新疆西准噶尔夏尔莆岩浆混合花岗岩体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西准噶尔是中国晚古生代花岗岩发育的主要地区之一,沿著名的达尔布特断裂带发育的后造山花岗岩带一直是西准噶尔花岗岩研究的焦点,其中夏尔莆岩体又是该花岗岩带中极其重要的岩体之一。本文以夏尔莆花岗岩为研究对象,从宏观岩石特征、微观矿物特征、岩石地球化学特征、构造环境、源岩特征、岩浆演化特征、形成机制及其对地壳生长的贡献等方面,对该岩体作了比较系统的研究,取得以下进展:
     1.夏尔莆岩体由寄主岩石、微细粒镁铁质包体和中基性岩墙群组成。岩体侵入于石炭纪地层中,与围岩为港湾状外侵接触。寄主岩石由(石英)闪长岩、花岗闪长岩和二长花岗岩三种岩石类型组成,相互之间均为渐变过渡的涌动接触关系;微细粒镁铁质包体岩性主要为石英闪长岩和闪长玢岩,在寄主岩石的各个岩石类型中均有发育,与寄主岩石为截然或渐变过渡接触关系;中基性岩墙群主要岩性为辉绿岩和少量闪长玢岩,与寄主岩石为截然接触关系。
     2.夏尔莆岩体中发育丰富、典型的岩浆混合岩相学特征。野外露头,寄主岩石中暗色矿物分布不均并发育暗色矿物集合体、微小的镁铁质包体和不均匀混合条带;包体具有明.显的塑性变形,常发育反向脉和寄主岩石中的长石巨晶(捕虏晶);中基性岩墙群与微粒镁铁质包体紧密共生并延伸方向基本一致,发育寄主岩石中的长石捕虏晶,被寄主岩的反向脉横切。在镜下,包体及其与寄主岩混合带中均发育斜长石异常环带和多种不平衡矿物共生现象,包体中发育针状磷灰石。
     3.岩石化学特征表明,寄主岩石富A1203.CaO和Mg0,根据岩石化学图解和岩石化学参数证明其属于钙碱性准铝质—过铝质Ⅰ型花岗岩。微细粒镁铁质包体和寄主岩石岩石化学特征较相似,而岩墙与寄主岩石差异明显。寄主岩石富钙、镁,微细粒镁铁质包体富铝、铁,在氧化物—SiO2哈克图解、FeOT-MgO图解和R1—R2图解中寄主岩石呈线性的岩浆混合演化特征,微细粒镁铁质包体位于该演化线上也证明了其与寄主岩石有成因联系,而中基性岩墙群演化线与两者不同,显示独立的演化趋势。
     4.地球化学特征表明,寄主岩石和中基性岩墙群Nb和Ta均相对亏损,前者微量元素蛛网图特征与典型的Ⅰ型后造山花岗岩相似,而微细粒镁铁质包体蛛网图较零乱。寄主岩石的稀土元素总量低,轻稀土轻微富集,重稀土分馏程度低,δEu值与壳幔型花岗岩类一致;微细粒镁铁质包体稀土元素总量略低,Eu无亏损或亏损不明显,轻、重稀土分馏程度中等;中基性岩墙群稀土元素总量较高,Eu无亏损,重稀土和轻稀土元素分馏程度高。在以Sr为共分母三元素的协变图解中,包体与寄主岩呈线性关系,表明两者存在成因联系,而中基性岩墙演化趋势与其明显不同,代表不同岩浆源的产物。此外,在相容元素和不相容元素图解中,寄主岩石和微细粒镁铁质包体显示明显的双扩散性,证明了岩浆混合作用的存在。
     5.本次获得寄主岩石、微细粒镁铁质包体和中基性岩墙群年龄分别为292.8±2.0Ma,295.7±8.0Ma,294.0±5.0Ma,在误差范围内一致,均属于早二叠世,说明它们属于同一岩浆事件的产物,为岩浆混合作用的存在提供了最有力的证据。
     6.结合夏尔莆岩体附近区域的地质特征,岩体中岩浆混合岩相学特征、地球化学及同位素地球化学特征,认为夏尔莆岩体属于后造山花岗岩,与亏损型的上地幔岩浆的底侵作用有关,使下地壳发生部分熔融形成酸性岩浆,壳、幔岩浆发生了不同程度的混合作用,形成了大量的岩浆混合岩、微细粒镁铁质包体以及中基性岩墙群,记录了岩浆混合演化的全过程,是难得的典型岩浆混合花岗岩体。此外,说明该区域地壳中当时有大量地幔物质的加入,代表了西准噶尔一次重要的地壳垂向生长事件。
The post-collision granites zone along with the Dalabute fault, of which the Xiaerpu rocks is the most important one, is the most concentrated zone of the West Junggar granites, where develops quite quantity of the Late Paleozoic granites. This dissertation is object on the Xiaerpu granites in the West Junggar, researching systematically from the field outcrop surveying, rock observing under the microscope,petrochemistry, tectonic setting,mather magmas traits, magmas evolvement, forming mechanisms and the contribution to crust vertical accretion. Below show the progresses:
     l.The Xiaerpu granite composed of the host rocks, mafic microgranular enclaves and basic dykes, intruded into the Carboniferous sediments. The host rocks are composed of (quartz) diorite granodiorite and monzodiorite, gushingly intruding each other; the mafic microgranular enclaves mainly consist of quartzdiorite and diorite porphyrite, very common in all of the type of the host rocks, clear boundary or transitional boundary with host rocks; basic dykes are mainly comprised by diabase and minor diorite porphyrite, clear boundary with host rocks.
     2. The Xiaerpu rocks develops abundant and typieal petrographical evidence of magma mixing. In field outcrop, dark mineral distribut asymmetrically, and dark mineral aggregation, Weenie mafic enclave, cingulum of ununiformity mixing are developed; mafic microgranular enclave shows the character of strong plastic distortion, have clear boundary or.transitional relationships with host rocks, develope back-vein and the capture feldspar phenocrysts (capture crystal); basic dyke swarm and mafic micogranular enclave accrete closely, distribute in the same direction, and basic dyke swarm develop the capture feldspar phenocrysts of the host rock, also are traversed by the back-vein of host rock. Under the microscope, the abnormal zoning of plagioclase and mang types of the disequilibrium mineral symbiosis are developed in enclave and cingulum of ununiformity mixing, the acicular apatite is developed in enclave.
     3. The petrochemistry study shows, the host rocks rich in aluminum, calcium and magnesium belong to calc-alkali sub-aluminum or over-aluminum I-style granite, petrochemistricly similar with the mafic microgranular enclaves,but apparently different with the host rocks. The host rocks are rich in calcium and magnesium, whereas the mafic microgranular enclaves are rich in aluminum and ferrous ions. In dioxide-SiO2, FeOT-MgO and R1-R2 figure show a linear relationship in Hack and the mafic microgranular enclaves are above this evolvement line, whereas basic dykes owns.
     4. The geochemistry research indicates, the host rocks and basic dykes are comparatively deficit in Nb and Ta. The host rocks are similar with I-style post-collision granite, whereas the mafic microgranular enclaves are in chaos with big component varies, which seems due to the different blending degree between these and the host rocks. The host rocks show lowΣRee, little riched LRee, low heavy rear earth element distribution degree, unapparently low Eu and 8Eu consistent with crust-mantle granites; the mafic microgranular enclaves show low ERee, nomal Eu or unapparently low Eu, high rear earth element distribution degree. Figures of denominator as Sr, the mafic microgranular enclaves have a linear relationship with the host rocks otherwise quite different with basic dykes. Moreover, in compatible element and inconsistent element figure, the host rocks and mafic microgranular enclaves show strong double diffusion.
     5. It was indicated by the study that the age of the host rock, mafic microgranular enclave and basic dyke swam are 292.8±2.0Ma,295.7±8.0Ma and 294.0±5.0Ma, which is consistent with the arrangement of the error.they belong to the Early Permian. These illustrate that they are the production of the same event, which give the most important evidence of the magma mixing.
     6. Combined with the geological characters of the nearby regions,the petrographic features of the magma mixing and the geochemistrical and isotopical geochemistrical characters. Xiaerpu granite belongs to the Post-collision Granite, which was related with the under-plating of the depleted upper mantle magma, the mantle-derived magma then moved throughout the faults, and convected with acid magma. The different degrees of magma mixing happened in the acid magma, from magma mixed rock to mafic microgranular enclaves, at last, the numerous basic dyke swams. Xiaerpu granite recorded the process of the mgma mixing, which is the rare and typical terrane originated from magma mixing. Besides, that show a mass of mantle magma go into the crust, standing for a important events of growth of the continental crust in West Junggar.
引文
[1]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,023(06):1217-1238
    [2]洪大卫,王涛,童英.中国花岗岩概述[J].地质论评,2007,第53卷,增刊:9-16
    [3]苏玉平,唐红峰,侯广顺,等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学,2006,35(1):55-67
    [4]高山林,何治亮,周祖翼.西准噶尔克拉玛依花岗岩体地球化学特征及其意义[J].新疆地质,2006,24(2):125-130
    [5]杨富贵,王中一,侯鸿泉,等.达拉布特型碱性花岗岩源岩特征初步探讨—来自稳定同位素和微量元素的证据[J].地质地球化学,1998,1(1):41-46
    [6]杨富贵,刘丛强,王中刚,等.达拉布特型碱性花岗岩形成和演化的某些问题探讨[J].淄博学院学报(自然科学与工程版),1999,1(1):47-54
    [7]杨富贵,王中刚,刘丛强,等.西北准噶尔地区碱性花岗岩体中角闪石的地质地球化学意义[J].矿物学报,1999,19(1):70-76
    [8]王德滋,周金成.我国花岗岩研究的回顾与展望[J].岩石学报,1999,15(2):161-169
    [9]涂绍雄,汪雄武.20世纪90年代国外花岗岩类研究的某些重大进展[J].岩石矿物学杂志,2002,21(2):108-130
    [10]Brown M, The generation. Segregationascentandem-placementofgraintemagma:The mlgmatite to crustally derived-graint econnection in lhickende orogens[J]. Earth Science Review,1994,36:83 -130
    [11]肖庆辉,邢作云,张昱,等.当代花岗岩研究的几个重要前沿[J].地学前缘,2003,10(3):221-229
    [12]Brown M, Averkin, Y A, Mclelllan E L, et aL. Melt segregation in migrnatites[J]. Journal of GeophysicalResearch,1995,100:15655-15679
    [13]Alver S. Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis:An example from Lachlan fold belt, Australia [J]. Journal of the Geological Society, London,2000,157: 135-149
    [14]齐有强,胡瑞忠,田建吉.岩浆混合作用研究综述[J].矿物岩石地球化学通报,2007,27(4):409-416
    [15]李昌年.岩浆混合作用及其研究评述[J].地质科技情报,2002,21(4):49-54
    [16]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004381
    [17]王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报,2000,16(2):161-168
    [18]莫宣学,罗照华,肖庆辉,等.花岗岩类岩石中岩浆混合作用的识别与研究方法[M].肖庆辉,邓晋福等主编,花岗岩研究思维与方法.北京:地质出版社,2002,53-70
    [19]Sklyarov KP and Johnston D. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases:Implications for anatexis in the deep to very deep continental crust and active continental margins[J]. Journal of Petiology,2006,37:661-691
    [20]Hibbard M J. Textural anatomy of twelve magma-mixed granitoid system. In:Didier J and Barbarin B. Enclave and Granite Petrology[J]. Development in Petrology, vol.13. Elsevier, Amsterdam,1991,431-444
    [21]周珣若.1994.花岗岩混合作用[J].地学前缘,1(1-2):87-97
    [22]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos,1999,4660-5626
    [23]李昌年,廖群安.赣东北前寒武纪港边杂岩体的岩浆混合(和)作用及其地质意义[J].岩石矿物学杂志,2006,25(5):357-376
    [24]金成伟,张秀棋.新疆西准噶尔花岗岩类的时代及其成因[J].地质科学,1993,28(1):28-36.
    [25]高山林,何治亮,周祖翼.西准噶尔克拉玛依花岗岩体地球化学特征及其意义[J].新疆地质,2006,24(2):125-130
    [26]李辛子,韩宝福,季建清,等.2004.新疆克拉玛依中中基性岩墙群的地质地球化学和K-Ar年代学[J].地球化学,33(6):574-584
    [27]李辛子,韩宝福,李宗怀,等.新疆克拉玛依中基性岩墙群形成力学机制及其构造意义[J].地质论评,2005,51(1):518-522
    [28]成守德,王广瑞,杨树德,等.新疆古板块构造[J].新疆地质,1986,4(2):1-26
    [29]成守德,王元龙.新疆大地构造演化基本特征[J].新疆地质,1998,16(2):97-107
    [30]成守德,王元龙.中亚地壳发展演化与成矿[C].乌鲁木齐:新疆人民出版社,2000
    [31]陈哲夫,梁云海.新疆多旋回构造与板块运动[J].新疆地质,1991,9(2):95-107
    [32]朱宝清,冯益民.新疆西准噶尔板块构造及演化[J].新疆地质,1994,2
    [33]曹荣龙,朱寿华,刘建兵,等.新疆北部板块与地体构造格局.见:涂光炽主编,新疆北部固体地球科学新进展[M].北京:科学出版社,11-26
    [34]张良臣,吴乃元.天山地质构造及演化史[J].新疆地质,1985,3(3):1-14
    [35成守德,张湘江.新疆大地构造基本格局[J].新疆地质,2000,18(4):293-296
    [36]周良仁等.西准噶尔地质构造发展及岩浆演化特征[J].西安地矿所所刊,1987,第16号:3-55
    [37]蔡土赐,孙巧缡,缪长泉,等.新疆维吾尔自治区岩石地层[M].中国地质大学出版社1999
    [38]王广平,吴广涛,伦志强,等.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993
    [39]廖卓庭,王玉净,王克良.新疆北部石炭纪生物地层研究新进展[J].见:涂光炽主编. 新疆北部固体地球科学新进展.北京:科学出版社.1993,79-94
    [40]廖卓庭,杨蔚华,魏洲龄,等.新疆北部石炭系及其含矿性研究报告,1990
    [41]郝杰,刘洪涛,张维.西准古生代地层.见:涂光炽主编.新疆北部固体地球科学新进展[J].北京:科学出版社,1993,24-26
    [42]中国科学院南京地质古生物研究所编.中国地层研究二十年(1979-1999).合肥:中国科学技术大学出版社.2000,3-22
    [43]新疆维吾尔自治区区域地质测量,1975,1:20万托里幅区域地质矿产调查报告
    [44]新疆维吾尔自治区第七地质大队,长安大学,2008.新疆托里县科尔巴依—野马井地区1:5万区域地质矿产调查报告
    [45]新疆维吾尔自治区区域地质测量大,1966.1:20万克拉玛依幅区域地质矿产调查报告
    [46]地质矿产部直属单位管理局.花岗岩类区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社,1991,1-93
    [47]周维屏,陈克强,简人初,等.1:50000区域地质填图新方法[M].武汉:中国地质大学出版社,1993,18-28,41-49
    [48]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京,地质出版社,2002,53-63
    [49]董申葆.花岗岩成因类型划分的探讨.见:花岗岩地质和成矿关系国际学术会议论文集.南京:江苏科学技术出版社,1984,49-57
    [50]肖序常,汤跃庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992
    [51]冯益民.西准噶尔古板块构造特征[J].西安地矿所所刊,1987,第18号,141-160
    [52]梁明宏,周兴安,龚全胜,等.岩浆混合作用—来自甘肃北山的野外证据[J].2002,甘肃地质学报.11(1):44-49
    [53]覃锋,徐晓霞,罗照华.北京房山岩体形成过程中的岩浆混合作用证据[J].岩石学报,2006,22(12):2957-2970
    [54]Pitcher WS. The Nature and Origin of Granite London:Chapman and Hall,1997
    [55]Barbarin B.1999. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos,46:605-626
    [56]刘春华,孙景贵,郑常青.伟德山岩体岩浆混合作用和岩相学标志[J].辽宁地质,1997,14(2):125-131
    [57]王玉往,王京彬,王莉娟,等.新疆尾亚地区石英二长闪长岩的岩浆混合成因[J].岩石学报,2007,23(4):733-746
    [58]刘成东,张文秦,莫宣学,等.东昆仑约格鲁岩体暗色微粒包体特征及成因[J].地质通报,2002,21(11):739-744
    [59]袁万明,白宜真.北京大庄科花岗质杂岩体中包体定位的动力学机理之探讨[J].地质论评,1992,38(5):389-397
    [60]李永军,刘志武,丁仨平.西秦岭温泉花岗岩体岩石学特征岩浆混合标志[J].地球科学与环境学报,2004,26(3):7-12
    [61]马铁球,伍光英,贾宝华,,等.南岭中段郴州一带中、晚侏罗世花岗岩浆的混合作用-来自镁铁质微粒包体的证据[J].地质通报,2005,24(1):506-512
    [62]迟效国,戚长谋,齐永恒.中国东部花岗岩荷载微粒闪长质包体成因[J].长春地质学院学报,1995,25(2):131-137
    [63]王晓霞,王涛,Ilmari Happala,等.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义元素和Nd, Sr同位素地球化学证据[J].岩石学报,2005,21(3):935-946
    [64]朱金初,张佩华,谢才富,等.桂东北里松花岗岩中暗色包体的岩浆混合成因[J].地球化学,2006,56(6):506-516
    [65]陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用岩石学和地球化学证据[J].地学前缘,2006,13(2):140-147
    [66]王晓霞,王涛,卢欣祥,等.北秦岭老君山、秦岭梁环斑结构花岗岩岩浆混合的岩相学证据及其意义[J],地质通报,2002,24(8-9):523-529
    [67]李武显,董传万,周新民.平潭和漳州深成杂岩中斜长石捕虏晶与岩浆混合作用[J].岩石学报,1999,15(02):286-290
    [68]王炬川,崔建堂,罗乾周,等.西昆仑康西瓦西部早古生代侵入岩的岩浆混合作用[J].地质通报,2006,25(12):1458-1468
    [69]刘志逊,赵寒冬,马丽玲,等.小兴安岭晚石炭世花岗岩岩浆混合作用的岩相学证据及其地质意义[J].地质通报,2007,26(3): 289-298
    [70]李永军,谢其山,栾新东,等.西秦岭糜署岭岩浆带的成因及构造意义[J].新疆地质,2004,22(4):374-377
    [71]李永军,王冉,刘志武,等.西秦岭糜署岭岩体的包体特征及成因[J].地质通报,2003,22(7):506-511
    [72]李胜荣,孙丽,张华峰.西藏曲水碰撞花岗岩带的混合成因-来自成因矿物学证据[J].岩石学报,2006,22(4):885-894
    [73]周勇,李昌年,钟称生,等.赣东北港边火成杂岩体岩浆混合作用结构类型与成因机理[J].矿物学报,2006,26(2):181-188
    [74]谢磊,王德滋,王汝成,等.浙江普陀花岗岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合历史记录[J].岩石学报,2004,20(6):1397-1408
    [75]Bateman R. Mineral disequilibria under the microscope. In Bateman R and Castro A (eds). Heterogeneities in felsic igneous rock at scales from crystals to plutons[J]. Workshop Notes, 1993,4-7, Sevilla:Universidad de Sevilla
    [76]Castro A. Biotite-hornblende ralationships in calc-alkaline granitiods and enclaves. In Bateman R and Castro A (eds) Hetterogeneities in felsic igncous rocks at scales from crystals to plutons[J]. Workshon note,3. Sevilla:Universidad de Sevilla,1993
    [77]Baxter S and Feely M. Magma mixing and mingling textures in Granitoids; Examples from Galway granite, Connemara. Ireland[J]. Mineral. Petrol.2002,7663-74
    [78]Landi P, M trich N, Bertagnini A and Rosi M. Dynamics of magma mixing and deassiny, renorded in plagioclase at Stromboli (Aeolian Archipelago, Italy) [J]. Ccntri. Mineral. Petrol,2004,147: 213-227
    [79]董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报,2006,22(4):835-844
    [80]Wyllie P J, Cox K G, Biggar G M. The habit of apatite in synthetic systems and igneous rocks[J]. J Petrol,1962,3 (2):238-243
    [81]马昌前,王人镜,邱家骧.花岗质岩浆起源和多次岩浆混合的标志:包体-以北京周口店岩体为例[J].地质论评,1992,38(2):109-119
    [82]Horn I, Rudnick R L and Mcdonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation ICPMS:Application to U-Pb geochronologyo[J]. Chemical Geology,2000,167:405-425
    [83]Ballard J R, Palin J M, Williams IS, et al. Two ages of porphyry intrusion resolved for the super giant Chuqui(?)amata copper deposit of northern Chile by LA-ICPMS and SHRIMP[J]. Geology,2001,9: 383-386
    [84]Kosler J, Fonneland H, Sylvester P, et al. U-Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation LCPMS and SIMS techniques[J]. Chemical Geology,2002, 182:605-618
    [85]柳小明,高山,袁洪林,等193nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析[J].岩石学报,2002,18(3):408-418
    [86]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520
    [87]何世平,王洪亮,陈隽璐,等.中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义[J].地球科学—中国地质大学学报,2008,33(1):35-45
    [88]Ludwig KR. Isoplot-A plotting and regression program for radiogenic-isotope data[J]. US Geological Survey Open-File Report,1991,39:91-445
    [89]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604
    [90]Pidgeon R T, Nemchin A A and Hitchcn G J. Internal structures of zircons from Archaean granites from the Darling Range batholith:implications for zircon stability and the interpretation of zircon U-Pb ages[J]. Contributions to Mineralogy and Petrology,1998,132:288-299
    [91]Cla(?)sson S, Vetrin V, Bayanova T, et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia; a record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000,51 (1-2):95-108
    [92]Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of Geological Society[J]. London,1992,149:171-184
    [93]代军治,毛景文,赵财胜,等.辽西兰家沟钥矿床花岗岩SHRIMP锆石U-Pb年龄及岩石化学特征[J].地质学报,2008,82(1):1555-1564
    [94]韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ):后碰撞深成岩浆活动的时限[J].岩石学报,2006,22(5):1077-1086
    [95]章森桂,张允白,严惠君.“国际地层表”(2008)简介[J].地层学杂志,2009,33(1):1-10
    [96]刘宝良CIPW标准矿物计算法应用时存在问题的探讨[J].地质与资源,2001,10(3):180-189
    [97]邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985
    [98]黎彤,饶纪龙.中国岩浆岩的平均化学成分[J],1963(3)
    [99]中国科学院贵阳地球化学研究所.华南花岗岩的地球化学[M].北京:科学出版社,1979.
    [100]Debon A G.1991. Comparative major element chemistry in various"microgranular enclave-plutonic hosf pairs. In Didie, and Barberin, B(eds), Enclaves and Granite Petrology. Elsevier[J]. Amaterdam, 313-330
    [101]Zorpi W J, Coulon C, Orsini J B, et al. Magma mingling, zoneingand emplacement in calc-alkaline granitoid plutons[J]. Tectonophysics,1989,157:315-329
    [102]张本仁.秦巴岩石圈构造及成矿规律地球化学研究[M].武汉:中国地质大学出版,2006
    [103]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997
    [104]Rullinsun H R. UsingGeocgemical Data:Evaluation, Presentation, Intrpr(?)tation[M]. London: Longman Group UK,1993,40-206
    [105]赵振华.我国不同类型花岗岩类稀土元素的组成特征,稀土元素地球化学学术讨论学术讨论会论文摘要汇编,1985,71-72
    [106]张晓琳,邱检生,王德滋,等.浙江普陀山黑云母钾长花岗岩及其岩石包体的地球化学与岩浆混合作用[J].岩石矿物学杂志,2005,24(2):81-92
    [107]李永军、赵仁夫、李注苍.岩浆混合花岗岩微量元素成因图解尝试—以西秦岭温泉岩体为例[J],长安大学学报—地球科学版,2003,25卷3期,7-11
    [108]牟保磊.元素地球化学[M].北京:北京大学出版社,1999
    [109]Han B F, Wang S G, Jahn B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence. and implications for Phanerozoic crustal growth[J]. Chemical Geology,1997,138:135-159
    [110]韩宝福,何国琦,王式洗.后碰撞岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学(D辑),1999,29(1):16-21
    [111]韩宝福,何国琦,王式洗等.新疆北部后碰撞幔源岩浆活动与陆壳纵生长[J].地质论评,1998,44(4):396-406
    [112]韩宝福,何国琦,吴泰然等.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J].新疆地质,2004,22(1):4-11
    [113]韩宝福,季建清,宋彪等.新疆克拉通克和黄山东含铜镍矿镁铁-超镁铁杂质岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2004,49(22):2324-2328
    [114]韩宝福,王式洗,孙元林等.正εNd(t)值的准铝-过铝花岗岩:新疆也布山岩体[J].科学通报,1998,43(12):1324-1328
    [115]洪大卫,王式洗,谢锡林等.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-455
    [116]Wang Q, Zhao Z H, Xu J F, et al. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the Northern Tianshan area:Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization[J]. Acta Petrologica Sinica,2006,22 (1):11-30
    [117]Kwon ST, Tilton GR, Coleman RG,et al.1989. Isotopic studies bearing on the tectonics of the West Junggar region Tectonics,8 (4):719-727
    [118]齐进英.新疆准噶尔脉岩群地质及成因[J].岩石学报,1993,9(3):288-299
    [119]肖庆辉,邓晋福马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002,53-63
    [120]Zindler A and Hart S R. Chemical geodynamics[J]. Ann. Rev. Earth Planet Sci,1986,14:493-571
    [121]王中刚.中国新疆花岗岩.北京:地质出版社,2006,110
    [122]Lecher C E. Decoupling of chemical and isotopic exchange during magma mixing. Nature,1990, 344 (6263):235-237
    [123]Doe B R, Zartman R E. Plumbotectonics, the Phanerogoic. In:Barnes H 1 ed Geochemistry of hydrotheramal ore deposits[J]. John Wiley and Sos.1979,22-70
    [124]Bird P. Continental delamical composition of the mantle[J]. Geophys. Reophys. Res,1979,84: 7561-7571
    [125]Houseman G A, Mck(?)nzie D P. Molap PConvective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res,1981,86: 6135-6155
    [126]高山,金振明.拆沉作用及其壳幔演化动力学意义[J].地质科技情报,1997,16(1):1-8
    [127]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004
    [128]Rudnick R L. Making continental crust[J]. Nature,1995,378:571-578
    [129]Kay R W, Kay SM. Delamination and delamination magmatism[J]. Tectonophysics,1993,219: 177-189
    [130]罗照华,魏阳,辛后田,等.造山后脉岩组合的岩石成因—对岩石圈拆沉作用的约束[J].岩石学报,2006,22(6):1672-1684
    [131]王德滋,周新民.中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化[M].北京:科学出版社,2002
    [132]张旗,李承东,王焰,等.中国东部中生代高Sr低Yb和低Sr高Yb型花岗岩:对比及其地质意义[J].岩石学报,2005,21(6):1527-1537
    [133]徐夕生,周新民,O'ReillyS Y中国东南部下地壳物质与花岗岩成因探索[J].岩石学报,1999,15(2):217-223
    [134]周新民,李武显.中国东南部晚中生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模式[J].自然科学进展,2000,10(3):240-47
    [135]王兴阵,陶琰,马言胜.壳幔混合及花岗质岩浆的形成[J].矿物岩石地球化学通报,2006,25(2):183-188
    [136]李宗怀,韩宝福,李辛子,等.新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩浆起源和演化[J].岩石矿物学杂志,2004,23(3):214-226
    [137]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,1999,15:181-189
    [138]Wu F Y, Jahn B m, Wide S, Sun D Y. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics,2000,328:89-113
    [139]Voshage H, Hofmanm A W, Mazzucchhelli M, Rivalenti G, Sinigoi S. Isotopic evidence from the Ivrea Zone for ahybrid lower crust formed by magmatic underplating[J]. Natrue,1990,347:731 -735
    [140]金振民,高山.底侵作用及其壳幔演化动力学意义[J].地质科技情报,1996,15(1):1-7
    [141]韩宝福,何国琦,王式光.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学(D辑),1999,1:16-21
    [142]Eichelberger J C.1980. Vesiculation of mafic magma during replenishment of silica magm arese rvoirs[J]. Nature,288:446-450
    [143]张旗,潘国强,李承东,等.花岗岩混合问题:与玄武岩对比的启示—关于花岗岩研究的思考之一[J].岩石学报,2007,23(5):1141-1152
    [144]张本仁,傅家谟.地球化学进展[M].北京:化学工业出版社,2005
    [145]肖庆辉,邱瑞照,邓晋福,等.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质,2005,32(3):343-352
    [146]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3): 85-93
    [147]Hu A Q, Jahn B M, Zhang G X, et al. Crustal evolution and Phanerozoic crustal growth in Northern Xinjiang:Nd-Sr isotopic evidence . Part I:Isotopic characterization of basement rocks[J]. Tectonophysics,2000,328:15-51
    [148]Jahn B M, Wu F Y and Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans. Royal Soc[J]. Edinburgh:Earth Sci,2000,91:181 - 193
    [149]Jahn B M. Phanerozoic continental growth in Central Asia[J]. Joural of Asian Earth Sciences,2004, 23:599-603
    [150]Khain E V, Bibikova E V, Krner A, et al. Kravchenko-Berezhnoy. IR, The most ancient ophiolite of the Central Asian fold belt, U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters,2002,199 (3-4):311-325
    [151]顾连兴,张遵忠,吴昌志,等.关于东天山花岗岩与陆壳垂向增生的若干认识[J].岩石学报,2006,22(5):1103-1120
    [152]王强,赵振华,许继峰,等.天山北部石炭纪埃达克岩—高镁安山岩—富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报,2006,22(1):11-30
    [153]朱永峰,宋彪.新疆天格尔(冰达坂)糜棱岩化花岗岩的岩石学及其SHRIMP年代学研究:兼论花岗岩中热液锆石边的定年[J].岩石学报,2006, 22(1):135-144
    [154]Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Bclt[J]. Journal of the Geological Society, London,2007,164 (1):31-47
    [155]朱永峰,王涛,徐新.新疆及邻区地质与矿产研究进展[J].岩石学报,2007,23(8):1785-1794
    [156]肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008,26(20):4-8
    [157]李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),2009,39(4):584-605
    [158]吴福元,江博明,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188-2192
    [159]Vernon R H. Microgranitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment[J]. Nature,1984,309:438-439
    [160]Didier J, Barbarin B. Macroscopic features of mafic microgranular enclaves[M]. Didier J, Barbarin B. Enclaves and granite. petrology. Amsterdam:El sevier,1991,253-262
    [161]王德滋,周金城,邱检生,等.东南沿海自坐世火山活动中的岩浆混合及壳慢作用证据[J].南京大学学报(地球科学),1994,6(4):317-322
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.