka E, Duszak B. X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallization from phosphoric acid solution [J].J. Mater. Sci, 2003, 38(2): 223-228.
    [9] Hashimoto N, Taksda Y, SatoK, et al. Green-luminescent (La, Ce)PO4∶Tb phosphors for small size fluorescent lamps[J]. J. Lumin,1991, 48-49: 893-897.
    [10] Lenggoro I W, Xia B, Mizushima H, et al. Synthesis of LaPO4: Ce, Tb phosphor particles by spray pyrolysis [J]. Mater. Lett, 2001, 50(2-3): 92-96.
    [11] Mo L Y,Guillen F, Fouassier C,and Hagemnuller P,Comparative study of sensitization of luminescence of trivalent rare earth ions by Ce~(3+) in LaOBr. J.Electrochem. Soc.1985,132: 717-721.
    [12] Jia D, Jia W, Wang X J,Yen W M,Quenehing of thermo-stimulated photo-ionization by energy transfer in CaAl4O7: Tb~(3+),Ce~(3+). Solid. State. Comm. 2004,129: 1-4.
    [13] Thrash R J, Johnson L F,Upeonversion lase remission from Yb~(3+)-sensitized Tm~(3+) in BaY2F8 [J]. J. Opt. Soc,Am. B,2994,11: 881.
    [14] Jose M T, Lakshmanan A R,Ce~(3+) to Tb~(3+) energy transfer: in alkaline earth (Ba,Sr, or Ca) sulphate phosphors[J]. Opt. Mater, 2004,24: 651-659.
    [15] Rodriguez-Rojas R A, Rosa-Cruz E D, Diaz-Torres L A, Salas P, Melendrez R, Barboza-Flores M, Meneses-Nava M A, Barbosa-Gareia O,Preparation,photo-and thermo-luminescence charaeterization of Tb~(3+) and Ce~(3+) doped nanocrystalline Y3Al5O12 exposed to UV-irradiation[J]. Opt. Mater, 2004,25: 285-293.
    [16] Yu M,Lin J,Fu J, Han Y C,Sol-gel fabrication,Pattenring and photoluminescent properties of LaPO4: Ce~(3+),Tb~(3+) nanocrystalline thin films[J]. Chem.Phys.Lett, 2003,371: 178-183.
    [17] Breitinger D K, Brehm G, Mohr J, et al. Vibrational spectra of synthetic crandallite-type minerals-optical and inelastic neutron scattering spectra [J]. Raman Spectrosc, 2006, 37: 208.
    [18] Bushiri M J, Jayasree R S, Fakhfakh M, Nayar V U. Raman and infrared spectral analysis of thallium niobyl phosphates: Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7 [J]. Materials.Chemistry and Physics, 2002, 73: 179.
    [19]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2002, 80: 124.
    [20] Guo H, Yin M, Dong N, et al. Effect of heat-treatment temperature on the luminescent properties of Lu"2O"3: Eu film prepared by Pechini sol-gel method[J]. Appl. Surf. Sci, 2005, 243 (1-4):245-250.
    [21] Pidol L, Khan-Harari A, Viana B, et al. Scintillation quenching by Ir~(3+) impurity in cerium doped lutetium pyrosilicate crystals[J]. J. Phys. Condens. Matter, 2003, 15(12): 2091-2102.
    [22]黄朝红,张庆礼,周东方,等. Ce~(3+):YAG单晶闪烁体的激发和发光特性[J].人工晶体学报, 2003, 32(4): 295-299.
    [23]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版, 2003: 97-99.
    [24] Huang C H,Zhang Q L. J. Chin. Rare Earth Soc,2002, 20: 36.
    [25] Ba X W,Bai Z H,Zhang X Y, J. Chin Rare Earth Soc,2007, 25(1):111.
    [26] Dexter D L. Theory of Concentration Quenching in Inorgamic Phosphors [J]. J. Chem. Phys, 1954, 22 (6): 1063.
    [27] Bourcet J C,Fong, F K J. Chem. Phys, 1974, 60: 34-39.
    [28] Blass G, Schipper W, Hamelink J J. On the quenching of the luminescence of thetrivalent cerium ion [J]. Inorg Chim Acta, 1991,189: 77-80.
    [29] Shrout T R and Halliyal A. Preparation of Lead-based ferroelectric relaxors for capacitors[ J]. American Ceramic Society of Bulletin,1987,66: 704-711.
    [30] PARK C Heol-hee, PARK So-jung, YU Byung-yong, et al. UV xcitation of Y3Al5O12: Tb phosphor prepared by a sol–gel process [J]. Mater Sci Lett, 2000, 9(2): 335–338.
    [32] Abanti N, Kutty T R N. Photoluminescence Due to Efficient Energy Transfer from Ce~(3+) to Tb~(3+) and Mn2+ in Sr3Al10SiO20[J]. Materials Chemistry and Physics, 2005, (91): 524-531.
    [33] Yang H C, Li C Y, He H, et al. VUV–UV Excited Luminescent Properties of LnCa4O(BO3)3: RE~(3+)(Ln=Y, La, Gd; Re=Eu, Tb, Dy, Ce [J]. Journal of Luminescence, 2006, (118): 61-69.
    [34] Buddhuda S, Kam C H, Ng S L, et al. Green Color Luminescence in Tb~(3+): (La, Ln) PO4 (Ln-Gd or Y) Photonic Materials [J]. Materials Science and Engineering B, 2000, (72): 27-30.
    [35] Bourcet J C, Fong F K. Quantum efficiency of diffusion limited energy transfer in La1-x-yCexTbyPO4 [J]. J. Chem. Phys.1974, 60(1): 34-39.
    [36] Riwotzki K, Meyssamy H, Kornowski A, et al. Liquid-phase synthesis of doped nanoparticles: Colloids of luminescing LaPO4∶E u and CePO4∶Tb Particleswith a Narrow particle size distribution [J]. J. Phys. Chem. B, 2000, 104(13): 2824-2828.
    [37] Hube D. Laser Spectroscopy of Solids[M].Berlin, 1981,83.
    [38] Foster T Z. Naturofrsehung[M],1949,4: 321.
    [39] Dexter D J. A theory of sensitized luminescence in solids[J]. Chem. Phys, 1953,21: 836.
    [40] Hunag S H,Lou L. The first order distribution function of D-A transfer rates in energy transfer[J]. J. Lumin, 1990,45,377.
    [41] Lou L. Hunag S. Response function in flourescence decay dynamics[J]. J. Lumin, 1988,40-41,667.
    [1] Heath J R. Nanoseale Materlals[J]. Acc.Chem.Res,1999,32: 388-388.
    [2] Empedoeles S B, Bawendi M. Spectroscopy of single CdSe Nanocrystallites[J]. Acc.Chem.Res,1999, 32:389-396.
    [3] Whetten R L,Shafigullin M N,Khoury J T,et al. Crystal Structures of Molecular Gold Nanocrystal Arryas[J]. Acc.Chem.Res,1999,32: 397-406.
    [4]Niraml M,Brus L. Lmuinesence Photophysics in Semiconductor Nnaocrystals[J]. Acc.Chem.Res,1999,32: 407-414.
    [5] Markovich G,Collier C P,Henrichs S E et al. Architectonic Quantum Dot Solids[J]. Acc.Chem.Res,1999,32: 415-423.
    [6] Hu J T,Odom T W,Lieber C M. Chemistry and Physics in One Dimension: Synthesis Properties of Nanowires and Nnaoutbes[J]. Acc. Chem. Res,1999 32: 435-445.
    [7] Ogino T,Hibino H,Homma Y,et al.Fabrication and Integration of Nanostructures on Si Surfaces[J]. Acc.Chem.Res,1999,32: 447-454.
    [8] Park S J,Taton T A,Mirkin C A. Array-based electrical detection of DNA with Nanoparticle Probes[J]. Science.2002,295:1503-1506.
    [9] Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science,2003,299: 1688-1691.
    [10] Huang M H,Mao S,Feick H,et al. Room-temperature ultraviolet nanowire Nanolasers[J]. Science,2001,292:1897-1899.
    [11] Law M, Kind H, Messer B,et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature[J]. Angew. Chem. Int. ed, 2002, 41: 2405-2408.
    [12] Xia Y N, Yang P D. Chemistry and physics of nanowires[J]. Adv. Mater, 2003, 15: 351-353.
    [13] Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals[J]. J.Am.Chem.Soc, 2001,123: 1389-1395.
    [14] Peng Z A, Peng X G. Nearly monodisperse and shape-controled of CdSe nanocrystals via alternative routes: Nucleation and growth[J]. J. Am. Chem. Soc, 2002,124: 3343-3353.
    [15]Yu W W, Peng X G. Formation of high-quality CdSn and otherⅡ-Ⅵsemiconductor nanocrystals in nancordinating solvents: Tunable reactivity of monomers[J]. Angew. Chem. Int. Ed, 2002,41: 2368-2371.
    [16] Lee S M,Cho S N,Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals[J]. Adv. Mater, 2003,15: 441-444.
    [17] Peng X G. Mechanisms for the shape-conrtol and shape-evolution of colloidal semiconductor nanocrystals[J]. Adv. Mater, 2003,15: 459-463.
    [18] Wu C F,Qin W P,Qin G S,et al. Photoluminescence from surfactant-assembled Y2O3: Eu nanotubes[J]. Appl. Phys. Lett, 2003,82: 520-522.
    [19] Yada M,Mihara M,Mouri S,et al. Rare earth (Er,Tm,Yb,Lu) oxide nanotubes templated by dodecylsulfate assemblies[J]. Adv. Mater, 2000,14: 309-313.
    [20] Bao A M, Yang H, Tao C Y, Zhang Y and Han L L. Luminescent properties of nanoparticles YP1-xVxO4: Dy~(3+) phosphors[J]. J. Lumin, 2008, 128(1): 60-66.
    [21]Bao A M, Yang H, Tao C Y, Zhang Y and Han L L. Large-scale fabrication of flower-like, and rod-like YVO4: Eu arrays by a hydrothermal method[J]. J. Cryst. Growth, 2008, 310: 4394– 4399.
    [22] Riwotzki K,Meyssame H,Schnablegger H,et al. Liquid-phase synthesis of colloids and redispersible Powder sofstrongyl lumineselng LaPO4: Ce,Tb nanocrystals[J]. Angew.Chem. Itll.Ed, 2001,40: 573-576.
    [23] Riwotzki K,Meyssame H,Kornowski A,et al. Liquid-phase synthesis of doped nanoparticles: Colloids of luminescing LaPO4: Eu and CePO4: Tb particles with a noarrw particle size distribution[J]. J. Phys.Chem.B, 2000,104: 2824-2828.
    [24] Schuetz P, Caruso F. Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles[J]. Chem. Mater, 2002, 14: 4509-4516.
    [25] Nishihama S,Hirai T,Komasawa I. et a1. The preparation of rare earthphosphate fine particles in an emulsion liquid membrane system[J]. J. Mater. Chem, 2000,12: 1053-1057.
    [26] Heer S,Lehmann O,Haase M,et al. Blue,green,and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution[J]. Angew. Chem. Int. Ed, 2003,42: 3179-3182.
    [27] Ito H,Fujishiro Y,Sato T,et al. Preparation of lanthanide orthophosphates by homogeneous precipitation under hydrothermal conditions using lanthanide-EDTA chelates[J]. Br. Cerma.Trnas,1995,94:146-150.
    [28] Meyssamy H,Riwotzki K,Kornowski A,et al. Wet-chemicaly synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO4: Eu,LaPO4: Ce,and LaPO4: Ce,Tb[J]. Adv. Mater,1999,11: 840-844.
    [29] Zhang Y J,Guan H M. Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires[J]. J. Cryst.Growth,2003,256: 156-161.
    [30] Cao M H, Hu C W, Wu Q Y, et al. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires[J]. Nanotechnology,2005, 16: 282–286.
    [31] Fang Y P,Xu A W,Song R Q,et al. Systematley snhtesls and characterization of single-crystal lanthanide orthophosphate nanowires[J]. J.Am.Chem.Soc,2003,125: 16025-16034.
    [32] Yan R X, Sun X M, Wang X, et al. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials[J]. Chem. Eur. J,2005, 11: 2183– 2195.
    [33] Yan Z G,Zhnag Y W,You L P,et al. Generaly synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate[J]. J. Cryst .Growth, 2004,262: 408-414.
    [34]李涛.水热法制备锆钛酸铅纳米粉体的研究进展[J].电子元件与材料,2004,23(l0): 5.
    [35]黄晖,罗宏杰,杨明,等.水热沉淀法制备TiO2纳米粉体的研究[J].硅酸盐通报,2000,19(4): 8.
    [36] Wickleder M S. Inorganic lanthanide compounds with complex anions[J]. Chem.Rev, 2002,102: 2011-2087.
    [38] Chun Jiang Jia, Ling Dong Sun, Li Ping You, Xiao Cheng Jiang, Feng Luo, Yu Cheng Pang, and Chun Hua Yan, Selective Synthesis of Monazite- and Zircon-type LaVO4 Nanocrystals[J]. J. Phys. Chem. B,2005, 109, 3284-3290.
    [39] Suslick K S,Choe S B, Cichowlas A A, Grinstaff M W. Some chemical synthesis of amorphous iron [J]. Nature,1991, 353: 414-420.
    [40] Suslick K S,Hyeon T W,Fang M W. Nanostruxtureed materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies [J]. Chem. Mater, 1996,8: 2172-2179.
    [41] Suslick K S,Price G J,Applieations of ultrasound to materials chemistry[J]. Ann.Rev.Mater. Sci,1999, 29:295-326.
    [42] Mandanshetty S I, Aapfel R E. Acoustic microcavitation: Enhancement and applications[J]. J.Acoust. Soc.Am,1991, 90: 1508-1514.
    [43] Suslick K S. Sonochemistry [J]. Sicenee,1990, 247: 1439-1442.
    [44] Yu M, Lin J, Fu J, et al. Sol–gel synthesis and photoluminescent properties of LaPO4: A (A = Eu~(3+), Ce~(3+), Tb~(3+)) nanocrystalline thin films[J]. Mater. Chem, 2003, 13: 1413.
    [45] Hoefdraad H E. Charge-transfer absorption -band of Eu~(3+) in oxides[J]. J.solid.state. chem,197
    [46] Qi Z M,Shi C S,Zhang W W,et al. Local structure and luminescence of nanocrystalline Y2O3: Eu[J]. Appl.Phys.Lett, 2002, 81: 2857-2859.
    [47] Zhnag W W,Zhnag W P,Xie P B,et al. Optical Properties of nanocrystalline Y2O3: Eu depending on its odd structure[J]. J.Colloid.Interface.Sci,2003,262: 588-593.
    [48] DexpertGhys J,Mauricot R,Faucher MD. Spectroscopy of Eu~(3+) ions in monazite type Lanthanide orthophosphates LnPO4,Ln=La or Eu[J]. J. Lumin, 1996,69: 203-215.
    [49] Yan Y C,Faber A J,Waal H,et al. Erbimu-doped Phosphate glass waveguide on silicon with 4.1dB/cm gain at l.535mu m[J]. Appl. Phys. Lett,1997, 71:2922.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.