氨基酸类希夫碱配合物的合成、表征及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸是生命的内源物质,是生物体细胞生长所必需的生理活性物质。氨基酸希夫碱及其金属配合物在医药、催化、光学、材料等诸多领域具有广阔的应用前景,已成为当前配位化学的研究热点之一。因此,通过反应引入各类功能基团使其衍生化,合成新型的氨基酸希夫碱及其金属配合物,研究其分子结构、理化性质及实际应用,对配位化学的发展具有重要的意义。
     本文合成了6个系列28种氨基酸希夫碱金属配合物,培养了三个配合物的单晶。通过元素分析、红外光谱、紫外可见光谱、摩尔电导率及热重分析等对配合物进行表征,推断出可能的化学结构。利用X-射线单晶衍射仪解析配合物的晶体得到其空间结构。对配合物进行了荧光光谱分析,研究了三元金属配合物与CT-DNA的作用方式。检测所有的金属配合物对乳腺癌细胞(MDA-MB~(-2)31)和前列腺癌细胞(PC~(-3))增殖的抑制能力,筛选出了具有抗肿瘤活性的配合物。以蛋白酶体为作用靶点,探讨了氨基酸希夫碱铜三元配合物通过抑制蛋白酶体活性诱导肿瘤细胞凋亡的作用机理。具体内容如下:
     1.合成了2,4-二羟基苯甲醛缩L-天冬氨酸希夫碱(H_2L~1)配合物,其组成分别为:[M(L~1)(H_2O)_2]·nH_2O (M=Cu, Zn, n=2; M=Co, Mn, n=3),[M(L~1)(NO_3)(H_2O)_x]·nH_2O (M=La, x=3, n=2),[M(L~1)(Phen)]·nH_2O (M=Cu, n=1)。H_2L~1=C_(11)H_(11)NO_6,Phen:1,10-菲罗啉
     2.合成了2,4-二羟基苯乙酮缩L-天冬氨酸希夫碱(H_2L~2)配合物,其组成分别为:[M(L~2)(H_2O)_2]·nH_2O (M=Cu, n=0; M=Co, n=2; M=Zn, n=3),[M(L~2)(NO_3)(H_2O)x]·nH_2O (M=Sm, x=2, n=2; M=La, x=3, n=3),[M(L~2)(Phen)]·nH_2O (M=Cu,n=3)。H_2L~2=C_(12)H_(15)NO_7
     3.合成了2,4-二羟基苯甲醛缩L-缬氨酸希夫碱(H_2L~3)配合物,其组成分别为:[M(L~3)(H_2O)_2]·nH_2O (M=Zn, n=1; M=Co, n=2; M=Cu, n=3),[M(L~3)(NO_3)(H_2O)x]·nH_2O (M=Yb, x=2, n=1; M=Er, x=3, n=2),[M(L~3)(Phen)]·nH_2O (M=Cu,n=2)。H_2L~3=C_(12)H_(15)NO_4
     4.合成了2,4-二羟基苯乙酮缩L-缬氨酸希夫碱(H_2L~4)配合物,其组成分别为:[M(L~4)(H_2O)_2]·nH_2O (M=Cu, n=1; M=Zn, Co, n=2),[M(L~4)(NO_3)(H_2O)x]·nH_2O(M=Er, x=2, n=3; M=La, x=3, n=2),[M(L~4)(Phen)]·nH_2O (M=Cu, n=4)。H_2L~4=C_(13)H_(17)NO_4
     5.合成得到了邻香草醛缩L-甲硫氨酸-铜(II)-1,10-菲啰啉三元配合物,邻香草醛缩L-甲硫氨酸-铜(II)~(-2),2’-联吡啶三元配合物的单晶,其组成分别为:[Cu(L~5)(Phen)]·9H_2O,[Cu(L~5)(Bpy)]·3H_2O。H_2L~5=C_(13)H_(17)NO_4S, Bpy:2,2’-联吡啶
     [Cu(L~5)(Phen)]·9H_2O属单斜晶系,空间点群C2,晶胞参数为a=22.510(2),b=21.479(2), c=14.8300(17), α=90°, β=92.7460(10)°, γ=90°, V=7162.0(13)3,F(000)=2888。配体H_2L~5以脱两个质子、三齿配体的形式与铜原子形成并列排布的五元、六元螯合环。配体中的羧基氧原子、亚胺氮原子与铜原子形成五元螯合环;酚羟基氧原子、亚胺氮原子与铜原子形成六元螯合环;1,10-菲啰啉的两个氮原子与铜原子形成另一个五元螯合环。配合物中的铜原子处在五配位、畸变的四角锥配位环境中。
     [Cu(L~5)(Bpy)]·3H_2O属单斜晶系,空间点群P21/c,晶胞参数为a=11.0970(11)
     , b=19.101(2), c=13.203(12), α=90°, β=114.1490(10)°, γ=90°, V=2553.7(4)3,F(000)=1156。[Cu(L~5)(Bpy)]·3H_2O中配体的配位方式与[Cu(L~5)(Phen)]·9H_2O的相似,只是2,2’-联吡啶代替1,10-菲啰啉与铜配位形成五元螯合环。这两个配合物均通过O-H…O氢键形成一维链状结构,链之间通过氢键形成二维网状结构。
     6.合成了2-羟基-1-萘甲醛缩L-缬氨酸希夫碱(H_2L~6)铜的三元配合物,其组成分别为:[Cu(L~6)(Phen)]·3H_2O,[Cu(L~6)(Bpy)]·3H_2O。H_2L~6=C16H19NO4。得到了2-羟基-1-萘甲醛缩L-缬氨酸-铜(II)~(-2),2’-联吡啶三元配合物的单晶。
     [Cu(L~6)(Bpy)]·3H_2O属三斜晶系,空间点群P-1,晶胞参数为a=9.2950(10),b=9.7861(11), c=14.3819(15), α=79.9710(10)°, β=74.7180(10)°, γ=85.745(2)°,V=1242.1(2)3, F(000)=566。配体中的氮、氧原子与铜原子配位形成五元、六元螯合环,配合物之间通过O-H…O氢键形成了梯子式的二维网状结构。
     7.利用Achar的微分法和Coats-Redfern的积分法计算程序,对热分解动力学进行拟合,对部分配合物进行非等温热分解动力学处理,得出配合物的热分解反应机理、相应的动力学参数及活化熵变△S≠和吉布斯自由能变△G≠。其中,配合物3a相关步骤热分解反应的动力学函数符合反应方程:f(α)=(1-α)_2;配合物2e和3d的符合反应方程:f(α)=1/3(1-α)[-ln(1-α)]~(-2);配合物2f、4e和5d的符合反应方程:f(α)=1/4(1-α)[-ln(1-α)]~(-3);配合物4f的符合反应方程:f(α)=1/2(1-α)3。
     8.测定了配合物的荧光光谱,比较其荧光特性。研究结果表明:与对应的配体相比,配合物[Cu(L~1)(H_2O)_2]·2H_2O、[Zn(L~1)(H_2O)_2]·2H_2O的激发峰均发生了一定程度的蓝移,发射峰一个发生了红移,一个发生了蓝移,荧光强度均明显增强;[Zn(L~2)(H_2O)_2]·3H_2O、[La(L~2)(NO_3)(H_2O)3]·3H_2O的激发峰和发射峰都发生了轻微的红移,且荧光强度有所降低;配合物[Zn(L~3)(H_2O)_2]·H_2O、[Yb(L~3)(NO_3)(H_2O)_2]·H_2O、[Zn(L~4)(H_2O)_2]·2H_2O、[Er(L~4)(NO_3)(H_2O)_2]·3H_2O的激发峰和发射峰都发生了一定程度的蓝移,且荧光强度有所减弱。
     9.采用紫外可见光谱、荧光光谱和粘度测定等方法研究了氨基酸希夫碱铜的三元配合物与CT-DNA之间的作用方式。结果显示当第二配体为1,10-菲啰啉时,配合物[Cu(L~1)(Phen)]·H_2O、[Cu(L~2)(Phen)]·3H_2O、[Cu(L~3)(Phen)]·2H_2O、[Cu(L~5)(Phen)]·9H_2O都以插入方式与CT-DNA作用,[Cu(L~4)(Phen)]·4H_2O以部分插入方式与CT-DNA作用。当第二配体为2,2’-联吡啶时,配合物[Cu(L~5)(Bpy)]·3H_2O与CT-DNA之间则为静电作用。通过对[Cu(L~5)(Phen)]·9H_2O和[Cu(L~5)(Bpy)]·3H_2O的空间结构进行对比发现,配合物中配体的共平面性越好,越有利于其以插入方式与CT-DNA发生相互作用,配合物与CT-DNA结合的能力越强。
     10.对配合物作为蛋白酶体抑制剂的抗肿瘤活性及作用机制进行了研究。
     采用MTT法对28种氨基酸希夫碱金属配合物进行体外药物抗肿瘤实验,筛选出[Cu(L~1)(Phen)]·H_2O、[Cu(L~2)(Phen)]·3H_2O、[Cu(L~3)(Phen)]·2H_2O、[Cu(L~4)(Phen)]·4H_2O、[Cu(L~5)(Phen)]·9H_2O、[Cu(L~6)(Phen)]·3H_2O等具有抗肿瘤活性的三元配合物。检测筛选出的配合物对肿瘤细胞内蛋白酶体的抑制活性,确定配合物的作用靶点为蛋白酶体;利用浓度及动力学实验考察配合物抑制蛋白酶体活性与诱导肿瘤细胞凋亡的关系;利用细胞形态学变化检测技术对细胞凋亡的形态进行检测。研究发现,上述铜的三元配合物均能以浓度和时间依赖方式抑制人乳腺癌细胞(MDA-MB~(-2)31)和前列腺癌细胞(PC~(-3))蛋白酶体活性而诱导肿瘤细胞凋亡。
     对某些不同第二配体的三元铜配合物抗肿瘤活性进行了分析对比,发现当1,10-菲啰啉(Phen)作为第二配体时具有显著的抗肿瘤活性,而当第二配体换为2,2’-联吡啶(Bpy)时,则抗肿瘤活性很小。如:邻香草醛缩L-甲硫氨酸-铜(II)-1,10-菲啰啉三元配合物、2-羟基-1-萘甲醛缩L-缬氨酸-铜(II)-1,10-菲啰啉三元配合物可以有效地抑制人乳腺癌细胞(MDA-MB~(-2)31)的增殖,而邻香草醛缩L-甲硫氨酸-铜(II)~(-2),2’-联吡啶三元配合物、2-羟基-1-萘甲醛缩L-缬氨酸-铜(II)~(-2),2’-联吡啶三元配合物的抗癌活性很小。这表明第二配体的选择对整个三元配合物的抗肿瘤活性有重要作用。
     根据实验结果,结合分子模拟对接技术对配合物作为蛋白酶体抑制剂靶向诱导肿瘤细胞凋亡的作用机制进行了探讨。研究结果表明,当第二配体是1,10-菲啰啉时,所得到的配合物能顺利地到达20S蛋白酶体的β6位点,配合物中的铜离子可以与β6位点形成共价键,生物活性基团可以与β6位点内的氨基酸残基形成多种氢键。这些共价键和氢键将配合物牢牢地固定在β6位点,从而阻挡蛋白质分子通过β6位点通道进入具有类糜蛋白酶活性(CT-like)的β5位点,抑制20S蛋白酶体内的类糜蛋白酶活性,诱导肿瘤细胞凋亡。
Amino acids are endogenous substance of life and essential physiological activesubstances for organism cell growth. Amino acid Schiff base and their metalcomplexes have a wide application prospect in medicine, catalysis, optics, materialsand other fields, has become the focus in the field of coordination chemistry. Thesynthesis of many novel amino acid Schiff bases and their metal complexes throughthe reaction of various functional groups into the derivatization, and the studies ontheir molecular structures, physicochemical properties and practical application haveimportant significance for the development of coordination chemistry.
     In this paper, six Schiff base ligands and twenty-eight corresponding metalcomplexes have been synthesized and the single crystals of three coordinationcompounds have been obtained. These complexes have been characterized byelemental analysis, IR spectrum, UV spectrum, fluorescence spectrum, molarconductivity and thermal gravimetric analysis. The suggested structures of the metalcomplexes have been concluded. The spatial structures of three single crystals havebeen detected using the X-ray diffraction analysis. Fluorescence properties of theSchiff base metal complexes and the interaction modes of ternary metal complexesand DNA have been studied. The proliferation inhibitory abilities of all the metalcomplexes on breast cancer cell (MDA-MB~(-2)31) and prostate cancer cells (PC~(-3))have been detected and the complexes which have antitumor activity have beenselected. The reaction mechanisms of the amino acid Schiff base copper ternarycomplexes induce cancer cells apoptosis through inhibiting proteasome activity havebeen discussed using proteasome as reaction target. The main works of the article areas follows:
     1. The metal complexes with Schiff base ligand (H_2L~1) derived from2,4-Dihydroxybenzaldehyde and L-Aspartic acid were synthesized. The possible chemical compositions of these complexes are confirmed to be:[M(L~1)(H_2O)_2]·nH_2O(M=Cu, Zn, n=2; M=Co, Mn, n=3),[M(L~1)(NO_3)(H_2O)x]·nH_2O (M=La, x=3, n=2),[M(L~1)(Phen)]·nH_2O (M=Cu, n=1)。H_2L~1=C_(11)H_(11)NO_6, Phen:1,10-Phenanthroline
     2. The metal complexes with Schiff base ligand (H_2L~2) derived from2,4-Dihydroxyacetophenone and L-Aspartic acid were synthesized. The possiblechemical compositions of these complexes are confirmed to be:[M(L~2)(H_2O)_2]·nH_2O(M=Cu, n=0; M=Co, n=2; M=Zn, n=3),[M(L~2)(NO_3)(H_2O)x]·nH_2O (M=Sm, x=2,n=2; M=La, x=3, n=3),[M(L~2)(Phen)]·nH_2O (M=Cu, n=3)。H_2L~2=C_(12)H_(15)NO_7
     3. The metal complexes with Schiff base ligand (H_2L~3) derived from2,4-Dihydroxybenzaldehyde and L-Valine were synthesized. The possible chemicalcomposition of these complexes are confirmed to be:[M(L~3)(H_2O)_2]·nH_2O (M=Zn,n=1; M=Co, n=2; M=Cu, n=3),[M(L~3)(NO_3)(H_2O)x]·nH_2O (M=Yb, x=2, n=1; M=Er,x=3, n=2),[M(L~3)(Phen)]·nH_2O (M=Cu, n=2)。H_2L~3=C_(12)H_(15)NO_4
     4. The metal complexes with Schiff base ligand (H_2L~4) derived from2,4-Dihydroxyacetophenone and L-Valine were synthesized. The possible chemicalcomposition of these complexes are confirmed to be:[M(L~4)(H_2O)_2]·nH_2O (M=Cu,n=1; M=Zn, Co, n=2),[M(L~4)(NO_3)(H_2O)x]·nH_2O (M=Er, x=2, n=3; M=La, x=3,n=2),[M(L~4)(Phen)]·nH_2O (M=Cu, n=4)。H_2L~4=C_(13)H_(17)NO_4
     5. The single crystals of ternary copper complexes with Schiff base ligand (H_2L~5)derived from O-vanillin and L-Methionine were obtained. The chemical compositionsof these complexes are confirmed to be:[Cu(L~5)(Phen)]·9H_2O,[Cu(L~5)(Bpy)]·3H_2O.H_2L~5=C_(13)H_(17)NO_4S, Bpy:2,2’-Bipyridine
     The crystal of [Cu(L~5)(Phen)]·9H_2O belongs to the monoclinic crystal system,space group C2with the cell parameter a=22.510(2), b=21.479(2), c=14.8300(17)
     , α=90°, β=92.7460(10)°, γ=90°, V=7162.0(13)3, F(000)=2888. The ligand acts asa doubly deprotonated, tridentate form to coordinate with copper atom to formparatactic five-member and six-member chelated ring. In the ligand, the carbonyloxygen atom and Imine nitrogen atom coordinate with copper atom to formfive-member chelated ring, the phenol hydroxyl oxygen atom and Imine nitrogenatom coordinate with copper atom to form six-member chelated ring, the nitrogen atom of1,10-Phenanthroline coordinate with copper atom to form other five-memberchelated ring. The Cu atoms exhibit five-coordinate distorted square-pyramidconfigurations.
     The crystal of [Cu(L~5)(Bpy)]·3H_2O belongs to the monoclinic crystal system,space group P21/c with the cell parameter a=11.0970(11), b=19.101(2), c=13.2031(12), α=90°, β=114.1490(10)°, γ=90°, V=2553.7(4)3, F(000)=1156. Thecoordination mode of ligand in [Cu(L~5)(Bpy)]·3H_2O is similar with [Cu(L~5)(Phen)]·9H_2O, except for the use of2,2’-bipyridineinstead of1,10-phenanthroline tocoordinate with copper atom to form five-member chelated ring. Both coppercomplexes are linked into one-dimensional chain structure through O-H…O hydrogenbonds, and the chains to form two-dimensional network also by hydrogen bonds.
     6. The ternary copper complexes with Schiff base ligand (H_2L~6) derived from2-hydroxy-1-naphthaldehyde and L-Valine were synthesized. The possible chemicalcompositions of these complexes are confirmed to be:[Cu(L~6)(Phen)]·3H_2O,[Cu(L~6)(Bpy)]·3H_2O. H_2L~6=C16H19NO4. The crystals of [Cu(L~6)(Bpy)]·3H_2O were otained.
     The crystal of [Cu(L~6)(Bpy)]·3H_2O belongs to the triclinic crystal system, spacegroup P-1with the cell parameter a=9.2950(10), b=9.7861(11), c=14.3819(15),α=79.9710(10)°, β=74.7180(10)°, γ=85.745(2)°, V=1242.1(2)3, F(000)=566. Theoxygen atom and nitrogen atom of the ligand coordinate with copper atom to formfive-member and six-member chelated ring. The complexes are linked into ladderform two-dimensional network structure through O-H…O hydrogen bonds.
     7. A combination of Achar differential and Coats-Redfern method was used toprocess non-isothermal decomposition of kinetics of part of the complexes. Thethermal decomposition reaction mechanism, correspondent kinetic parameters,activation entropy change△S≠and gibbs free energy change△G≠of the complexes.Among them, the thermal decomposition kinetic functions of related steps of complex3a conforms to the reaction equation: f(α)=(1-α)_2; complexes2e and3d conforms tothe reaction equation: f(α)=1/3(1-α)[-ln(1-α)]~(-2); complexes2f,4e and5d conforms tothe reaction equation: f(α)=1/4(1-α)[-ln(1-α)]~(-3); complexes2f,4e and5d conforms tothe reaction equation: f(α)=1/2(1-α)3.
     8. Fluorescence spectra of these complexes were detected and the related fluorescence properties were studied. The experimental results show that compared with thecorresponding ligand, the excitation and emission peaks of complexes [Cu(L~1)(H_2O)_2]·2H_2O,[Zn(L~1)(H_2O)_2]·2H_2O have shifted to blue for some degree and thefluorescence intensity enhanced obviously. The excitation and emission peaks ofcomplexes [Zn(L~2)(H_2O)_2]·3H_2O,[La(L~2)(NO_3)(H_2O)3]·3H_2O have shifted to redslightly and the fluores cence intensity Weakened for a little. The excitation andemission peaks of complexes [Zn(L~3)(H_2O)_2]·H_2O,[Er(L~3)(NO_3)(H_2O)3]·2H_2O,[Zn(L~4)(H_2O)_2]·2H_2O,[Co(L~4)(H_2O)_2]·2H_2O have shifted to blue for some degree andthe intensity weakened slightly.
     9. The interaction modes between the ternery amino acid Schiff base coppercomplexes and DNA was studied by UV-Vis spectrium, fluorescent spectrium andviscosity method. The results show that when1,10-philippines was added as thesecond ligand, complexes [Cu(L~1)(Phen)]·H_2O,[Cu(L~2)(Phen)]·3H_2O,[Cu(L~3)(Phen)]·2H_2O,[Cu(L~5)(Phen)]·9H_2O can interact with CT-DNA as the insert mode, and[Cu(L~4)(Phen)]·4H_2O can interact with CT-DNA as the partly insert mode. When2,2'-bipyridyl was added as the second ligand, complex [Cu(L~5)(Bpy)]·3H_2O caninteract with CT-DNA as electrostatic mode. Comparison of [Cu(L~5)(Phen)]·9H_2Owith [Cu(L~5)(Bpy)]·3H_2O indicate that the complexes with better coplanar propertiesare more favorable to interact with DNA as the insert mode, and have better DNAbinding ability.
     10. Antitumor activity and action mechanism of the complexes as the proteasomeinhibitor is studied. In vitro antitumor drug tests of28kinds of amino acids are carriedout using MTT method, from which some ternary complexes with antitumor activitieslike [Cu(L~1)(Phen)]·H_2O,[Cu(L~2)(Phen)]·3H_2O,[Cu(L~3)(Phen)]·2H_2O,[Cu(L~4)(Phen)]·4H_2O,[Cu(L~5)(Phen)]·9H_2O and [Cu(L~6)(Phen)]·3H_2O are screened out.Inhibition activities to proteasome in tumor cells of the complexes that have beenscreened out are tested to determine whether proteasome is the target or not. Therelevance between proteasome activity and tumor cells apoptosis induction isinvestigated using concentration experiments and kinetics experiments. Morphologies of the apoptotic cells are determined by the cell morphological changes testingtechnique. The results show that the above mentioned ternary complexes can inhibitthe proteasome activity of human breast cancer cells (MDA-MB~(-2)31) and prostatecancer cells (PC~(-3)) in concentration-dependent and time-dependent mode.
     Antitumor activities of some ternary copper complexes using different secondligands are analyzed and compared. It is found that the complexes using1,10-Phenanthroline as the second ligands demonstrate dramatic antitomor activities while thecomplexes using2,2'-bipyridyl as the second ligands demonstrate weak antitomoractivities. For example, the ternary Cu(II) complexes derived from o-Vani llin,L-Methionine and1,10-Phenanthroline as well as2-Hydroxy-1-naphthaldehyde,L-Valine and1,10-Phenanthroline can effectively inhibit the proliferation of breastcancer cells. In contrast, the ternary Cu(II) complexes derived from o-Vanillin,L-Methionine and2,2'-bipyridyl as well as2-Hydroxy-1-naphthaldehyde, L-Valineand2,2'-bipyridyl exhibit weak antitumor activities. This indicates that the secondligands play key roles to the antitumor activities of the ternary complexes.
     The mechanism of the complexes as proteasome inhibitor to induce the tumorcells apoptosis is discussed, according to the experimental results combined withmolecular simulation and docking technology. The results show that when1,10-Phenanthroline serve as second ligands, the obtained complexes can smoothly reach the β6target of20S proteasome. Then the copper ions can form covalent bonds with β6target and the bioactive radicals can form several hydrogen bonds with the residues inβ6target. These covalent bonds and hydrogen bonds can fix the complexes on β6target to block the protein molecules to go through β5target that has chymotrypsin-like avtiveity. Thus, the activity chymotrypsin-like in20S proteasome will beinhibited and the cell apoptosis will occur.
引文
[1]孟庆金,戴安邦.配位化学的创始与现代化.无机化学学报,1995,11(3):219~227.
    [2]游效曾.我国配位化学进展.化学通报,1999,10:7~9.
    [3]游效曾,孟庆金,韩万书.配位化学进展.北京:高等教育出版社,2000.
    [4] Eugene Y., Chen X. Coordination polymerization of Polar vinyl monomers by single-sitemetal catalysts. Chem. Rev.,2009,109:5157~5214.
    [5] Allan G. B. The coordination chemistry of tripodal tetramine ligands. Polyhedron,2005,24:1~39.
    [6] Jones R. D., Budge J. R., Jrp E., Linard J. E. The infare spectra of some dioxygen and carbonmonoxide metalloporphyvin complexes.Chem.Rev.,1979,79:139~145.
    [7] Bailey N. A., Barbario C. O. R., Fenton D. E. Attempted function of a mononuclear bariumcomplex24-membered bibraeehial terraimine Schiff-base macroecyle dericed from tris(2-aminoethyt) amine using salicylaldehyde. Dalton Trans.,1995,86(5):765~770.
    [8] Samale E. G., Srinivasan K., Koehi J. K. Mechanism of the chromium-catalyzed epoxidationof olefins role of oxochromium(V) cations. J. Am. Chem. Soc.,1985,107(25):7606~7617.
    [9] Lareroix P. G., Daran J. C., Synthesis, crystal structure, conduetivity and magnetic propertiesof trifluoromethylated dinuclear copper(II) complexes with tetrac-yaboquinodimethane.Dalton Trans.,1997,88(7):1369~1374.
    [10]程桂英.稀土希夫碱配合物的合成与表征:[南京工业大学硕士学位论文],2002.
    [11]焦元红.希夫碱配体及配合物的合成与表征:[华中师范大学硕士学位论文],2006.
    [12]王党辉.2-乙酰基苯并咪唑缩甘氨酸Schiff碱稀土配合物的合成及性质研究:[西北大学硕士学位论文],2005.
    [13] Lianzhi Li, Zhenghua Guo, Qingfu Zhang, Tao Xu, Daqi Wang. An unexpected oxovanadium(IV) complex with in situ generated lactone ligand: Synthesis, crystal structure and DNA-binding property. Inorganic Chemistry Communications,2010,13:1166~1169.
    [14] Csaszar J., Morvay J., Herczeg O. Study of5-nitro-2-furfuraldehyde Derivatives,Preparation, spectra and antibacterial activities of Schiff bases with sulfonamides. Acta.Phys. Chem.,1985,31(3):711~722.
    [15] Chandra S., Sharma K. Synthesis and characterization of chrominum(III) complex of somesemicarbazones and thiosemicarbazo nes. Syn. React.Inorg. Met-Org. Chem.,1982,12(6):647~659.
    [16] Dut t N. K., Nag K. Bis-salicylaldehyde eth yl e nedi amine and bis-salicylaldehydeo-ph enylene dimine complexes of rare-earth. Inorg. Nucl. Chem.,1968,30:2493~2499.
    [17] Iftikhar K., Arvind M., Ahnad N. Studies on bis(p-dimethylaminobenzylidene) benzidinecomplexes of Trivalent Lanthanides. Indian. Chem.,1986,25A:589~591.
    [18] Desai S. B., Desai P. B., Desai K. R. Synthesis of some Schiff base thiazolidinones andazetidinones from2,6-diaminobonzol bisthiazole and their activities. Hetercycl Commun,2001,7(1):83~90.
    [19] Isse A. A., Gennaro A., Vianello E. Electrochemical reduction of Schiff bases ligandsH2salen and H2salophen. Electrochimical Acta,1997,42(13):2065~2071.
    [20] Bastos M. B. R., Moreira J. C., Farias P. A. M. Adsorptive striooing voltammetric behaviourof UO2(II) complexed with the Schiff base N,N-prime-ethylenebis(salicylidenimine) in4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium. Analytica Chimica Acta,2000,408:83~88.
    [21] Maurya R. C., Mishra D. Synthesis, Magnetic and Spectral Studies of somemixed-ligand Complexes of Copper(II) and Cobalt(II) with Schiff Base and2-or3-Pyrazoline-5-one Derivatives. Synth.React. Inorg. Met. Org. Chem.,1994,24(3):427~430.
    [22] Gaber M. St ructural PH-metric and conductance studies of4-(2-Pyridyl)-1-(2-Hydroxyacetophenone)-3-thiosemicar bazone (H2PHA T) co mplexes. Synth. React. Inorg. Met. Org.Chem.,1994,24(5):813~816.
    [23] Mehmet T., Huseyin K., Selahattin S. Synthesis, Charac teriztion and Studies ofMononuciear and Binuclear Complexes of Copper(II) with Schiff Bases Derived from1-Phenyl-2,3-Di methyl-4-Amino-5-Pyrazolone. Synth. React. Inorg. Met. Org. Chem.,1996,26(9):1589~1594.
    [24] Juan M., Fernandez G., Hernandez Ortega S. The structures and electrochemical studies of2,3-naohthalenic Schiff base copper (II) complexes. Polyhedron,1998,17(15):2425~2432.
    [25] Punnlyanurthy T., Madhava Reddy M. Cobalt(II) Schiff base catalyzed biomimeticoxidation of organic substrates with dioxygen pure. Appl. Chem.,1996,68(3):619~622.
    [26]Mahapatra B. B., Dash S. S., Pujari S. K. Complexes of Cu(II) and Cd(II) with tetradentateSchiff bases. Journal of Indian Chemical Society,1980,57:95~98.
    [27] Demazeau G. Solvothermal processes: a route to the stabilization of new materials. Journalof Materials Chemistry,1999,9(11):15~18.
    [28] Gopinathan S., Deshpande S. S., Gopinatha C. Novel ruthenium(II) Schiff base complexes.Synth. React. Inorg. Met. Org. Chem.,1989,19(4):321~325.
    [29] Agarwala R. G. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides.Journal of Inorganic and Nuclear Chemistry,1973,35:653~655.
    [30] Caiwu J., Hui C., Hong L., Liangnian J. Syntheses, characterization and DNA-binding studiesof ruthenium terpyridine complexes:[Ru(tpy)(PHBI)]2+and [Ru(tpy)(PHNI)]2+. Journal ofInorganic Biochemistry,2003,93:247~255.
    [31] Agarwala R. G. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides. J Inorg.Nucl. Chem.,1973,35:653~655.
    [32]Dilworth J. R. The Coordination Chemistry of Substituted Hydrazines. Coord. Chem. Rev.,1976,21:29-62.
    [33] Bipin B., Mahapatra S. S., Dash S. K., Pujari. Complexes of Cu(II) and Cd(II) withTetradentate Schiff Bases. J. Indian. Chem. Soc.,1980,57:95~97.
    [34]Hodnett E M., Dunn W. J. Structure-antitumor activity correlation of some Schiff bases. J.Med. Chem.,1970,13(4):768~770.
    [35] Raman N., Syedalifathima S., Dhaveethu R. J. Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activitystudies. J. Serb. Chem. Soc.,2008,73(11):1063~1071.
    [36] Yoshimura M. Soft Solution Processing: A Strategy for One-Step Processing of AdvancedInorganic Materials. MRS Bulletin,2000,25(9):17~25.
    [37]Yoshimura M. Soft Solution Processing: Environmentally Benign Direct Fabrication ofShaped Ceramics(Nano-crystals, Whiskers, Films, and/or Patterns) without Firing. KeyEngineering Materials,2001,206:1~6.
    [38] Byrappa K., Yoshimura M. Handbook of Hydrothermal Technology: A Technology forCrystal Growth and Materials Processing. LLC Norwich New York,2001,1~43.
    [39]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O2-·性能.应用化学,2000,17(6):607~610.
    [40]宋玉晶.PMBP希夫碱及其金属配合物的合成、表征、晶体结构、抑菌活性和量子化学研究:[天津师范大学硕士学位论文],2007.
    [41]李淑娟.新型杂环化合物的合成、结构及生物活性研究:[西北大学硕士学位论文],2006.
    [42]叶勇,胡继明,曾云鹗.2-氯代苯甲醛丙氨酸席夫碱类抗癌药物对DNA作用的谱学研究.无机化学学报,1998,14(1):84~91.
    [43] Nyarku S. K., Mavuso E. Preparation,characterization and biological evaluation of achromium(III) Schiff bases complex derived from o-nitrobenzaldehyde and p-aminophenol.South African of Chem,1998,51(4):168~172.
    [44]Yuki Fujii, Katsuhiro Kikuchi. Template synthesis of polymer schiff base cobalt(III) complexand formation of specific cavity for chiral amino acid. Chem. Lett.,1984,13(9):1487~1490.
    [45] Belokon Yu. N., Popkov A. N., Chernoglazova N. I. Synthesis of a chiral nickel(II) complexof an electrophilic glycinate, and its use for asymmetric preparation of amino acids. ChemicalCommunications,1988,19:1336~1338.
    [46] Colonna Stefano. Asymmetric oxidation of sulfides to sulfoxides catalyzed by titaniumcomplexes of N-salicylidene-L-amino acids.Journal of the Chemical Society, PerkinTransactions: Organic and Bio-Organic Chemistry,1987,1:71~73.
    [47] Casella, Luigi. Coordination modes of histidine. Circular dichroism study of copper(II)complexes of the Schiff bases derived from (1R)-3-(hydroxymethylene) camphor andhistidine derivatives. Inorganic Chemistry,1981,20(4):1306~1308.
    [48]仇敏,刘国生,姚小泉.手性铜(II)希夫碱配合物催化苯乙烯不对称环丙烷化反应.催化学报,2001,22(1):77~80.
    [49]李琛,张维萍,姚小泉.一种新型手性席夫碱的合成及其在不对称环丙烷化反应中的催化性能.催化学报,2000,21(3):289~291.
    [50]王积涛,陈蓉,冯霄.手性过渡金属配合物催化不对称环氧化苯乙烯的反应.有机化学,1998,18(3):228~234.
    [51] Brunner H., Becher R., Ripel G. Asymmetric syntheses enantioselective hydrosilylation ofketones with thiazolidine catalysts. Organometallics,1984,3(9):1354~1359.
    [52]自国甫,尹承烈.手性Cu(II)配合物催化的不对称环丙烷化反应的研究.化学学报,1998,34(2):216~218.
    [53]韩相恩,燕莉.希夫碱液晶的研究与进展.化学试剂,2009,31(7):515~518.
    [54]李瑞军,任国度.分子中含-CH2O-桥键液晶化合物的结构和相变间关系.郑州大学学报,1999,31(1):84~87.
    [55] Ma H., Chen S. H., Niu L. Studies on electrochemical behavior of copper in aerated NaBrsolutions with Schiff bases. Journal of Electrochemical Society,2001,148(5):208~216.
    [56]张淑媛,何可可,郑世军.新型席夫碱型液晶冠醚的合成与性质.应用化学,2005,22(3):272~277.
    [57]宋雅茹,徐建平.新型发蓝光材料的合成和光谱表征及光致和电致发光性能.光谱学与光谱分析,2000,20:730~731.
    [58]王荣民,冯辉霞.新型杀夫碱配体的合成及表征.西北师范大学学报,2000,36:46~47.
    [59]韩相恩,魏贤勇,王兴勇.两种新型氢键诱导液晶材料的合成及表征.化工新型材料,2010,7:46~48.
    [60]王荣民.高分子希夫碱金属配合物的制备,表征及性能.高分子通报,1998,2:27~31.
    [61]朱斌,黄佩,胡兰萍.含希夫碱基团的不对称弯曲型液晶分子的合成和相变研究.液晶与显示,2010,3:305~310.
    [62]魏强,曹晖,朱思泉.一类含氟希夫碱液晶的合成及中间相性能.北京科技大学学报,2008,30:285~288.
    [63] Yamini H. Insight into structural transition, aggregation and folding of glycoprotein in thepresence of chromium(III) complexes by spectroscopic, microscopic and kinetic studies.Chem. Phy. Lett.,2003,369(5):234~240.
    [64] Girousi S. T., Golia E. E., Voulgaropoulos A. N. Fluorometric determination of formadehyde.Sr inger-Verlag,1997,358(5):667~668.
    [65] Khuhawar M. Y., Lanjwani S. N. High-performance liquid chromatographic determinationof uranium using solvent extraction and bistetramethylenediimine as complexing reagent.Journal of Chromatography A.,1996,740(2):296~301.
    [66] Jiyun L., Shuming Q., Baoyuan L., Dehua L. Synthesis and antitumor activity of timonacicderivatives. Yiyao Gongye,1988,19(5):203~205.
    [67] Masayuki O., Toshio B., Eishin K., Yoichi K., Toshio W. Thiele compounds: Synthesis andantihypertensive activity of N-(mercaptoacyl)thiazolidinecarboxylic acids. Chemical andPharma ceutical Bulletin,1982,30(2):440~461.
    [68] Skvortsov A. N., Uvarov V. M., Vekki D. A., Studentsov E. P., Skvortsov N. K.Conforma tional analysis, spectral and catalytic properties of1,3-thiazolidines, ligands forac etophenone with diphenylsilane. Russian Journal of General Chemistry,2010,80(10):2007~2021.
    [69] Jinghong Li, Jianfang Dong, Hui Cui. A copper(II) complex of the Schiff base fromL-valine and2-hydroxy-1-naphthalidene plus1,10-phenanthroline: synthesis, crystalstructure, and DNAinteraction. Transition Metal Chemistr,2012,37(2):175~182.
    [70] Lown J. W. Design of sequence-specific agents: lexitropsins. Mol. Aspects AnticancerDrug-DNA Interact.1993:322~355.
    [71] Anneheim Herbelin G., Perree Fauvet M., Gaudemer A., Helissey P., Giorgi Renault S.,Gresh N. Porphyrin-netropsin: a potential ligand of DNA. Tetrahedron Letters,1993,34(45):7263~7266.
    [72] Brown S. C., Thomson S. A., Veal J. M. NMR solution structure of a peptide nucleic acidcomplexed with RNA. Science,1994,265(5173):777~780.
    [73] Lown J. W. Chem. Trans. org. chem.,1993,6:205~207.
    [74] Anneheim H. G., Perree F. M., Gaudemer A. Porphyrin-netropsin: a potential ligand ofDNA.Tetrahedron,1993,34(45):7263~7266.
    [75] Fraus S., Bernadou J., Meunier B. Bioconjugate Chem.,1997,8:222~225.
    [76]Eis P. S., Smith J. A., Rydzewski J. M. High resolution solution structure of a DNA duplexalkylated by the antitumor agent duocarmycin SA. J Mol. Biol.,1997,272(2):237~252.
    [77] Chihara N., Amo T., Tokunaga A., Yuzuriha R. Mitochondrial DNA alterations in colorectalcancer cell lines. J. Nipp. Medi. School,2011,78:13~21.
    [78] Kim S., Jun D. H., Kim Hye J., Jeong K.C., Lee C.H. Development of a high-contentscreening method for chemicals modulating DNA damage response. J. BiomolecularScreening,2011,62:259~265.
    [79] Guin P. S., Das S., Mandal P. C. Interaction of1,4-Dihydroxy-9,10-Anthraquinone with CalfThymus DNA: A Comparison with AnthracyclineAnticancer Drugs. J. Solution Chem.,2011,40(3):492~501.
    [80]Singh N. K., Misseema R. C. Synthesis, structure and antifungal studies of some3d mentalcomplexes of sMicylaldehyde-2-furanthio-carboxyhydraaone.Synth. React. Inorg. Met. Org.Chem.,1985,15(1):75~92.
    [81]王光斌.蛋氨酸希夫碱的铜、锌配合物的抑菌作用.氨基酸和生物资源,1994,1:1~3.
    [82]王忠,吴自慎,严振寰.2-氯苯甲醛甘氨酸希夫碱及其Cu、Zn、Ni配合物的合成表征及抗菌活性研究.华中师范大学学报,1993,270:334~338.
    [83]祝振富,黎植昌,张积霞.胡椒醛甘氨酸希夫碱的合成、表征及抑菌活性.西南师范大学学报,1997,22(1):50~54.
    [84]严振寰,吴自慎,李幸群.邻香草醛丙氨酸席夫碱及其配合物的合成、表征和抗菌活性.华中师范大学学报,1993,27(3):339~344.
    [85]毕思玮,高恩庆,田君镰.N-亚水杨基氨基酸及其3d金属配合物的合成、表征和抑菌活性.应用化学,1995,12(6):13~16.
    [86]Reddy M. M.,Punniyamurthy T., Igbal J. Cobalt catalyzed oxidation of cyclic alkenes withmolecular oxygen:Allylic oxidation band attack. Tretrahedron Letters,1995,36(1):159.
    [87]王荣民,俞天智,何玉风.用GC-MS和GC-IR研究环己烯分子氧氧化的络合催化反应.高等学校化学学报,1999,20(11):1772~1775.
    [88]范谦,黎耀忠,程克梅.组氨酸席夫碱锰化合物的合成及环己烯催化氧化.四川大学学,2001,38(2):230~234.
    [89]倪春林,许登清,孔凌云.单取代苯丙氨酸四苯基卟啉锰(III)催化烯烃环氧化反应研究.化学研究与应用,1998,10(6):632~635.
    [90]倪春林,许登清,姚中荣.新型尾式谷氨酸四苯基卟啉锰(III)催化烯烃氧化研究.化学世界,1999,4:187~190.
    [91]钟文星.半胱氨酸卟啉配合物的合成和催化性能研究.苏州大学学报,2002,22(5):56l~58.
    [92]陈德余,江银枝.过渡金属丙氨酸希夫碱配合物的合成及其抗超氧阴离子自由基性能.应用化学,1997,14(3):5~8.
    [93]何秀英,吴纪梅,严振寰.邻甲氧基苯甲醛丙氨酸希夫碱及其金属配合物的合成、表征和对超氧阴离子自由基的抑制作用.无机化学学报.1995,11(3):302~307.
    [94]何秀英,严振寰,吴自慎.甲氧基苯甲醛苯丙氨酸希夫碱和配合物的合成、表征及其对超氧阴离子自由基的作用.华中师范大学学报,1995,29(4):459~463.
    [95] Wrobleski J. T., Bng G. J. Transition-metal complexes of vitamin B6related compounds.Synthesis and electronic and structural properties of several divalent first-row transition-metal complexes ofpyridoxylideneamino acids. Inorg. Chem.,1977,16(11):2752~2762.
    [96] Casella L., Gullotti M.Coordination modes of histidine Stereochemistry of the reactionbetween histidine derivatives and pyridoxal analogs conformational properties of zinccomplexes of histidine Schiff bases. J. Am. Chem. Soc.,1981,103(21):6338~6347.
    [97] Wagner M. R.,Walker F. A. Spectroscopic study of1:1copper(II) complexes with Schiffbase ligands derived from salicylaldehyde and L-histidine and its analogs. Inorg. Chem.,1983,22(21):3021~3028.
    [98] Wilson W. D., Ying L., Veal James M. NMR analysis of reversible nucleic acid-smallmolecule complexes. Advances in DNA Sequence-Specific Agents,1992,1:89~165.
    [99] Lown J. W. Design of sequence-specificagents: lexitropsins. Mol. Aspects AnticancerDrug-DNA Interact,1993:322~355.
    [100] Anneheim Herbelin G., Perree Fauvet M., Gaudemer A., Helissey P., Giorgi Renault S.,Gresh N. Porphyrin netropsin: a potential ligand of DNA. Tetrahedron Letters,1993,34(45):7263~7266.
    [101] Brown S. C., Thomson S. A., Veal J. M. NMR solution structure of a peptide nucleic acidcomplexed with RNA. Science,1994,265(5173):777~780.
    [102] Lown J. W. Chem. Trans. org. chem.,1993,6:205~207.
    [103] Anneheim H. G., Perree F. M., Gaudemer A. Porphyrin-netropsin: a potential ligand ofDNA. Tetrahedron,1993,34(45):7263~7266.
    [104] Fraus S., Bernadou J., Meunier B. Bioconjugate Chem.,1997,8:222~225.
    [105] Eis P. S., Smith J. A., Rydzewski J. M. High resolution solution structure of a DNA duplexalkylated by the antitumor agent duocarmycin SA. J Mol. Biol.,1997,272(2):237~252.
    [106] Kim S., Jun, D. H., Kim Hye J., Jeong K. C., Lee, C. H. Development of a high-contentscreening method for chemicals modulating DNA damage response. J.BiomolecularScreening,2011,62:259~265.
    [107] Guin P. S., Das S., Mandal P. C. Interaction of1,4-Dihydroxy-9,10-AnthraquinonewithCalf Thymus DNA: A Comparison with Anthracycline Anticancer Drugs. J. SolutionChem.,2011,40(3):492~501.
    [108] Pontinha A. D. R., Jorge S. M. A., Chiorcea Paquim A. M. In situ evaluation of anticancerdrug methotrexate-DNA interaction using a DNA-electrochemical biosensor and AFMcharacteri zation. Physical Chemistry Chemical Physics,2011,13(11):5227~5234.
    [109]郭峰.甘氨酸席夫碱配合物的合成、表征及生物活性研究:[中国海洋大学博士学位论文],2007.
    [110]何华,王羚郦,戴丽.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展.中国药学杂志,2005,40(7):481~485.
    [111]杨传孝,李原芳,奉萍.铝离子与脱氧核糖核酸作用的共振光散射研究.分析化学,2002,30(4):473~477.
    [112] Barton J. K., Goldberg J. M., Kumar C. V. Binding Modes and Base Specificity of Tris(phenanthroline) ruthenium(II) Enantiomers with Nucleic Acids: TuningtheStereoselectivity. J. Am. Chem. Soc.,1986,108:2081~2088.
    [113]王平红.一些金属配合物与DNA相互作用研究:[海南大学硕士学位论文],2006.
    [114] Belmont P., Constant J. F., Demeunynck M. Nucleic Acid Conformation Diversity: fromStructure to Function and Regulation. Chem. Soc. Rev.,2001,30:70~81.
    [115] Rao R., Patra A. K., Chetana P. R. DNA binding and oxidative cleavage activity of ternary(L-proline) copper(II) complexes of heterocyclic bases. Polyhedron,2007,26:5331~5338.
    [116]黄琦,汪维鹏,钟文英.药物分子与DNA相互作用的研究方法.中南药学,2004,2(6):354~357.
    [117]董建方.氨基酸希夫碱铜配合物的合成、晶体结构分析及其与DNA的相互作用:[聊城大学硕士学位论文],2008.
    [118] Liu F., Meadons A., Mcmillin D. R. DNA-binding studies of Cu(bcp)2+and Cu(bcp)2+DNAelongation without intercalation of Cu(bcp)2+. J. Am. Chem. Soc.,1993,115(15):6699~6704.
    [119]吴红星.多胺桥联-2-亚甲基-1,10-邻菲咯啉配合物的合成、表征及其生物活性研究:[南开大学博士学位论文],2005.
    [121]谢韵,张雷,古琴.邻菲咯啉-铜-氨基酸三元配合物与DNA的作用.华南理工大学学报,34(8):70~74.
    [122]Hiort C., Norden B., Rodger A. Enantiopreferential DNA binding of [ruthenium(II)(1,10-phenanthroline)3]2+studied with linear and circular dichroism. J. Am. Chem. Soc.,1990,112:1971~1982.
    [123]江崇球,贺吉香,王金山.EB荧光探针法研究多粘菌素与DNA的作用方式.光谱学与光谱分析,2002,22(1):103~106.
    [124]吴海霞.生物活性分子与DNA的相互作用研究:[西北师范大学硕士学位论文],2005.
    [125] Orlowski R. Z., Stinchcombe T. E., Mitchell B. S. Phase trial of the proteasome inhibitorPS-341in patients with refractory hematlogic malignancies. J Clin. Oncol.,2002,20(2):4420~4427.
    [126] Zavrski I., Jakob C., Schimid P. Proteasome: an emerging target for cancer therapy.Anticancer Drugs,2005,16(5):475~481.
    [127]李丽琴,郑晓军,陈乐贵.蛋白酶体抑制剂药理活性的研究进展.国外医学药学分册,2001,28(3):133~136.
    [128]陈茂营,徐文方.蛋白酶体与蛋白酶体抑制剂.中国药物化学杂志,2007,17(4):249~253.
    [129] Groll M., Ditzel L., Lowe J. Structure of20S proteasome from yeast at resolution. Nature,1997,386:463~471.
    [130] Pickart C. M., Cohen R. E. Proteasomes and their kin: proteases in the machine age. Nat.Rev. Mol. Cell Biol.,2004,5(3):177~187.
    [131] Knowlton I. R., Johnston S. C., Whitby F. G. Structure of the proteasome activatorREGalpha(PA28alpha). Nature,1997,390:639~643.
    [132] Whitby F. G., Master E. I., Kramer L. Structural basis for the activation of20S proteasomesby11S regulators. Nature,2000,408:115~120.
    [133] Kisselev A. F., Apoin T. N., Woo K. M. The size of peptides generated from protein bymammalian26S and20S proteasome. J Biol. Chem.,1999,274(6):3363~3371.
    [134] Groll M., Clausen T. Molecular shredders: how proteasome fulfill their role. Curr. Opin.Struc. Biol.,2003,13(6):665~673.
    [135] Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular proteindegradation. Curr. Opin. Cell Biol.,1995,7(2):215~223.
    [136] King R. W., Deshaies R.J., Peters J. M. How proteolysis drives the cell cycle. Science,1996,274:1652~1659.
    [137]Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell,1994,79(1):13~21.
    [138] Seemuller E., Lupas A., Stock D. Proteasome from thermoplasma acidophilum: a threonineprotease. Science,1995,268:579~582.
    [139] Goldberg A. L. Functions of the proteasome: the lysis at the end of the tunnel. Science,1995,268:522~523.
    [140] Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. CellBiol.,1997,9(6):788~799.
    [141]吴焱秋,柴家科.泛素-蛋白酶体途径的组成及其生物学作用.生理科学进展,2001,32(4):331~333.
    [142]孙启鑫.蛋白酶体抑制剂的抗肿瘤机制及其在白血病中治疗中的应用.国际输血及血液学杂志,2006,29(4):314-316.
    [143] Gataiger M., Jordan R., Lim, M. SkP2is oncogenic and overexpressed in human cancers.Proc. Natl. Acad. Sci. USA,2001,98(9):5043~5048.
    [144]李中海,端木德强,王敬泽.NF活化的信号通路及其生理意义.生物学杂志,2002,19(4):4~6.
    [145] Goldberg A. L., Cascio P., Saric T. The importance of the proteasome and subsequentproteolytic steps in the generation of antigenic peptides. Mol. Immunol.,2002,39:147~164.
    [146] Yang H. J., Landis-Piwowar K. R., Milacic V. Natural compounds with proteasomeinhibitory activity for cancer prevention and treatment. Curr. Protein Pept. Sci.,2008,9(3):227~239.
    [147] Landis-Piwowar K. R., Milacic V., Chen D. The proteasome as a potential target for novelanticancer drugs and chemosensitizers. Drug Resist Update,2006,9(6):263~273.
    [148] Landis-Piwowar K. R., Huo C., Chen D. A Novel Prodrug of the Green Tea Polyphenol(-)-Epigallocatechin-3-Gallate as a Potential Anticancer Agent. Cancer Res.,2007,67:4303~4310.
    [149] Bi S. Y., Wang A. D., Bi C. F. Coordination polymer of zinc based on chiral non-racemictrans-N,N'-bis-(2-hydroxy-1-naphthalidehydene)-(1R,2R)-cyclohexa-nediamine: synthesis,crystal structure, novel coordinational modeles and anticancer activity. Inorganic ChemistryCommunications,2012,15:167~171.
    [150] Fan Y. H., Wang A. D., Bi C. F. Synthesis, crystal structure and anticancer activity of2D-coordination polymer of cerium(III) with chiral Schiff base trans-N,N’-bis-(2-hydroxy-1-naphthalidehydene)-(1R,2R)-cyclohexanediamine. Synthetic Metals,2011,161:1552~1556.
    [151] Xiao Y., Bi C. F., Fan Y. H. Synthesis, characterization and bioactivity of Schiff base copper(II) complexes derived from L-glutamine and L-asparagine. Journal of CoordinationChemistry,2009,18:3029~3039.
    [152] Xiao Y., Bi C. F., Fan Y. H. L-glutamine Schiff base copper complex as a proteasomeinhibitor and an apoptosis inducer in human cancer cells. International Journal of Oncology,2008,33:1073~1079.
    [153] Yang H., Landis-Piwowar K. R., Lu D. Pristimerin induces apoptosis by targeting theproteasome in prostate cancer cells. J Cell Biochem.,2007,103(1):234~244.
    [154] Yang H., Shi G., Dou Q. P. The Tumor Proteasome is a Primary Target for the NaturalAnticancer Compound Withaferin Mol. Pharmacol,2007,71:426~437.
    [155] Julian A. The proteasome: a suitable antineoplastic target. Cancer,2004,4(5):349~360.
    [156]沈子珒,许啸声,李稻.泛素-蛋白酶体及其抑制剂.现代肿瘤医学,2006,14(2):1454~1457.
    [157] Papandreou C. N., Logothetis C. J. Bortezomib as a potential treatment for prostate cancer.Cancer Res.,2004,64:5036~5043.
    [158] Voorhees P. M., Dees E. C., Nell B. The proteasome as a target for cancer therapy. Clin.Cancer Res.,2003,9:6316~6325.
    [159] Chen D., Dou Q. P. New uses for old copper-binding drugs: converting the pro-angiogeniccopper to a specific cancer cell death inducer. Expert Opin. Ther. Targets,2008,12(6):739~748.
    [160]刘桐宇,叶建新.蛋白酶体抑制剂治疗多药耐药肿瘤机制的研究进展.中华肿瘤防治杂志,2007,14(15):1187~1190.
    [161]易文渊,徐波,李敏.蛋白酶体抑制剂逆转多药耐药的研究进展.国外医学药学分册,2007,34(2):87-98.
    [162]Wang M., Wang L. F., Li Y. Z. Antitumour activity of transition metal complexes with thethiosemicarbazone derived from3-acetylumbelliferone. Trans. Met. Chem.,2001,26:307~310.
    [163] Shahabuddin A. R., Hadi S. M., Parish J. H. Strand scission in DNA induced by quercetinin the presence of Cu(II): role of Cu(I) and oxygen free radicals. Carcinogenesis,1989,10(10):1833~1839.
    [164] Raman N., Syedalifathima S., Dhaveethu R. J. Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activitystudies. J. Serb. Chem. Soc.,2008,73(11):1063~1071.
    [165] Hitoshi T., Tamao N., Hideyuki A., Manabu F. Preparation and haracterization of novelcyclic tetranuclear manganese complexes: Mn(X-salmphen)(X-salmphenH2=N,N'-di-substituted-salicylidene-1,3-diaminobenzene). Polyhedron,1997,16:3787~3792.
    [166] Punniyamurthy T., Kalra S. J. S., Iqbal J. Cobalt(II) catalyzed biomimetic oxidation ofhydrocarbons in the presence of dioxygen and2-methylpropanal. TetrahedronLett.,1995,36:8497~8501.
    [167] Sylvain R., Bernier J. L., Waring M. J. Synthesis of a functionalized Salen-copper complexand its interaction with DNA. Org. Chem.,1996,61(7):2326~2331.
    [168] Katia B., Simon L., Anne R. Synthesis and Characterization of New Chiral Schiff BaseComplexeswith Diiminobinaphthyl or Diiminocyclohexyl Moieties as PotentialEnantioselec tive Epoxidation Catalysts. Inorg. Chem.,1996,35:387~391.
    [169] Czernuszewicz R. S., Rankin J. G.,Lash T. D. Fingerprinting Petroporphyrin Structureswith Vibrational Spectroscopy. Resonance Raman Spectra of Nickel(II)Cycloalkanoporphyrins: Structural Effects Due To Exocyclic Ring Size. Inorg. Chem.,1996,35(1):199~209.
    [170]Losier P., Zaworotko M. J., A noninterpenetrated molecular ladder with hydrophobiccavities. Angew. Chem. Int. Ed. Engl.,1996,35:2779~2782.
    [171] Desai S. B., Desai P. B., Desai K. R. Synthesis of some Schiff base thiazolidinones andazetidinones from2,6-diaminobonzol bisthiazole and their activities. HetercyclicCommuni cations,2001,7(1):83~90.
    [172] Liu Y., Wang N., MeiW. Photoinduced cleavage and DNA-binding of the ruthenium(II)polypyridyl complex. Trans. Met. Chem.,2007,32:332~337.
    [173]Li V. S., Choi D., Wang Z. Role of the C-10Substituent in Mitomycin C-1DNA Bonding.J. Am. Chem. Soc.,1996,118(10):2326~2331.
    [174] Zuber G., Quanda J., Hecht S. M. Sequence Selective Cleavage of a DNA Octanucleotideby Chlorinated Bithiazoles and Bleomycins. J. Am. Chem. Soc.,1998,120:9368~9369.
    [175] Gr avert, D. J., Griffin, J. H. Specific DNA cleavage mediated by [SalenMn(III)]+. J. Org.Chem.,1993,58(4):820~822.
    [176]Erkkila K. E., Odom D. T., Barton J. K. Recognition and Reaction of Metallointercalatorswith DNA. Chem. Rev.,1999,99(9):2777~2795.
    [177] Metcalfe C., Thomas J. A. Kinetically inert transition metal complexes that reversibly bindto DNA. Chem. Soc. Rev.,2003,32(4):215~224.
    [178] Arturo S., Giampaolo B., Giuseppe R. The interaction of native DNA with iron(III)-N,N'-ethylene-bis(salicylideneiminato)-chloride. J. Inorg. Biochem.,2004,98(4):589~592.
    [179]Kease D., Arstein D., Harper W. Depression of plasma glutamine concentration afterexercise stress and its possible influence on the immune system. Medical Journal ofAustralia,1995,162(1):15~18.
    [180] Matthews W., Driscoll J., Tanaka K. Involvement of the proteasome invarious degradativeprocesses in mammalian cells. Proc. Nat. Acad.,1989,86(8):2597~2601.
    [181]Zhang H., Liu C. S., Bu X. H. Synthesis, crystal structure, cytotoxic activity andDNA-binding properties of the copper(II) and zinc(II) complexes with1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene. J. Inorg. Biochem.,2005,99:1119~1125.
    [182] Ma H. X., Song J. R., Hu R. Z. Non-isothermal Kinetics of the Thermal Decomposition of3-Nitro-1,2,4-triazol-5-one Magnesium Complex. J. Chem.2003,21(12):1558~1561.
    [183] La ng A., Hatscher C., Wiegert C. Protease-catalysed coupling of N-protected amino acidsand peptides with4-aminoantipyrine. Amino Acids,2009,36(2):333~340.
    [184] Van Staden J. F., Beyene N. W., Stefan R. I. Sequentialinjection spectrophotometricdetermi nation of ritodrine hydrochloride using4-aminoantipyrine. Talanta,2005,68(2):401~405.
    [185] Kasthuri J., Santhanalakshmi J., Rajendiran N. Platinum nanoparticle catalysed coupling ofphenol derivatives with4-aminoantipyrine in aqueous medium. Transition Met. Chem.,2008,33(7):899~905.
    [186] Katsaounos C. Z., Paleologos E. K., Giokas D. L. The4-aminoantipyrine method revisited:Determination of trace phenols by micellar assisted preconcentration. Int. J. Environ.Chem.,2003,83(6):507~517.
    [187] Punniyamurthy T., Kalra S. J. S., Iqbal J. Cobalt(II) catalyzed biomimetic oxidationofhydro carbons in the presence of dioxygen and2-methylpropanal. Tetrahedron Lett.,1995,36:497~500.
    [188] He S. Y., Chen J. L., Zhang W. P. Interactions and Biological Activity of Rare Earth.Perchlorate Complexes with Alanine and Imidazole. Journal of Rare Earths,2001,19(1):66~68.
    [189] Katia B., Simon L., Anne R. Synthesis and Characterization of New Chiral Schiff BaseComplexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as PotentialEnantioselec tive Epoxidation Catalysts. Inorg. Chem.,1996,35:387~96.
    [190] Wang A. D., Bi C. F., Fan Y. H. Structure and coordination environment of the zinccomplex with vanillin of double-stranded helix. Russ. J. Coord. Chem.,2008,34:475~479.
    [191] Watanabe K., Okajima A., Shitanda I. Spectrophotometric determination of small amountsof cadmium(II) using formation of zinc(II) complex with anionic porphyrin asan indicatorreaction. Bunseki Kagaku,2010,59(7):589~595.
    [192]Choi D. W., Koh J. Y. Zinc and brain injury. Annu. Rev. Neurosci.,1998,21:347~375.
    [193] Valeur B., Leray I. Design principles of fluorescent molecular sensors for cationrecognition. Coord. Chem. Rev.,2000,205:3~40.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.