长白山天池火山全新世爆炸喷发的岩浆脱气作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长白山位于我国东北吉林省与朝鲜民主主义共和国的交界处,在我国的部分地处吉林省延边朝鲜族自治州安图县和白山市抚松县境内,历经悠久喷发而形成了目前所见的巨大规模山体。
     本论文讨论了天池火山全新世喷发物的矿物和岩石化学演化特征,通过对主矿物碱性长石斑晶中熔融包裹体的高温热台测试、电子探针分析和红外光谱分析测试,多方面探讨天池火山在全新世爆炸喷发过程中的岩浆脱气作用和对环境的灾害性影响。
     根据岩浆化学演化和地球物理深部探测结果,天池火山之下存在两个不同的岩浆房——地幔岩浆房和地壳岩浆房。长白山天池火山从来自地幔的造盾阶段钾质粗面玄武岩母岩浆,经历造锥阶段地壳岩浆房的结晶分异作用形成粗面岩,造锥晚期出现碱流岩,全新世则以爆炸喷发的碱流质浮岩为主,最后喷出少量粗面质熔结凝灰岩和浮岩。天池火山的岩浆演化符合分离结晶作用的演化趋势,橄榄石、辉石和斜长石等主矿物的结晶分异起了决定性的作用。造盾钾质粗面玄武岩中橄榄石成分为透铁橄榄石;造锥和全新世喷发物中橄榄石接近Fa端员。造盾阶段除出现普通辉石外,在基质中有少量次透辉石;而造锥阶段和全新世喷发物中为富Fe贫Mg的钙铁辉石。造盾阶段的长石成分为斜长石,属于基性的拉长石;造锥阶段和全新世喷发时大量出现的是富K、Na的高温碱性长石,成分也从歪长石(Na_2O>K_2O)向透长石(K_2O>Na_2O)演化。矿物化学成分和岩石主量元素变化一致表明,岩浆是从相对富MgO、CaO向富SiO_2、Na_2O、K_2O方向演化。这些特点与火山岩REE、微量元素和Sr-Nd同位素地球化学一道,表明天池火山全新世火山岩与造锥、造盾火山岩是同源岩浆演化的产物,基性岩浆分异的总趋势为越向晚期碱性越强。
     天池火山在全新世曾有多次喷发,根据天文峰一带的喷发物特征和层序,从早到晚分为三个喷发期:第一喷发期(Ⅰ),距今约5000~4000年的淡黄色碱流质浮岩;第二喷发期(Ⅱ),公元1000年左右大规模喷发(下文称“千年大喷发”)的灰白色碱流质浮岩;以及第三喷发期(Ⅲ),距今约300~100年前喷发的灰黑色粗面质浮岩及熔结凝灰岩。泡沫状浮岩和气孔发育的各种火山碎屑岩,说明大部分气体已通过岩浆脱气作用散发到空气中。
     在天池火口和圆池(天池东30 km)的千年大喷发浮岩碱性长石斑晶中发现两种形貌、相态、成分都截然不同的熔融包裹体,分别称“火口组”和“园池组”。前者寄主晶为透长石,熔融包裹体棕黄色,形态极不规则,气泡丰富,部分包裹体有脱玻化现象并含有子晶,说明当时喷发后有足够的冷却时间;后者寄主晶为歪长石,熔融包裹体无色透明且不含子晶,多为浑圆形,其成分与寄主晶成分相平衡。电子探针测试发现,“火口组”和“圆池组”样品在TAS分类图上分属粗面岩和流纹岩两种截然不同的化学成分,而根据化学成分和CaO/Al_2O_3比值判断,“圆池组”熔融包裹体成分比“火口组”成分更为演化,为千年大喷发前岩浆房中存在成分不同的岩浆提供了证据。
     天池火山全新世三期喷发物(碱流质-碱流质-粗面质)中熔融包裹体的均一温度:第一喷发期938℃~1014℃之间;千年大喷发期,分别是850℃~926℃和1005℃~1024℃之间;第三喷发期974℃~1062℃之间。上述实验结果说明第一、三期喷发的岩浆温度相差不大,但出现较宽的均一温度范围,这不仅与熔融包裹体的大小、实验的升温速率有关,还可能与它们的成分不同也有密切关系。对于千年大喷发期情况则较为复杂,实验结果表明当时有两个不同温度段的熔体存在。
     “差异法”数据显示挥发分H_2O的情况与Cl相同,含Cl高的“圆池组”熔融包裹体含H_2O量也高,它们之间存在着正相关关系。经Nicolet Magna-IR 550红外光谱仪对熔融包裹体中H_2O的直接测定,千年大喷发产物中熔融包裹体的含水量高达1.6%~3.6%,这是国内首次发表的对熔融包裹体中H_2O的直接测定数据。此次测试的所有样品中都没有检测到CO_2的明显谱峰,说明当时CO_2含量低于检测限。而两组样品中S含量相近。岩浆中S不仅在喷发时脱气,更可能是一个连续的脱气过程,喷发时的脱气量仅占总脱气量的一部分。研究还表明“圆池组”包裹体比“火口组”包裹体经历了更广泛的S脱气,前者S/Cl比值比后者低得多。上述分析结果表明,天池火山在发生千年大喷发时极富碱质的流纹质岩浆中已富集了相当数量的H_2O和Cl,喷发时强烈脱气,这决定了当时发生的是爆炸式喷发。根据当时火山喷出物的总质量与各挥发分的浓度,利用“岩石学法”估算喷出的S和Cl含量达到百万吨和千万吨数量级,挥发分H_2O的含量还要更高。在有史记载以来的火山喷发中,天池火山的这次大喷发,其喷出的卤素含量可列全球火山喷发中的第二位。
     “火口组”和“圆池组”熔融包裹体的存在对天池火山的千年大喷发具有重要意义,揭示了喷发前岩浆房的非单一成分,“火口组”代表了岩浆房中较原始的成分,挥发分(H_2O、Cl)含量较低;“圆池组”代表了相对演化的成分,挥发分含量也较高。两种熔体赋存于地壳岩浆房的不同层位,分别被不同的碱性长石结晶时包裹于矿物内,千年大喷发时通过不同的岩浆通道喷出地表,它们可能是在同次大喷发的不同序列中喷出的。
     天池火山造盾阶段的钾质粗面玄武岩来源于地幔岩浆房的喷发,造锥阶段粗面岩和全新世碱流岩来源于地壳岩浆房的喷发。岩浆的结晶分异作用和混合作用是天池火山岩浆演化的两个最重要过程,前者形成天池火山双峰式火山岩分布特征,后者成为天池火山千年大喷发的触发机制。天池火山在晚更新世-全新世碱流质岩浆主喷发期还兼有少量玄武质粗安岩、粗安岩或粗面质岩浆的交替喷出,揭示了天池火山地壳岩浆房熔体的分层结构特点,地壳岩浆房中岩浆进一步演化,逐渐富集大量挥发分,由于地幔粗面玄武质岩浆的注入导致不同层位岩浆的扰动和混合作用,触发了天池火山的千年大喷发。
The Changbai Mountains are located on the border between Jilin province, China and DPRK. The parts of the mountains in China territory belong to Antu county of Yanbian Chaoxian Autonomous State and Fusong county of Baishan, Jilin province. With its long eruption history over 2 Ma, the caldera is now filled with water and is called Tianchi ("the sky lake") volcano.
     This thesis discusses the characteristics of minerals and petrology-chemistry evolution of Tianchi volcanic rocks, magma degassing effect and its disaster effect on environment during Holocene explosive eruptions through heating stage experiments, electron microprobe analyses and Fourier transform infrared spectroscopy for melt inclusions hosted in alkaline feldspars.
     The studies of magma evolution and magnetotelluric sounding results show that there are two magma chambers beneath the Tianchi volcano, i.e., mantle reservoir and crust chamber. The Tianchi volcano experienced the magma evolution from parental potassic trachybasalt coming from mantle reservoir in the shield-forming stage, trachyte and lately comendite coming from crust chamber in the cone-forming stage after crystallization, to comenditic pumice and some trachytic welded tuff and pumice in Holocene. The magma evolution of the Tianchi volcano was deeply affected by crystallization differentiation, in which fractional crystallizations of olivines, pyroxenes and plagioclases played important roles. Fo values of olivines were between 54 and 70 in the shield-forming stage, and they quickly decreased their Fo values to almost the end member (fayalite) in the cone-forming stage and Holocene eruptions. Augite and plagioclase (labradorite) phenocrysts appeared in the shield-forming stage, while hedenbergite and alkaline feldspar (anorthoclase and sanidine) appeared in the cone-forming stage and Holocene eruptions. Chemical compositions of minerals and major element variations all indicate that the magma evolutionary trend is from MgO- and CaO-rich to SiO_2-, K_2O- and Na_2O-rich. These features, together with characteristics of REE, trace elements and Sr-Nd isotope ratios, suggest that the eruption materials of Holocene, cone-forming stage and shield-forming stage are the products evolved from a same magma reservoir. As the original magma fractionated and increased its alkali content gradually when evolved, therefore alkali phenocrysts appeared in the melt. The evolution of phenocrysts in three eruption stages is in conformity with the evolutionary trend of fractional crystallization.
     It is well known that there occurred several eruptions of the Tianchi volcano in Holocene. In this thesis, it is suggested that the Holocene eruptions of the Tianchi volcano include three eruption periods according to volcanic strata in Tianwen Peak, i.e., Eruption Period I, 5000 ~ 4000 a BP bright yellow comenditic pumice, Eruption Period II ("The millennium explosive eruption" hereafter), 1000 a BP gray comenditic pumice and pyroclastic flow, and Eruption Period III, 300~100 a BP black trachytic pumice and welded tuff. Vesicular pumice and pyroclastics imply the volatile degassing through magma eruptions and lava flows. The thesis aims to study the magma degassing effect of Holocene explosive eruptions of the Tianchi volcano, Changbai Mountains. Among them, Eruption Period II is the study focus for its widespread and characteristic pumice.
     Melt inclusions are largely found in alkaline feldspars from the millennium eruption of the Tianchi volcano. Most of them have more than one bubble and some of them have daughter crystals. These melt inclusions can be separated into two distinct groups (nominated as "C' and "Y" group in this thesis) according to their characteristics of shape, color and number of bubble. "C" group melt inclusions, collected on the crater rim, brown to yellow, have irregular shapes and lots of bubbles. Some of them devitrified and have daughter crystals, indicating the long cooling time of magma. While the "Y" group melt inclusions, transparent, with no color and daughter crystal, collected in Yuanchi, 30 km east of the caldre, have roughly round shape, implying the equilibrium with host crystal. Electron microprobe analysis data show the two groups of melt inclusions are trachyte and rhyolite respectively and composition of the "Y" group is more evolved than the "C" group according to CaO/Al_2O_3 ratio, which indicates the magma chamber has different compositions prior to the millennium explosive eruption.
     This work has have experimentally studied the homogenization temperatures of the melt inclusions in host feldspars from these eruptions of the Tianchi volcano in Holocene using Leitz 1350 heating stage performed at Laboratoire Pierre Sue, CNRS-CEA, France. For Eruption I, the homogenization temperatures (T_h) vary from 938℃to 1014℃. There are two T_h intevals for Eruption II: 850℃~926℃and 1005℃~1024℃respectively. And 974℃~1062℃are measured homogenization temperatures for Eruption III. There are not distinct differences between homogenization temperatures in Eruption I and III, but for Eruption II, the things are rather complicated, i.e. there exist two homogenization temperatures groups.
     Using the by-difference method, it was found that H_2O concentrations in two groups are the same situation as chlorine, i.e., the "Y" group melt inclusions have both high chlorine and water content. Analysed by Fourier Transform Infrared Spectroscopy Nicolet Magna-IR 550, these melt inclusions are found to have high water concentrations of 1.6 %~3.6 %, which are first published data for water contents in melt inclusions using FTIR in China. CO_2 hasn't been detected in these analyses, indicating CO_2 concentration is below the detection limit. Sulphur contents are somehow similar in two groups. It will degas continuously rather than eruption degassing. So the degassing quantity of sulpher for the millennium eruption may also be underestimated. The study indicates that melt inclusions in the "Y" group undergo more sulphur degassing than those in the "C" group, and S/Cl ratios in the "Y" group is much lower than those in the "C" group. According to the data, the alkaline rhyolitic magma concentrated large quantities of water and chlorine prior to the eruption. The strongly degassed volatile made the millennium eruption occur more explosively. Based on the data of total mass of eruption materials, volatile concentration in melt inclusion and matrix glass, calculated S and Cl contents degassed during that eruption reach the magnitude of several to tens of million tons, and degassed water was even higher than S and Cl. The quantity of halogen projected to the atmosphere was rather high and listed the second in documented history.
     The discover of "C" and "Y" group melt inclusions has important significance for the millennium explosive eruption of the Tianchi volcano and discloses the non-single composition of magma prior to the eruption. The melt inclusion in the "C" group indicates comparatively primitive composition with low volatile (H_2O and Cl), while that of the "Y" group implies the more evolved magma with high volatile. The two melts were trapped in alkaline feldspars when depositing at different levels of the crust magma chamber, and were erupted through different conduits when the millennium explosive eruption occurred.
     Crystallization differentiation and magma mixing are two important processes in magma evolution of the Tianchi volcano, the former of which determines the bimodal compositional distribution of volcanic rocks, and the latter became the triggering factor for the great eruption ~ 1000 years ago. During the main eruption period of rhyolite magma from late Pleistocene to Holocene, some basaltic trachyandesite, trachyandesite or trachyte magma erupted episodicly throughout the cone-forming stage, which reveals the fact that there was a multi-layer magma chamber system beneath the Tianchi volcano. The trachybasalte influx from the mantle reservoir disturbed the magma layers and caused the magma mixing, then triggered the millennium explosive eruption.
引文
陈晋阳,郑海飞,曾贻善.2002.流体包裹体的喇曼光谱分析进展,矿物岩石地球化学通报,21(2):133-138
    崔钟燮,金东淳,李霓.2000.长白山天池火山公元1199-1200年大喷发历史记载的发现及其意义,岩石学报,16(2):191-193
    崔钟燮,刘嘉麒.2006.长白山天池火山公元1014-1019年大喷发的历史记录,地质论评,52(5):624-627
    崔钟燮,魏海泉,刘若新.1995.长白山天池火山喷发历史记载资料的考证,见:刘若新主编,火山作用与人类环境,北京:地震出版社,36-39
    鄂英岚,赵大升主编.1987.中国东部新生代玄武岩及深源岩石包体,北京:科学出版社,1-490
    樊祺诚,刘若新.1992.中国东部新生代玄武岩稀土元素地球化学,中国新生代火山岩年代学与地球化学,北京:地震出版社,339-365
    樊祺诚,刘若新,魏海泉等.1999.长白山天池火山全新世喷发与岩石地球化学特征,地质论评,45(增刊):263-271
    樊祺诚,史兰斌等.2000.长白山天池火山区、腾冲火山区、五大连池火山区现代岩浆演化与火山区古地温模型(95-11-03-02-04子专题总结报告),1-77
    樊祺诚,隋建立,孙谦,李霓,王团华.2005.天池火山千年大喷发的岩浆混合作用与喷发机制初步探讨,岩石学报,21(6):1703-1708
    樊祺诚,隋建立,王团华,李霓,孙谦.2006.长白山天池火山钾质粗面玄武岩的喷发历史与演化,岩石学报,22(6):1449-1457
    樊祺诚,隋建立,王团华,李霓,孙谦.2007.长白山火山活动历史、岩浆演化与喷发机制探讨,高校地质学报,待刊
    樊祺诚,孙谦,李霓等.2005.镜泊湖全新世火山岩——岩浆的多样性,自然科学进展,15(8):943-950
    樊祺诚,张宏福,隋建立等.2005.岩浆底侵作用与汉诺坝现今壳-幔边界组成——捕虏体岩石学与地球化学证据,中国科学(D),35(1):1-14
    方文昌.1983.吉林省新生代火山岩及其构造环境,吉林地质,2:25-33
    郭正府,刘嘉麒.1998.张家口中生代火山盆地火山喷发对古气候的影响,岩石学报,14(3):318-331
    郭正府,刘嘉麒,汉景泰等.2005.长白山天池火山气体对环境的影响及潜在火山灾害研究,中国科学(D辑),35(8):781-789
    郭正府,刘嘉麒,隋淑珍等.2001.白头山火山公元1199/1200年喷发的火山气体总量估算及其意义,中国科学(D辑),31(8):668-676
    郭正府,刘嘉麒,汪筱林.2003.辽西中生代火山喷发对古气候和古脊椎动物生存环境的影响,中国科学(D辑),33(1):59-71
    郭正府,汪筱林.2002.火山活动与辽西四合屯脊椎动物集群死亡关系的初步研究,岩石学报,18(1):117-125
    何知礼.1982.包体矿物学,北京:地质出版社,1-304
    环文林,时振梁,鄢家全.1982.中国东部及邻区中新生代构造演化与太平洋板块运动,地质科学,2:179-190
    黄伟林,薛理辉,彭东涛.1990.利用U-1000型激光拉曼探针测定流体包裹体气体成分的研究,矿物学报,10(1):1-7
    黄小龙,安徽女山麻粒岩包体的成因及其深部动力学意义,中国科学院广州地球化学研究所博士后研究工作报告,2002,1-95
    计凤桔,李建平,郑荣章.1999.长白山天池火山近代喷发物的热释光(TL)年代学初步研究,地质论评,45(增刊):282-286
    金伯禄,张希友.1994.长白山火山地质研究,延吉:东北朝鲜民族教育出版社,1-223
    赖绍聪.1999.岩浆作用的物理过程研究进展,地球科学进展,14(2):153-158
    李大明,陈文寄,李齐.1999.年轻火山岩的K-Ar年龄与过剩氩——二元混合模式及过剩氩影响的定量分析,科学通报,44(21):2341-2345
    李福春,朱金初,金章东.2000.熔融包裹体研究的最新进展,世界地质,19(1):8-14
    李福春,朱金初,金章东.2000.岩浆中主要挥发份含量-熔融包裹体和淬火玻璃证据,地质地球化学,28(2):8-13
    李霓,刘若新.2000.长白山天池火山全新世大喷发挥发性气体释放量的分析和估算,岩石学报,16(3):357-361
    李霓.2000.火山喷发的气体灾害,自然灾害学报,9(3):127-132
    李霓,樊祺诚,孙谦,张文兰.2004.长白山天池火山岩浆演化——来自主矿物成分的证据,岩石学报,20(3):575-582
    李霓,吴树青.2004.熔融包裹体及其挥发分研究概况及分析方法简析,地球与环境,32(3-4):20-26
    李霓,Nicole Metrich,樊祺诚.2006.长白山天池火山千年大喷发岩浆含水量研究——熔融包裹体含水量的红外光谱测试,岩石学报,22(6):1465-1472
    李霓,Nicole Metrich,樊祺诚.2007.长白山天池火山全新世三期浮岩长石斑晶中熔融包裹体高温热台研究,地震地质,待刊
    李齐,李大明等.2000.三个火山区火山喷发历史时序(95-11-03-01-01子专题总结报告)
    李晓东.1995.火山活动对全球气候的影响,北京:中国科学技术出版社,1-143
    李晓东,王绍武.1995.不同纬度和季节的火山喷发对全球气候的影响,见:刘若新主编,火山作用与人类环境,北京:地震出版社,132-141
    刘嘉麒.1983.长白山地区新生代火山活动研究,1981届硕士学位论文集,北京:科学技术 出版社,343-355
    刘嘉麒.1985.论中国东北新生代火山活动与大陆裂谷系——火山岩地质年代学与地球化学证据,中国科学院地质研究所博士学位论文,1-95
    刘嘉麒.1987.中国东北地区新生代火山岩的年代学研究,岩石学报,4:21-31
    刘嘉麒.1988.中国东北地区新生代火山幕,岩石学报,1:1-10
    刘嘉麒.1989.中国第四纪火山,中国第四纪研究,8(1):180-185
    刘嘉麒.1999.中国火山,北京:科学出版社,1-219
    刘嘉麒,王文远.1997.第四纪地质定年与地质年表,第四纪研究,3:193-202
    刘明军,顾梦林,孙振国等.2004.长白山天池火山主断裂活动与热液蚀变带,中国地震,20(1):64-72
    刘若新(主编).1992.中国新生代火山岩年代学与地球化学,北京:地震出版社,1-43
    刘若新主编.2000.中国的活火山,北京:地震山版社,1-114
    刘若新,樊祺诚,魏海泉,李霓.1999.中国活火山研究,地质论评,45(增刊):3-15
    刘若新,樊祺诚,郑祥身等.1998.长白山天池火山的岩浆演化,中国科学(D辑),28(3):226-231
    刘若新,李继泰,魏海泉.1992.长白山天池火山——一座具潜在喷发危险的近代火山,地球物理学报,35(5):661-665
    刘若新,仇士华,蔡莲珍等.1997.长白山天池火山最近一次大喷发年代研究及其意义,中国科学(D辑),27(5):437-441
    刘若新,魏海泉,李继泰等.1995.长白山天池火山,见:刘若新主编,火山作用与人类环境,北京:地震出版社,1-13
    刘若新,魏海泉,李继泰等.1998.长白山天池火山近代喷发,北京:科学出版社,1-159
    刘若新,魏海泉,汤吉等.1996.长白山天池火山研究进展,地震地磁观测与研究,17(4):2-11
    刘祥.2006.长白山火山历史上最大火山爆发火山碎屑物层序与分布,吉林大学学报(地球科学版),36(3):313-318
    刘祥,向天元.1997.中国东北地区新生代火山和火山碎屑堆积物资源与灾害,长春:吉林火学出版社,1-161
    卢焕章,郭迪江.2000.流体包裹体研究的进展和方向,地质论评,46(4):385-392
    卢焕章,王卿铎等译,(EDWIN ROEDDER著),流体包裹体,中南工业大学出版社,上册1985,1-303,下册1986,1-272
    马昌前.1987.硅酸岩熔体黏度、密度及其计算方法,武汉地质学院—地质科技情报,6(2):142-150
    马昌前.1989.结晶分异作用的岩浆动力学条件,地球科学—中国地质大学学报,14(3):245-252
    邱家骧.1995.岩浆岩岩石学,北京:地质出版社,1-340
    任启江著.1991.火成岩及其有关矿床中的钛铁氧化物研究,北京:科学出版社,1-249
    上官志冠,孙明良.1996.长白山天池火山区幔源稀有气体释放特征,科学通报,41(8):1695-1698
    上官志冠,郑雅琴,董继川.1997.长白山天池火山地热区逸出气体的物质来源,中国科学(D辑),27(4):318-324
    宋海远(主编).1990.长白山火山研究,延吉:延边大学出版社
    孙樯,郯海飞,谢鸿森等.2001.硅酸盐熔体结构研究进展及意义,岩石学报,17(2):332-336
    汤德平.1990.吉林省白头山火山岩的岩石学研究,现代地质,4(1):64-77
    汤吉,邓前辉,赵国泽等.2001.长白山天池火山区电性结构和岩浆系统,地震地质,23(2):191-200
    汤吉,刘铁胜,江钊等.1997.长白山天池火山区大地电磁测深初步观测,地震地质,19(2):164-170
    汤吉,赵国泽,王继军等.2006.基于地下电性结构探讨中国东北活动火山形成机制,岩石学报,22(6):1503-1510
    田丰,汤德平.1989.吉林省长白山地区新生代火山岩的特点及成因,岩石学报,2:49-64
    町田洋.1997.大规模火山喷发对地球环境变化的作用,〖火山、地震、灾害、环境〗(李一兵,张德元编译),36-45
    王非,陈文寄,彭子成等.1999.腾冲、长白山年轻火山岩铀系不平衡TIMS法年代学研究,地质论评,45(增刊):914-925
    王季平(主编).1989.长白山志,长春:吉林文史出版社,1-430
    王莉娟.1998.流体包裹体成分分析研究,地质论评,44(5):496-501
    王团华.2006.长白山区图们江流域新生代火山活动及其构造意义,中国地震局地质研究所博士学位论文,1-91
    王永强,张招崇,徐培苍,刘民武.1999.硅酸盐熔体结构的研究进展和问题,地球科学进展,14(2):168-171
    魏海泉,金伯禄,刘永顺.2004.长白山天池火山地质学研究的若干进展与灾害分析,岩石矿物学杂志,23(4):305-312
    魏海泉,李春茂,金伯禄等.2005.长白山天池火山造锥喷发岩浆演化系列与地层划分,吉林地质,24(1):22-27
    魏海泉,刘若新,郑德文等.1999.长白山天池火山熔融包裹体均一过程研究及地质意义,地质论评,45(增刊):248-256
    魏海泉,Melnik O,刘永顺,Barmin A,sparks RSJ.2006.火山通道岩浆流动动力学模型在天池火山喷发过程中的应用,岩石学报,22(12):3007-3013
    吴才来,李兆鼐,尚如相.1997.长白山地区新生代火山岩及其幔源包体的矿物化学及矿物包裹体研究,岩石矿物学杂志,16(4):289-302
    吴才来,李兆鼐,尚如相.1998.长白山地区新生代火山岩浆作用动力学及环境效应,中国区域地质,17(3):291-299
    吴利仁,翟明哲,郑祥身等.1985.中国东部新生代火山岩,岩石学报,1985,1(4):1-23
    夏林圻.1987.岩浆包裹体研究在火山岩石学中的地位,岩石学报,1987,2:51-63
    复林圻.1988.岩浆包裹体化学成分研究,岩石矿物学杂志,7(1):1-19
    夏林圻.1990.论五大连池火山岩浆演化,岩石学报,1:13-27
    夏林圻,R.Clocchiatti.1986.印度尼西亚克拉卡托火山安山质熔岩斑晶矿物中的岩浆包裹体,地球化学,3:1-12
    夏林圻,徐培苍,王之海.1990.岩浆包裹体挥发组分的研究,地球化学,2:108-116
    夏群科,潘尤杰,陈道公等.2000.碱性玄武岩中长石巨晶的结构水:红外光谱和核磁共振谱研究,岩石学报,16(4):485-491
    解广轰,王俊文.1992.长白山地区新生代火山岩的地球化学研究,见刘若新(主编):中国新生代火山岩年代学与地球化学,北京:地震出版社,201-212
    辛国君.1997.气温变化的层次结构的外部成因浅析,北京大学学报(自然科学版),33(5):600-605
    许东满,郑祥身,许湘希.1993.长白山天池地区全新世以来火山活动及其特征,第四纪研究,1993,1:85-93
    杨清福,史兰斌,陈孝德,陈波,张羽.2006.长白山天池火山一次近代喷发物的特征,地震地质,28(1):71-83
    尹功明,业渝光,万京林等.1999.长白山地区近代火山岩的ESR测年研究,地质论评,45(增刊):287-293
    尹金辉,郑勇刚,刘粤霞.2005.长白山天池火山炭化木的~(14)C年代及其意义,地震地质,27 (1):83-88
    张秉良.2006.长白山天池火山玻璃和长石特征研究,地震地质,28(3):351-357
    张成科,张先康,赵金仁等.2002.长白山天池火山区及邻近地区壳幔结构探测研究,地球物理学报,45(6):812-820
    张招崇,李树才.2000.火山喷发过程中岩浆脱气率和脱气量的估算方法及其意义,岩石矿物学杂志,19(4):307-314
    赵大鹏,雷建设,唐荣余.2004.中国东北长白山火山的起源:地震层析成像证据,科学通报,49(14):1439-1467
    赵良超,于学信,胡雅安.1982.我国吉林省高铁铁橄榄石(莱河矿)的研究,科学通报,12:744-747
    郑祥身.1983.长白山地区新生代火山岩的成因演化特征,1981届硕士学位论文集,北京:科学技术出版社,258-267
    郑祥身.1983.白头山碱流岩斑晶中固态包裹体,吉林地质,1:77-79
    郑祥身,李家驹.1986.白头山碱流岩斑晶中固态包裹体成分的研究,岩石学报,2(1):33-39
    郑祥身,许湘希,许东满.1998.长白山天池老虎洞期火山活动地质特征及成因意义,地质科学,33(4):426-434
    朱永峰.1994.熔融包裹体中水含量的测定方法,岩石学报,10(3):311-316
    祖金华,廉雨方,赵国泽,郑雅琴.1999.长白山聚龙泉地温梯度和热流的估算,地质论评,45(增刊):226-230
    Abbatt J P D, Molina M J. 1992. The heterogeneous reaction of HOCl+HCl→Cl_2+H_2O on ice and nitric acid trihydrate: reaction probabilities and stratospheric implications, Geophy. Res. Lett., 19 (5): 461-464
    Anderson Jr., A T, Newman S, Williams S, et al. 1989. H_2O, CO_2, Cl and gas in Plinian and ash-flow Bishop rhyolite. Geology, 17: 221-225
    Angell J K. 1998. Impact of El Chichon and Pinatubo on ozonesonde profiles in north extratropics, Geophy. Res. Lett., 25 (24): 4485-4488
    Bacon C R, Newman S, Stolper E. 1992. Water, CO_2, Cl, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon, Am. Mineral., 77: 1021-1030
    Barclay J, Carroll M, Houghton, et al. 1996. Pre-emptive volatile content and degassing history of an evolving peralkaline volcano, J Volcanol Geotherm Res, 74: 75-87
    Belkin H E, Vivo B D, Torok K, et al. 1998. Pre-eruptive volatile content, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas pre-A.D. 1631, J Volcanol Geotherm Res, 82: 79-95
    Bluth G J S, Doiron S D, Schnetzler C C, et al. 1992. Global tracking of the SO_2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophy. Res. Lett., 19 (2): 151-154
    Bullard F M. 1980. Volcanoes in the world, Texas Univ. Press
    Burnham C W. 1979. The importance of volatile constituents, In: The evolution of the igneous rocks, Yoder, Jr. H S (ed.), Princeton, New Jersey: Princeton University Press, 439-82
    Carroll M R, Holoway J R (eds.). 1994. Volatiles in magmas, Reviews in mineralogy, (Series editor: Ribbe P H, Mineralogical Society of America), V30: 1-517
    Cas R A F, Wright J V. 1987. Volcanic and successions, modem and ancient, ALLEN & UNWIN, London, 1-528
    Cervantes P, Wallace P. 2003. Magma degassing and basaltic eruption styles: a case study of 2000 year BP Xitle volcano in central Mexico, J Volcanol Geotherm Res, 120: 249-270
    Danyushevsky L V, McNeill A W, Sobolev A V. 2002. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications, Chemical Geology, 183: 5-24
    Deshler T, Hofmann D J, Johnson B J, Rozier W R. 1992. Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyoming during the summer of 1991, Geophy. Res. Lett., 19 (2): 199-202
    Devine J D, Gardner J E, Brack H P, et al. 1995. Comparison of microanalytical methods for estimating H_2O contents of silicic volcanic glasses, Am. Mineral., 80:319-328
    Devine J D, Sigrudsson H, Davis A N, Self S. 1984. Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects, J. G. R., 89 (B7): 6309-6325
    Dixon J E, Clague D A. 2001. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component, Jour. of Petrology, 42 (3): 627-654
    Dunbar N W, Hervig R L, Kyle P R. 1989. Determination of pre-eruptive H_2O, F and Cl contents of silicic magmas using melt inclusions: examples from Taupo volcanic center, New Zealand, Bull Volcanol, 51:177-184
    Dunbar N W, Kyle P R. 1992. Volatile contents of obsidian clasts in tephra from the Taupo Volcanic Zone, New Zealand: Implications to eruptive processes, J Volcanol Geotherm Res, 49: 127-145
    Frezzotti M. 2001. Silicate-melt inclusions in magmatic rocks: applications to petrology, Lithos, 55:273-299
    Fulignati P, Marianelli P, Proto M, Sbrana A. 2004. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy), J Volcanol Geotherm Res, 133:141-155
    Fulignati P, Marianelli P, Metrich N, Santacroce R, Sbrana A. 2004. Towards a reconstruction of the magmatic feeding system of the 1944 eruption of Mt Vesuvius, J Volcanol Geotherm Res, 133: 13-22
    Gardner J E, Thomas R M E, Jaupart C, Tait S. 1996. Fragmentation of magma during Plinian volcanic eruptions, Bull Volcanol, 58:144-162
    Gerlach T M, Westrich H R, Casadevall T J, Finnegan D L. 1994. Vapor saturation and accumulation in magmas of the 1989-1990 eruption of Redoubt Volcano, Alaska, J Volcanol Geotherm Res, 62:317-337
    Gerlach T M, McGee K A. 1998. Rates of volcanic CO_2 degassing from airborne determinations of SO_2 emission rates and plume CO_2/SO_2: Test study at Pu'u'O'o cone, Kilauea volcano, Hawaii, Geophy. Res. Lett., 25 (14): 2675-2678
    Gill J, Dunlap C, McCurry M. 1992. Large volume, Mid-latitude, Cl-rich volcanic eruption during 600-1000AD, Baitoushan, China, Volcanism and Global Change, March 23-27, Hito, Hawaii, AGU Chapman
    Halter W E, Pettke T, Heinrich C A, Rothen-Rutishauser B. 2002. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification, Chemical Geology, 183:63-86
    Hauri E H, Kent A J R, Arndt N. 2002. Melt inclusions at the millennium: toward a deeper understanding of magmatic processes. Chem. Geol., 183:1-3
    Hauri E, Wang J, Dixon J E, et al. 2002. SIMS analysis of volatiles in silicate glasses, 1: Calibration, matrix effects and comparisons with FTIR, Chemical Geology, 183:99-114
    Hauri E. 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions, Chemical Geology, 183:115-141
    Hoff R M. 1992. Differential SO_2 column measurements of the Mr. Pinatubo volcanic plume, Geophy. Res. Lett., 19 (2): 175-178
    Horn S. Schmincke H.-U. 2000. Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD, Bull Volcanol, 61:537-555
    Ihinger P D, Zhang Y, Stolper E M. 1999. The speciation of dissolved water in rhyolitic melt, Geochim. Cosmichim. Acta, 63 (21): 3567-3578
    Johnson R W. 1993. Volcanic Eruptions & Atmospheric Change, Australian Government Publishing Service, 1-36
    Kent A J R, Elliott T R. 2002. Melt inclusions from Marianas arc lavas: implications for the compostition and formation of island arc magmas, Chemical Geology, 183:263-286
    Khitarov N I, Kadik A A. 1973. Water and carbon dioxide in magmatic melts and peculiarities of the melting process, Contr. Mineral. and Petrol., 41:205-215
    Landi P, Metrich N, Bertagnini A, Rosi M. 2004. Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy), Contrib Mineral Petrol, 147: 213-227
    Larsen J F, Gardner J E. 2004. Experimental study of water degassing from phonolite melts: implications for volatile oversaturation during magmatic ascent, J Volcanol Geotherm Res, 134: 109-124
    Li X, Wang S, Bi M, Liu R. 1997. Climate effect of the last large eruption of Tianchi volcano. Acta Meteorologica Sinaca, 11 (2): 143-153
    Liu R, Wei H, Li X. 1997. Study on Tianchi volcano, Changbaishan. In: Proceeding 30th Int'L Geol. Congr., Part 18 Yuan et al. (Eds), VSP 1997
    Lowenstern J B. 2003. Melt inclusions come of age: volatiles, volcanoes, and Sorby's legacy. Vivo B De, Bodnar R J.(eds.) Melt Inclusions in Volcanic Systems: Methods, Applications and 5 Problems, Developments in Volcanology 5, Amsterdam: Elsevier Press, 1-21
    Lowenstern J B, Mahood G A. 1991. New data on magmatic H_2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria, Bull Volcanol, 54:78-83
    Machida H, Arai E 1983. Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions, J Volcanol Geothermal Res, 18:151-164
    Machida H, Moriwaki H, Zhao D. 1990. The recent major eruption of Changbai volcano and its environmental effects, Geographical reports of Tokyo Metropolitan University, 25:1-20
    Mangan M, Sisson T. 2001. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism, Earth and Planetary Science Letters, 183: 441-455
    Marianelli P, Metrich N, Santacroce R, Sbrana A. 1995. Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib Mineral Petrol, 120: 159-169
    Marianelli P, Metrich N, Sbrana A. 1999. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, Bull Volcanol, 61:48-63
    Marianelli P, Sbrana A, Metrich N, Cecchetti A. 2005. The deep feeding system of Vesuvius involved in recent violent strombolian eruptions, Geophy Res Lett, 32
    Martel C, Bourdier J L, Pichavant M, Traineau H. 2000. Textures, water content and degassing of silicis andesites from recent plinian and dome-forming eruptions at Mount Pelee volcano (Martinique, Lesser Antilles arc), J Volcanol Geotherm Res, 96:191-206
    Massare D, Metrich N, Clocchiatti R. 2002. High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H_2O concentrations, Chemical Geology, 183:87-98
    McNutt S R. 1996. Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In: Scarpa, Tilling (eds.), Monitoring and Mitigation of Volcano Hazards, Berlin: Springer, 99-146
    Metrich N, Allard P, Spilliaert N, et al. 2004. 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna's evolution in the last three decades, Earth and Planetary Science Letters, 228:1-17
    Metrich N, Bertagnini A, Landi P, Rosi M. 2001. Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian Islands, Italy), Jour. of Petrology, 42 (8): 1471-1490
    Metrich N, Clocchiatti R. 1989. Melt inclusion investigation of the volatile behaviour in historic alkali basaltic magmas of Etna, Bull Volcanol, 51:185-198
    Metrich N, Clocchiatti R, Mosbah M., et al. 1993. The 1989-1990 activity of Etna: magma mingling and ascent of H_2O-Cl-S-rich basaltic magma, evidence from melt inclusions, J Volcanol Geotherm Res, 59:131-144
    Metrich N, Rutherford M. 1992. Experimental study of chlorine behaviour in hydrous silicic melts, Geochim Cosmochim Acta, 56:607-616
    Metrich N, Rutherford M. 1998. Low pressure crystallization paths of H_2O-saturated basaltic-hawaiitic melts from Mt Etna: implications for open-system degassing volcanoes, Geochim Cosmochim Acta, 62:1195-1205
    Michael P J, McDonough W F, Nielsen R L, Cornell W C. 2002. Depleted melt inclusions in MORB plagioclase: messages from the mantle or mirages from the magma chamber? Chemical Geology, 183:43-61
    Michaud V, Clocchiatti R, Sbrana S. 2000. The Minoan and post-Minoan eruptions, Santorini (Greece), in the light of melt inclusions: chlorine and sulphur behaviour, J Volcanol Geotherm Res, 99:195-214
    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system, Earth-Science Reviews, 37:215-224
    Nakamoto K. 1955. Margoshes M, Rundle RE, Strectching frequencies as a function of distances in hydrogen bonds, J Am Chem Soc, 77:6480-6486
    Newman S, Stolper E M, Epstein S. 1986. Measurement of water in rhyolitic glasses: Calibration of an infrared spectroscopic technique, American Mineralogist, 71:1527-1541
    Pyle D M. 1995. Assessment of the minimum volume of tephra fall deposits, J Volcanol Geotherm Res, 69:379-382
    Roedder E. 1984. Fluid inclusions. Reviews in mineralogy. Mineral. Soc. Amer., 12:1-644
    Roggensack K. 2001. Sizing up crystals and their melt inclusions: a new approach to crystallization studies, Earth and Planetary Science Letters, 187:221-237
    Saito G. Kazahaya K, Shinohara H, et al. 2001. Variation of volatile concentration in a magma system of Satsuma-Iwojima volcano deduced from melt inclusion analyses, J Volcanol Geotherm Res, 108:11-31
    Signorelli S, Carroll M R. 2000. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts, Geochim Cosmochim Acta, 64:2851-2862
    Signorelli S, Vaggelli G, Romano C. 1999. Pre-eruptive volatile (H20, F, Cl and S) contents of phonolitic magmas feeding the 3550-year old Avellino eruption from Vesuvius, southern Italy, J Volcanol Geotherm Res, 93:237-256
    Silver L A, Ihinger P D, Stolper E. 1990. The influence of bulk composition on the speciation of water in silicate glasses, Contrib Mineral Petrol, 104:142-162
    Sisson T W, Bronto S. 1998. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galungnung, Indonesia, Nature, 391:883-886
    Sobolev A V. 1996. Melt inclusions in minerals as a source of principle petrological information, Petrology, 4:228-239
    Sobolev A V, Danyushevsky L V. 1994. Petrology and geochemistry of boninites from the North termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas, J. Petrol., 35:1183-1211
    Sobolev A V, Shimizu N. 1993. Ultradepleted primary melt included in olivine from the Mid-Atlantic Ridge. Nature, 363:151-154
    Sours-Page R, Nielsen R L, Batiza R. 2002. Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise, Chemical Geology, 183:237-261
    Stolper E. 1982. Water in silicate glasses: an infrared spectroscopic study, Contributions to Mineralogy and Petrology, 81:1-17
    Tabazadeh A, Turco R P. 1993. Stratospheric Chlorine injection by volcanic eruptions: HCl scavenging and implications for ozone, Science, 260:1082-1086
    Tatsumi Y, et al. 1990. Mechanism of backarc opening in the Japan Sea: Role of asthenospheric injection, Tectonophysics, 181:299-306
    Wallace P J. 2001. Volcanic SO_2 emissions and the abundance and distribution of exsolved gas in magma bodies, J Volcanol Geotherm Res, 108:85-106
    Wallace P J, Anderson Jr. A T. 1998. Effects of eruption and lava drainback on the H_2O contents of basaltic magmas at Kilauea Volcano, Bull Volcanol, 59:327-344
    Webster J D. 1990. Partitioning of F between H_2O and CO_2 fluids and topaz thyolite melt, Contrib Mineral Petrol, 104:424-438
    Webster J D, Raia F, Vivo B D, et al. 2001. The behavior of chlorine and sulfur during differentiation of the Mt. Somma-Vesuvius magmatic system, Mineralogy and Petrology, 73: 177-200
    Wilson L. 1980. Relationships between pressure, volatile content, and ejecta velocity in three types of volcanic explosions, J Volcanol Geotherm Res, 8:297-313
    Withers A C, Zhang Y, Behrens H. 1999. Reconciliation of experimental results on H_2O speciation in rhyolitic glass using in-situ and quenching techniques, Earth and Planetary Science Letters, 173: 343-349
    Witter J B, Kress V C, Delemelle P, Stix J. 2004. Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, Southern Chile, J Volcanol Geothermal Res, 134:303-337
    Woods A. W. 1995. The dynamics of explosive volcanic eruptions, Rev. Geophys., 33:495-530
    Zhang Y. 1999. H_2O in rhyolitic glasses and melts: Measurement speciation, solubility, and diffusion, Rev. Geophys., 37:493-516
    Zhang Y, Behrens H. 2000. H_2O diffusion in rhyolitic melts and glasses, Chemical Geology, 169: 243-262
    Zhang Y, Belcher R, lhinger P D, et al. 1997. New calibration of infrared measurement of dissolved water in rhyolitic glasses, Geochimica et Cosmochimica Acta, 61(15): 3089-3100
    Zhang Y, Stolper E M, Ihinger P D. 1995. Kinetics of the reaction H_2O+O=2OH in rhyolitic and albitic glasses: preliminary results, American Mineralogist, 80:593-612
    Zhang Y, Stolper E M, Wasserburg G J. 1991. Diffusion of water in rhyolitic glasses, Geochimica et Cosmochimica Acta, 55:441-456
    Zhang Y, Xu Z, Behrens H. 2000. Hydrous species geospeedomeer in rhyolite: Improved calibration and application, Geochimica et Cosmochimica Acta, 64 (19): 3347-335
    Zielinski G A, Mayewski P A, Meeker L D, et al. 1994. Record of volcanism since 7000 B. C. from the GISP2 Greenland ice core and implications for the volcano-climate system, Science, 264: 948-952
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.