大型碳纤维预氧化装备温度控制特性研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型预氧化装备是PAN基碳纤维工业化生产的关键设备之一,其主要技术指标对提高碳纤维产量和性能至关重要。如何缩短预氧化升温时间,提高温度均匀性和控温精度,降低预氧化装备能耗,是国产大型预氧化装备需要解决的关键技术。
     本文借助于计算机仿真与模拟技术,对大型预氧化装备的温度控制特性进行了系统研究,主要包括:
     (1)温度控制算法研究及应用
     建立了大型预氧化装备的温控系统模型,通过实验获得了大型预氧化装备的阶跃响应曲线,利用辅助变量最小二乘法进行了模型参数的辨识。
     研究了用于大型预氧化装备的模糊自适应PID控制算法和基于BP神经网络的自适应PID控制算法并利用MATLAB进行仿真研究。仿真结果表明,与常规PID相比,两种算法都具有控制精度高、超调量小、抗干扰能力强等优点,其中基于BP神经网络的自适应PID控制在超调量及抗干扰能力方面优于模糊自适应PID控制,但BP神经网络算法复杂,其响应时间比模糊自适应PID控制稍长。
     针对模糊控制存在量化误差的缺陷,采用线性插值的方法,对模糊规则进行细化,推导了相应的计算公式,并在PLC上编程实现,消除了量化误差,显著改善了系统性能。
     (2)流场与温度场模拟研究
     以计算流体动力学和传热学的基本控制方程为基础,建立了大型预氧化装备炉内气体流动与传热的数学模型;利用有限体积法,对流动与传热的控制方程进行离散化处理,得到了瞬态流动与传热的离散方程;根据SIMPLE算法推导了速度与压力修正值的计算公式。
     通过分析大型预氧化装备的结构特点,合理简化,采用二维模型研究大型预氧化装备的流场和温度场,利用GAMBIT建立了不同条件下的模型并划分网格,采用Fluent进行了模拟。
     根据模拟结果,针对大型预氧化装备的结构、导风罩旋转角度以及PAN原丝在炉膛中的分布提出了一系列优化建议。
     在改进结构设计、优化导风罩旋转角度的基础上进行了温度场模拟,结果表明,改进和优化后的大型预氧化装备空载时具有较好的温度均匀性。
     (3)控制系统设计与软件开发
     根据本文研究成果,设计了一套具有高性能、高可靠性、高性价比和良好扩展能力的控制系统方案,并成应用于年产800吨PAN基碳纤维生产线的研制开发。
     开发了大型预氧化装备温度控制系统的PLC软件,利用多项式拟合加外部补偿的方式实现了0.02℃的高精度温度测量;采用模糊自适应PID控制和分段温度控制策略确保升温速率和控温精度;利用基于RS485总线的USS通讯实现了对3个子网共72台变频器的实时控制,通过合理的参数设置和软件优化,实时性完全满足生产要求;设计了一种智能预氧化装备升温调度算法并编程实现,该算法对大型预氧化装备的升温过程采用分段升温、分时控制,智能调度整条生产线的可用功率,在满足控温精度的条件下,可降低35%的变压器容量。
     (4)对大型预氧化装备的送风系统进行了优化,并测试了两种大型预氧化装备优化后的控温精度,控温点精度±0.8℃;多热电偶立体分布测温和预氧丝氧含量测试数据表明优化后的大型预氧化装备具有较好的温度均匀性,炉膛内各测温点的最大偏差为2.6℃。
Large-scale pre-oxidation equipment is one of the key equipments for the production of PAN based carbon fiber. Its major technical parameters are essential to improve the production and performance of carbon fiber. How to shorten the pre-oxidation heating-up time, improve temperature uniformity and control accuracy, and reduce the energy consumption, is the key technology to be solved for domestic large-scale pre-oxidation equipment.
     With the help of computer simulation, a systematic study was conducted on the temperature control characteristics of large-scale pre-oxidation equipment. It includes:
     (1) Research and application of temperature control algorithm
     A temperature control system model of large-scale pre-oxidation equipment was established and a step response curve was acquired by experiments. Finally the model parameters were identified using the auxiliary variable least squares method.
     Fuzzy adaptive PID algorithm and BP-based adaptive PID algorithm were studied and simulated in MATLAB. The simulation results show that, compared with conventional PID, both algorithms have the advantages of high precision, small overshoot, and strong anti-interference ability. The BP-based adaptive PID algorithm is better than fuzzy adaptive PID in the aspect of overshoot and anti-jamming, but its response time is a little longer than fuzzy adaptive PID due to the complexity of BP algorithm.
     Aiming at the defects of fuzzy control quantization error, a linear interpolation method was used to refine the fuzzy rules, the corresponding formulas were derived and this method was implemented in PLC program, which can eliminate the quantization error and improve the system performance significantly.
     (2) Flow field and temperature field simulation
     The mathematical model of gas flow and heat transfer of large pre-oxidation equipment was established based on the basic computational fluid dynamics and heat transfer equations. Using the finite volume method, the governing equations of flow and heat transfer were discretized and discrete equations of transient flow and heat transfer were derived. According to the SIMPLE algorithm, speed and pressure correction formulas were derived.
     Analyzing the structure characteristics of large-scale pre-oxidation equipment, a two-dimensional model with reasonable simplification was adopted to study the fluid field and temperature field. Models with different conditions were established and meshed in GAMBIT. FLUENT software was used for the simulation.
     Based on the simulation results, a series of optimization suggestions was proposed for structure improvement of large-scale pre-oxidation equipment, optimized rotation angles of wind scoopers and PAN fibers'distribution in chamber.
     The temperature filed simulation was conducted with improved structure and optimized rotation angles of wind scoopers, and the result shows that improved and optimized large-scale equipment without load has good temperature uniformity.
     (3)Control system design and software development
     Based on the research results of this paper, a set of temperature control system with high performance, high reliability, high cost performance and scalability was designed and it has been successfully applied to the development of a carbon fiber production line with annual output of800tons.
     The PLC software achieved high measurement precision of0.02℃using polynomial fitting and external compensation. Fuzzy adaptive PID algorithm and segmental temperature control strategy ware used to ensure the heating-up rate and control accuracy. USS communication based on RS485bus was utilized to control72inverters divided into3subnets and the real-time performance can meet the production requirements by reasonable parameter settings and software optimization. This paper also proposed an intelligent pre-oxidation scheduling algorithm which has been programmed. This intelligent scheduling algorithm can schedule all the available power by step heating and time-sharing control, it can reduce about35%of transformer capacity without temperature control precision loss.
     According to the research results, the air supply system of large-scale pre-oxidation equipment was optimized. The precision of two different large-scale pre-oxidation equipments with optimized parameters was tested and the temperature control precision is plus or minus1degrees C. Distributed multiple-thermocouple measurement and oxygen content tests of pre-oxidized fiber both proved that optimized large-scale pre-oxidation equipment has good temperature uniformity. The maximum temperature deviation in the chamber is2.6degrees C.
引文
[1]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [2]高科技纤维与应用编辑部.沥青基碳纤维[J].高科技纤维与应用,2011,36(2):51-54.
    [3]罗益锋.先进复合材料在高端和一般产业领域的最新发展[J].高科技纤维与应用,2012,37(4):41-48.
    [4]梁栋,邓蜀平,蒋云峰等.碳纤维复合导线芯电缆国内外技术研发现状及工程应用进展[J].化工新型材料,2011,39(4):13-17.
    [5]卢春华,宋丕双,孟庆辉等.国内外聚丙烯腈基碳纤维生产现状及市场分析[J].弹性体,2012,22(2):89-94.
    [6]贺福,孙微.我国碳纤维工业由普及到提高的攻坚势在必行[J].高科技纤维与应用,2011,36(4):7-11.
    [7]贺福,李润民.生产碳纤维的关键设备-预氧炉[J].高科技纤维与应用,2005,30(5):1-4.
    [8]高学平.聚丙烯腈基碳纤维流态化预氧化设备与工艺研究[D].济南:山东大学,2006.
    [9]闫亮.PAN原丝预氧化装备关键技术研究[D].济南:山东大学,2009.
    [10]李禛.新型碳纤维生产线预氧化装备的研究[D].济南:山东大学,2010.
    [11]林刚.一种新型碳纤维预氧化技术及其设备--美国DESPATCH公司CTE技术介绍[J].高科技纤维与应用,2009,34(5):43-47.
    [12]王聪Litzler新型碳纤维氧化系统[J].国际纺织导报,2010,(8):30-31.
    [13]J. G. Ziegler, N. B. Nichols. Optimum settings for automatic controllers[J]. Transactions of the ASME,1942,64(8):759-765.
    [14]K. J. Astrom, T. Hagglund. Automatic tuning of simple regulators with specifications on phase and amplitude margins [J]. Automatica,1984,20(5):645-651.
    [15]K.J. Astrom, T. Hagglund, A. Wallenborg. Automatic tuning of digital controllers with applications to HVAC plants[J]. Automatica,1993,29(5):1333-1343.
    [16]K.J. Astrom, T. Hagglund. Industrial adaptive controllers based on frequency response techniques [J]. Automatica,1991,27(4):599-609.
    [17]K. H. Johansson. Relay feedback and multivariable control[D]. Sweden:Lund University,1997.
    [18]Qing-Guo Wang, Tong-Heng Lee, Ho-Wang Fung. PID tuning for improved performance[J]. IEEE Transactions on Control Systems Technology,1999,7(4): 457-465.
    [19]Devrim B. Kaymak, William L. Luyben. Evaluation of a two-temperature control structure for a two-reactant/two-product type of reactive distillation column[J]. Chemical Engineering Science,2006,61(13):4432-4450.
    [20]陈瑜.自整定PID控制技术在供热系统中的应用[D].济南:山东大学,2005.
    [21]潘文斌.基于模式识别的自整定PID方法及其应用研究[D].杭州:浙江大学,2006.
    [22]边丽华.PID控制器参数自整定方法的研究与实现[D].大连:大连理工大学,2009.
    [23]叶岚.基于继电反馈的PID控制器的参数整定[D].上海:上海交通大学,2007.
    [24]朱海锋.PID控制器参数自整定方法研究[D].广州:中山大学,2005.
    [25]Qiang Bi, Wen-Jian Cai, Qing-Guo Wang. Advanced controller auto-tuning and its application in HVAC systems[J]. Control Engineering Practice,2000,8(6): 633-644.
    [26]Shih-Haur Shen, Hong-Den Yu, Cheng-Ching Yu. Use of saturation-relay feedback for autotune identification[J]. Chemical Engineering Science,1996,51(8):1187-1198.
    [27]Jin Hyun Park, Su Whan Sung, In-Beum Lee. Improved relay auto-tuning with static load disturbance[J]. Automatica,1997,33(4):711-715.
    [28]Julio Ariel Romero, Roberto Sanchis, Pedro Balaguer. PI and PID auto-tuning procedure based on simplified single parameter optimization[J]. Journal of Process Control,2011,21(6):840-851.
    [29]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-353.
    [30]Anthony S. McCormack, Keith R. Godfrey. Rule-based auto tuning based on frequency domain identification [J]. IEEE Transactions on Control Systems Technology, 1998,6(1):43-61.
    [31]叶兆春,王发庆.一种基于规则的PID参数自整定[J].北京工业大学学报,1987,13(3):1-7.
    [32]K.J. Astrom, T. Hagglund, PID controllers:Theory, design and tuning[M]. New York:Instrument Society of America,1995.
    [33]王永初.智能控制理论与系统的发展评述[J].华侨大学学报(自然科学版),2004,25(1):1-4.
    [34]寇怀成,吴云洁,陈燕娥.基于模糊多模型的专家PID在主汽温控制系统中的应用研究[J].系统仿真学报,2008,20(23):6398-6405.
    [35]廖迎新.基于群体搜索策略的热轧加热炉多模型优化控制研究[D].长沙:中南大学,2006.
    [36]Z. R. Radakovica, V. M. Milosevic, S. B. Radakovic. Application of temperature fuzzy controller in an indirect resistance furnace. Applied Energy[J],2002,73(2): 167-182.
    [37]Mo Zhi, Peng Xiaohong, Xiao Laisheng. Research and Application on Two-stage Fuzzy Temperature Control System for Industrial Heating Furnace[C].2009 Second International Conference on Intelligent Computation Technology and Automation,2009, 2:756-759.
    [38]Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system[J]. Expert Systems with Applications,2009,41(8):814-822.
    [39]Wei Jianga, Xuchu Jiang. Design of an Intelligent Temperature Control System Based on the Fuzzy Self-Tuning PID[J]. Procedia Engineering,2012,43:307-311.
    [40]Lei Wang, Wencai Du, HaiWang etc. Fuzzy self-tuning PID control of the operation temperatures in a two-staged membrane separation process[J]. Journal of Natural Gas Chemistry,2008,17(4):409-414.
    [41]Un-Chul Moon, Kwang Y. Lee. Hybrid algorithm with fuzzy system and conventional PI control for the temperature control of TV glass furnace[J]. IEEE Transactions on Control Systems Technology,2003,11(4):548-554.
    [42]S.E. Mansoura, G.C. Kembera, R. Dubay etc. Online optimization of fuzzy-PID control of a thermal process[J]. ISA Transactions,2005,44(2):305-314.
    [43]Songke Liu. Process Model and Control System for the Glass Fiber Drawing Process[D]. United States of America:West Virginia University,2010.
    [44]王明军.基于模糊PID的箱式电加热炉控制系统[D].大连:大连理工大学,2009.
    [45]德湘轶.基于预测模型的模糊PID参数自整定控制算法的研究与实现[D].沈阳:东北大学,2008.
    [46]汪镭,周国兴,吴启迪.人工神经网络理论在控制领域中的应用综述[J].同济大学学报,2001,29(3):357-361.
    [47]S. Fabri, V Kadirkamanathan. Dynamic structure neural networks for stable adaptive control of nonlinear systems[J]. IEEE Transactions on Neural Network,1996, 7(2):1151-1167.
    [48]Yonghong Tan, Achiel van Cauwenberghe. Nonlinear one-step-ahead control using neural network:control strategy and stability design[J]. Automatica,1996,32(12): 1701-1706.
    [49]R. K. Al Seyab, Y. Cao. Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation[J]. Journal of Process Control,2008,18(6):568-581.
    [50]Junghui Chen, Tien-Chih Huang. Applying neural networks to on-line updated PID controllers for nonlinear process control[J]. Journal of Process Control,2004,14(2): 211-230.
    [51]Huailin Shu, Youguo Pi. PID neural networks for time-delay systems[J]. Computers and Chemical Engineering,2000,24(2):859-862.
    [52]Giulio D'Emilia, Antonio Marra, Emanuela Natale. Use of neural networks for quick and accurate auto-tuning of PID controller [J]. Robotics and Computer-Integrated Manufacturing,2007,23(2):170-179.
    [53]郝连钢,齐蓉,蔡立虹.基于PCC的神经网络PID控制器设计[J].计算机测量与控制,2008,16(12):1841-1843.
    [54]Jianhua Zhang, Fenfang Zhang, Mifeng Ren etc. Cascade control of superheated steam temperature with neuro-PID controller[J]. ISA Transaction,2012,51(6):778-785.
    [55]葛朋.基于神经网络的PID算法在加热炉温度控制中的应用研究[D].沈阳:东北大学,2005.
    [56]Wang Wan-Zhao, Zhao Xing-Tao, Song Yan-Ping. Application of fuzzy-RBF-based PID controller in superheated steam temperature control system[J]. Electric Power Automation Equipment,2007,27(11):48-50.
    [57]Liu Ji-Zhen, Li Jian-Qiang, Zhang Luan-Ying. PID cascade control system of power plant main steam temperature with RBF network tuning [J]. Power Engineering, 2006,26(1):89-92.
    [58]Xu Chang, Lu Jian-Hong, Cheng Ming. Self-adaptive control with coordinated PID and improved RBF network[J]. Journal of Harbin Engineering University,2007,28(6): 660-664.
    [59]李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999.
    [60]李晓斌,刘丁,刘强.真空退火炉智能变结构控制方法的研究与应用[J].材料热处理学报,2006,27(1):124-129.
    [61]余勇,万德钧,钱卫忠.一种基于遗传算法温控系统的设计[J].自动化仪表,2000,21(8):30-32.
    [62]文定都,曾红兵,何玲.基于遗传算法PID参数寻优的电加热炉温度控制系统[J].电气自动化,2008,30(4):6-8.
    [63]P. Wang, D.P. Kwok. Optimal design of PID process controllers based on genetic algorithms[J]. Control Engineering Practice,1994,2(4):641-648.
    [64]马翠红.用遗传算法优化PID参数[J].自动化仪表,1998,19(1):10-12.
    [65]黄团华,胡建军,刘亚利等.简易的遗传算法及其在控制中应用[J].工业仪表与自动化装置,2005,(5):15.
    [66]侯志祥,申群太,李河清.基于改进遗传算法的PID参数整定及其在加热炉中的应用[J].计算机工程,2004,30(6):165-167.
    [67]Cheng-Jian Lin. A GA-based neural fuzzy system for temperature control [J]. Fuzzy Sets and Systems,2004,143(2):311-333.
    [68]SHI Dequan, GAO Guili, GAO Zhiwei etc. Application of Expert Fuzzy PID Method for Temperature Control of Heating Furnace[J]. Procedia Engineering,2012,29: 257-261.
    [69]G. Jahedi, M.M. Ardehali. Genetic algorithm-based fuzzy-PID control method-ologies for enhancement of energy efficiency of a dynamic energy system[J]. En-ergy Conversion and Management,2011,52(1):725-732.
    [70]Han Li, Zhang Zhen-yu. The application of immune genetic algorithm in main steam temperature of PID control of BP network[J]. Physics Procedia,2012,24:80-86.
    [71]T. Teodorczyk, K.T. Januszkiewicz. Computer simulation of electric multizone tube furnaces[J]. Advances in Engineering Software,1999,30(2):121-126.
    [72]St. Boschert, P. Dold, K.W. Benz. Modelling of the temperature distribution in a three-zone resistance furnace:influence of furnace configuration and ampoule position[J]. Journal of Crystal Growth,1998,187(1):140-149.
    [73]W.M. Gao, L.X. Kong, P.D. Hodgson. Numerical simulation of heat and mass transfer in fluidised bed heat treatment furnaces[J]. Journal of Materials Processing Technology,2002,125-126(9):170-178.
    [74]Jingyuan Sun, Yefeng Zhou, Congjing Ren. CFD simulation and experiments of dynamic parameters in gas-solid fluidized bed[J]. Chemical Engineering Science,2011, 66(21):4972-4982.
    [75]G.D. Stefanidis, B. Merci, G.J. Heynderickx etc. CFD simulations of steam cracking furnaces using detailed combustion mechanisms[J]. Computers & Chemical Engineering,2006,30(4):635-649.
    [76]Habibi, B. Merci, G.J. Heynderickx. Impact of radiation models in CFD simulations of steam cracking furnaces[J]. Computers and Chemical Engineering,2007, 31(11):1389-1406.
    [77]X. Lan, J. Gao, C. Xu. Numerical Simulation of Transfer and Reaction Processes in Ethylene Furnaces[J]. Chemical Engineering Research and Design,2007,85(12): 1565-1579.
    [78]Hu Guihua, Wang Honggang, Qian Feng. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces[J]. Chemical Engineering Science,2011,66(8):1600-1611.
    [79]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-143.
    [80]王伯长.侧喷退火炉流场与温度场数值模拟研究[D].长沙:中南大学,2009.
    [81]刘佳璐.锻造炉温度场的研究与建模[D].天津:天津大学,2008.
    [82]曹亮.高炉风口温度场和应力场的数值模拟[D].沈阳:沈阳工业大学,2007.
    [83]B. Danon, E.-S. Cho, W. de Jong etc. Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace[J]. Applied Thermal Engineering, 2011,31(17-18):3885-3896.
    [84]丁晟.闪速炼铜余热锅炉辐射室流场温度场数值模拟及结构优化[D].杭州:浙江大学,2011.
    [85]章杰.台车式热处理炉炉膛内流场和温度场的数值模拟[D].沈阳:东北大学,2008.
    [86]郑志伟.基于FLUENT的加热炉模拟与优化[D].东营:中国石油大学,2010.
    [87]杨湘,程素森,郭汉杰等.蓄热式加热炉流场的数值模拟[J].北京科技大学学报,2003,25(2):135-138.
    [88]史煜宏,姜泽毅,武文斐.连续式钢管热处理炉热工过程数值模拟[J].包头钢 铁学院学报,2004,23(1):52-56.
    [89]高晓冬.碳纤维生产控制系统开发及优化[D].济南:山东大学,2012.
    [90]苏宏升.真空钎焊炉温度自动控制系统建模与仿真[J].自动化技术与应用,2004,23(12):26-31.
    [91]彭佳.聚合物热压系统的温度控制策略研究[D].大连:大连理工大学,2007.
    [92]方崇智.过程辨识[M].北京:清华大学出版社,1988.
    [93]齐蓉,肖维荣.可编程控制器技术[M].北京:电子工业出版社,2009.
    [94]王士杰.由自衡过程的阶跃响应求取其近似的一阶或二阶滞后传递函数的计算方法[J].自动化仪表,1986,(2):6-7.
    [95]张军.一种基于最小二乘法的经典辩识的新方法[J].信息技术,2001,(11):19-21.
    [96]Qing-Guo Wang, Yong Zhang. Robust identification of continuous systems with dead-time from step responses[J]. Automatica,2001,37(3):377-390.
    [97]Qing-Guo Wang, Xin Guo, Yong Zhang. Direct identification of continuous time delay systems from step responses[J]. Journal of Process Control,2001,11(5):531-542.
    [98]Qiang Bi, Wen-Jian Cai, Eng-Lock Lee etc. Robust identification of first-order plus dead-time model from step response[J]. Control Engineering Practice,1999,7(1): 71-77.
    [99]Giuseppe Fedele. A new method to estimate a first-order plus time delay model from step response[J]. Journal of the Franklin Institute,2009,346(1):1-9.
    [100]Zheng Wei Xing. On a least-squares-based algorithm for identification of stochastic linear systems[J]. IEEE Transactions on Signal Processing,1998,46(6), 1631-1638.
    [101]蔡殉,于宽.材料处理工艺计算机控制[M].哈尔滨:哈尔滨工业大学出版社,2012.
    [102]于宽.流态化预氧化及炭化焦油消除控制系统研究[D].济南:山东大学,2005.
    [103]刘金琨.先进PID控制及其MATLAB仿真(第2版)[M].北京:电子工业出版社,2004.
    [104]彭勇刚.模糊控制工程应用若干问题研究[D].杭州:浙江大学,2008.
    [105]王耀南.智能控制理论及应用[M].北京:机械工业出版社,2008.
    [106]韩力群.智能控制理论及应用[M].北京:机械工业出版社,2008.
    [107]周德俭,吴斌.智能控制[M].重庆:重庆大学出版社,2005.
    [108]Bin Feng, Guofang Gong, Huayong Yang. Self-tuning-parameter fuzzy PID temperature control in a large hydraulic system[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009:1418-1422.
    [109]H Xin, T Huang, X Liu, X Tang. Temperature control system based on fuzzy self-adaptive PID controller[C].3rd International Conference on Genetic and Evolutionary Computing,2009:537-540.
    [110]Servet Soyguder, Mehmet Karakose, Hasan Alli. Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system[J]. Expert Systems with Applications,2009,36(3):4566-4573.
    [111]秦霆镐,池仁柱,于坤.基于模糊自整定PID的烟叶初烤系统的温度控制[J].仪表技术,2009,(4):9-11.
    [112]李洪兴.模糊控制的插值机理[J].中国科学(E辑),1998,28(3):259-267.
    [113]承君,张明路,李光辉.基于线性插值的模糊控制[J].基础自动化,2001,8(4):50-53.
    [114]肖秦琨,李琳琳,李振国.模糊控制的改善方法[J].西安建筑科技大学学报(自然科学版),2002,34(2):183-186.
    [115]齐蓉,谢利理,林辉等.一种基于PCC的通用模糊控制器的设计[J].电气自动化,2003,25(3):35-36.
    [116]刘高碘.温度场的数值模拟[M].重庆:重庆大学出版社,1990.
    [117]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [118]杜强.防水锤球型止回阀内部流场数值模拟和试验研究[D].成都:西华大学,2006.
    [119]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [120]韩占忠,王敬,兰小平Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [121]李进良,李承曦,胡仁喜.精通FLUENT 6.3流场分析[M].北京:化工出版社,2009.
    [122]B&R Automation Corporation. X20 System User's Manual[M]. B&R Automation Corporation,2009.
    [123]Siemens AG. SIMATIC S7-400自动化系统CPU规格[M]Siemens Automation & Drives Group,2007.
    [124]Siemens AG. SIMATIC可编程控制器S7-400模块规格[M]Siemens Automation & Drives Group,2007.
    [125]齐蓉,肖维荣.可编程计算机控制器技术[M].北京:电子工业出版社,2005.
    [126]Siemens AG. Universal Serial Interface Protocol Specifications [M]. Siemens Automation & Drives Group,1994.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.