武汉地区戊型肝炎病毒基因型及ORF3基因变异的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     戊型肝炎是由戊型肝炎病毒(hepatitis E virus, HEV)引起一种急性自限性疾病,其主要经粪-口传播,呈散发和爆发流行两种形式。患者临床表现类似于甲型肝炎,但病死率较其他各型肝炎高,尤其孕妇感染后病死率高达30%~100%。中国是戊型肝炎高发地区之一,其中新疆维吾尔族自治区在1986年~1988年期间发生了迄今为止世界上规模最大的一次戊型肝炎流行,累计有119 280人发病,707人死亡,给社会及经济造成了极大的危害。近年来,我国散发性急性戊型肝炎发病率呈持续上升趋势。
     HEV是一单股正链RNA病毒,无包膜,基因组全长约7.3kb,含有三个开放读码框(ORFs),其中ORF1位于基因组的5′端,编码与RNA复制有关的非结构蛋白, ORF2位于基因组的3′端,编码病毒衣壳蛋白,ORF3同样位于基因组的3′端,编码一种磷蛋白,其功能尚未完全阐明。Ⅰ、Ⅱ和Ⅲ型HEV ORF3基因片段长372 bp,编码蛋白由123个氨基酸组成,而基因Ⅳ型HEV由于在其ORF3插入一个核苷酸(U),从而导致阅读框移位,ORF3编码的蛋白N末端较其他基因型缺失9个氨基酸,含有114个氨基酸。
     本课题对武汉同济医院感染科门诊和住院部急性戊型肝炎患者的一般情况(如性别和年龄等)进行调查及HEV基因分型,并对基因Ⅳ型HEV ORF3基因及其编码蛋白变异情况进行检测和分析。
     目的
     1.探讨武汉地区散发性急性戊型肝炎流行特点和病毒基因型,为明确武汉地区HEV基因型分布提供一定的线索。
     2.研究武汉地区基因Ⅳ型HEV ORF3基因及其编码蛋白变异情况,为进一步探讨基因Ⅳ型HEV ORF3基因变异的临床意义奠定基础。
     方法
     1.收集2009年4月~2010年6月我院感染科门诊和住院部急性戊型肝炎患者血清162份,分装后-80℃保存待检。调查患者一般情况(如性别和年龄等)。
     2.采用逆转录-巢式聚合酶链反应(RT-nPCR)对162份急性戊型肝炎患者血清HEV RNA进行检测,并对PCR产物进行测序,然后根据测序结果进行HEV同源进化分析。
     3.采用逆转录-巢式聚合酶链反应(RT-nPCR)对41株基因Ⅳ型HEV RNA两个基因片段(5020~5392nt和5347~5956nt, EF570133)进行扩增,并对PCR产物进行测序,然后使用ContigExpress将测序结果拼接(含有HEV ORF3全序列),使用MegAlign(DNAStar软件包)对HEV ORF3进行比较,查看HEV ORF3基因及其编码蛋白变异情况。
     结果
     1.武汉地区急性戊型肝炎患者男女比例为4.40:1,30~59岁年龄段占71.60%,162份急性戊型肝炎患者血清中,有41份血清HEV RNA阳性,阳性率为25.31%,同源进化分析表明41株HEV均为基因Ⅳ型,各毒株间的核苷酸同源性为84.7%~100%,基因Ⅳ型又可进一步分为5种亚型,即Ⅳ-A、Ⅳ-B、Ⅳ-C、Ⅳ-D和Ⅳ-E亚型,各亚型内部的核苷酸同源性分别为91.3%~100%、98.0%、92.0%~100%、98.0%~100%、100%,其中Ⅳ-A亚型与广西株、上海株和西安株的核苷酸同源性分别为91.3%~96.0%、92.0%~97.3%和94.7%~99.3%,Ⅳ-D亚型与北京株的核苷酸同源性为95.3%~96.7%。
     2. 41株基因Ⅳ型HEV RNA两个基因片段均扩增出来的毒株为18株,18株HEV ORF3共检测出47个位点存在核苷酸替换,其中21个替换发生在密码子第一、二位核苷酸,26个替换发生在密码子第三位核苷酸;其编码蛋白存在19个位点氨基酸变异。
     结论
     1.武汉地区急性戊型肝炎以男性多见,好发于30~59年龄段,且均由基因Ⅳ型HEV引起,基因Ⅳ型又可进一步分为Ⅳ-A、Ⅳ-B、Ⅳ-C、Ⅳ-D和Ⅳ-E 5种亚型,其中Ⅳ-A亚型与广西株、上海株和西安株亲缘关系较近,Ⅳ-D亚型与北京株亲缘关系较近。
     2.武汉地区基因Ⅳ型HEV ORF3存在多个位点核苷酸替换,这些位点变异在急性戊型肝炎病情进展中有何意义,有待于进一步研究。
Background
     Hepatitis E virus(HEV) is a major cause of acute, self-limiting disease. It is primarily transmitted by the fecal–oral route and frequently results in sporadic,as well as epidemic, hepatitis. The clinical manifestations of acute hepatitis E is similar to those of hepatitis A, but the mortality rate of hepatitis E is higher than that of other hepatitides, especially up to 30%–100% in infected pregnant women. China is one of the high incidence areas of hepatitis E.So far, the world's largest hepatasit E outbreak had occurred in Xinjiang Uighur Autonomous Region between1986 and1988 with about 12,000 individuals infected and 707 people died,which did great harm to society and economic. In recent years, the incidence of acute sporadic hepatitis E has been rising in our country.
     HEV is a a positive sense, single-stranded RNA virus without envelope.The genome of is approximately 7.3 kb and contains three open reading frames (ORFs).ORF1 locates in the 5 'end of the genome and encodes non-structural protein which is essential for HEV replication.ORF2 locates in the 3 'end of the genome and encodes the viral capsid protein.ORF3 also locates in the 3' end of the genome and encodes a small phosphoprotein whose function(s) has not been fully defined. ORF3 of genotypeⅠ,ⅡandⅢwas 372 bp and encodes a protein of 123 amino acids.Compared to ORF3 of genotypesⅠ,ⅡandⅢ, ORF3 of genotype 4 contains a nucleotide insertion(U) which changes the downstream reading frames and this frame shift is predicted to shorten the ORF3 protein by 9 amino acids,including 114 amino acids.
     For these reasons,in our study,we firstiy investigate general situation(such as gender and age) and performed genotyping of HEV isolates among out-and in-patients with acute hepatitis E in the department of Infectious Diseases of Tongji Hospital in Wuhan.Then we detect and analyze the mutation of typeⅣHEV ORF3 and the encoded protein.
     Objective
     1. To investigate the epidemiological characteristics and genotype of hepatitis E virus (HEV) in Wuhan,which will provide some clues to determine genotype distribution of HEV in Wuhan.
     2. To detect and analyze the gene mutation of GenotypeⅣHEV ORF3 in Wuhan,which will further lay the foundation forinvestigating clinical significance of GenotypeⅣHEV ORF3 gene mutation.
     Methods
     1. 162 serum samples were collected from out-and in-patients with acute hepatitis E in the department of Infectious Diseases of our hospital between April 2009 and June 2010 and they were saved in -80℃after new package to test for HEV RNA. General situations(such as gender and age) of patients were surveyed.
     2. 162 serum samples collected from patients with acute hepatitis E were tested for HEV RNA by reverse transcription-nested polymerase chain reaction (RT-nPCR). The PCR products were sequenced. Then the sequencing results were used for phylogenetic analysis of HEV
     3. Two gene fragments of 41 GenotypeⅣHEV RNA(5020~5392nt and 5347~5956nt,EF570133) were amplified by reverse transcription-nested polymerase chain reaction (RT-nPCR).The PCR products were sequenced.Then these sequences were stitched(containing complete HEV ORF3) with ContigExpress and HEV ORF3s were aligned with MegAlign(DNAStar software package).The mutations of HEV ORF3 gene and ORF3 protein were analysed.
     Results
     1. The ratio of male and female patients with acute hepatitis E was 4.40:1 .The patients aged from 30 to 59 years accounted for 71.60%.41 out of 162 serum samples were positive for HEV RNA.The positive rate was 25.31%.Phylogenetic analysis showed that the 41 isolates belonged to genotypeⅣHEV. They shared 84.7.0%~100% identity with each other at the nucleotide level.The genotypeⅣisolates could be further divided into 5 subtypes, designating as A-E. The nucleotide sequence homologies within the five subtypes were 91.3%~100%、98.0%、92.0%~100%、98.0%~100% and 100%,respectively.SubtypeⅣ-A had 91.3%~96.0%、92.0%~97.3% and 94.7%~99.3% nucleotide sequence homology with the HEV isolates from Guangxi、Shanghai and Xian.SubtypeⅣ-D had 95.3%~96.7% nucleotide sequence homology with the HEV isolate from the Beijing.
     2. Both of HEV RNA gene fragments were amplified in 18 HEV isolates.There were 47 nucleotide substitutions of ORF3 gene in 18 HEV isolates.Among them ,21 nucleotide substitutions were found in the first or second nucleotide of codon and 26 nucleotide substitutions were found in the third nucleotide of codon.There were 19 amino acid substitutions of ORF3 protein in 18 HEV isolates.
     Conclusion
     1. AHE mostly occurs in male.People aged from 30 to 59 years are more susceptible to infection.The pathogen of acute hepatitis E is genotypeⅣHEV in Wuhan.The genotypeⅣisolates could be further divided into 5 subtype, designating asⅣ-A toⅣ-E. There is a close relationship between subtypeⅣ-A and Guangxi、Shanghai and Xian strains.There is a close relationship between subtypeⅣ-D and Beijing strain.
     2. There are a large number of nucleotide substitutions in GenotypeⅣHEV ORF3 gene in Wuhan. The significance of these gene mutations further needs to be studied in the progression of acute hepatitis E.
引文
[1]. Navaneethan U,Al Mohajer M,Shata MT. Hepatitis E and pregnancy: understanding the pathogenesis[J]. Liver Int, 2008, 28(9):1190-1199.
    [2]. Caron M,Enouf V,Than SC,et al. Identification of genotype 1 hepatitis E virus in samples from swine in Cambodia[J]. J Clin Microbiol, 2006, 44(9):3440-3442.
    [3]. Zhuang H, Cao XY, Liu CB, et al. Epidemiology of hepatitis E in China[J]. Gastroenterol Jpn, 1991, 26 Suppl 3:135-138.
    [4]. Chen Y, Tian DY, Xia NS. Epidemiology and genotypes of HEV in Wuhan[J]. Chin J Dig Dis, 2005, 6(4):182-188.
    [5]. Dong C, Dai X, Shao JS,et al. Identification of genetic diversity of hepatitis E virus (HEV) and determination of the seroprevalence of HEV in eastern China[J]. Arch Virol, 2007, 152(4):739-746.
    [6]. Yu Y, Sun J, Liu M, et al. Seroepidemiology and genetic characterization of hepatitis E virus in the northeast of China[J]. Infect Genet Evol, 2009, 9(4):554-561.
    [7]. Zhu G, Qu Y, Jin N, et al. Seroepidemiology and molecular characterization of hepatitis E virus in Jilin, China[J]. Infection, 2008, 36(2):140-146.
    [8].蓝海云,王佑春,张华远,等.上海部分地区戊型肝炎病毒(HEV)基因型的分析[J].中国病毒学, 2002, 17(2):106-109..
    [9].夏玉刚,李燕婷,陆一涵,等.华东地区散发性戊型肝炎病毒系统进化分析[J].中华流行病学杂志, 2009, 30(12):1269-1272..
    [10].庄辉,李奎,朱万孚,等.我国14个城市散发性戊型肝炎病毒部分核苷酸序列分析[J].中华医学杂志, 2000, 80(12):893-896..
    [11]. Ning H, Niu Z, Yu R, et al. Identification of genotype 3 hepatitis E virus in fecal samples from a pig farm located in a Shanghai suburb[J]. Vet Microbiol, 2007. 121(1-2):125-130.
    [12]. Zhang W, He Y, Wang H, et al. Hepatitis E virus genotype diversity in eastern China[J]. Emerg Infect Dis, 2010, 16(10):1630-1632.
    [13]. Guo QS, Yan Q, Xiong JH, et al. Prevalence of hepatitis E virus in Chinese blood donors[J]. J Clin Microbiol, 2010, 48(1):317-318.
    [14].中华医学会,传染病与寄生虫病学分会,肝病学分会.病毒性肝炎防治方案[J].中华肝脏病杂志, 2000, 8(6):324-329..
    [15].葛胜祥,郭清顺,李少伟,等.基因Ⅰ、Ⅳ型戊型肝炎病毒高灵敏度通用引物的设计和初步应用[J].病毒学报, 2005,21(3):181-187..
    [16].毛敬珍.慢性戊型肝炎13例临床分析[J].临床肝胆病杂志, 2002, 18(4):234.
    [17]. Kamar N, Selves J, Mansuy JM, et al. Hepatitis E virus and chronic hepatitis in organ-transplant recipients[J]. N Engl J Med, 2008. 358(8):811-817.
    [18].庄辉,毕胜利,王佑春,等.我国戊型肝炎研究[J].北京大学学报(医学版), 2002, 34(5):434-438.
    [19]. Yan Y, Zhang W, Shen Q, et al. Prevalence of four different subgenotypes of genotype 4 hepatitis E virus among swine in the Shanghai area of China[J]. Acta Vet Scand, 2008. 50:12.
    [20]. Lu L, Li C, Hagedorn CN. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis[J]. Rev Med Virol, 2006, 16(1): 5-36.
    [21]. Zheng Y, Ge SX, Zhang J, et al. Swine as a principal reservoir of hepatitis E virus that infects humans in eastern China[J]. J Infect Dis, 2006, 193(12):1643-1649.
    [22]. Pujhari SK, Kumar S, Ratho RK, et al. Phylogenetic analysis and subtyping of acute and fulminant strains of hepatitis E virus isolates of North India with reference to disease severity[J]. Arch Virol, 2010, 155(9):1483-1486.
    [23].程海军,詹东昂.散发性戊型病毒性肝炎116例分析[J].中国误诊学杂志,2010, 10(19):4686.
    [24].罗铭,梁旭竞,张立伐.慢性乙型肝炎重叠戊型肝炎病毒感染的临床特征分析[J].2009, 30(6):977-978.
    [25].唐建萍,夏莉兰,沈勇.血吸虫肝病合并戊型肝炎的临床分析[J].肝脏, 2001, 6(4):283.
    [26].曹艳雪,刘劲阳,吴彬,等.甲状腺机能亢进症合并戊型肝炎26例临床分析[J].中国综合临床, 2003, 19(2):149.
    [27].孔荣丽.慢性酒精性肝病伴发戊型肝炎6O例临床分析[J].浙江临床医学, 2007, 9(1):52..
    [28]. Mizuo H,Yazaki Y,Sugawara K,et al. Possible risk factors for the transmission of hepatitis E virus and for the severe form of hepatitis E acquired locally in Hokkaido, Japan[J]. J Med Virol, 2005, 76(3):341-349.
    [29]. Kumar Acharya S, Kumar Sharma P, Singh R, et al. Hepatitis E virus (HEV) infection in patients with cirrhosis is associated with rapid decompensation and death[J]. J Hepatol, 2007, 46(3):387-394.
    [1]. Graff J, Torian U, Nguyen H, et al A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus[J]. J Virol, 2006, 80(12): 5919-5926.
    [2]. Shen Q, Zhang W, Cao X, et al Cloning of full genome sequence of hepatitis E virus of Shanghai swine isolate using RACE method[J]. Virol J, 2007, 4:98.
    [3].葛胜祥,郭清顺,李少伟,等.基因Ⅰ、Ⅳ型戊型肝炎病毒高灵敏度通用引物的设计和初步应用[J].病毒学报, 2005, 21(3):181-187.
    [4]. Lu L, Li C, Hagedorn CN. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis[J]. Rev Med Virol, 2006, 16(1): 5-36.
    [5]. Zafrullah M, Ozdener MH, Panda SK, et al The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton[J]. J Virol, 1997, 71(12): 9045-9053.
    [6]. Korkaya H, Jameel S, Gupta D, et al The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK[J]. J Biol Chem, 2001, 276(45): 42389-42400.
    [7]. Kar-Roy A, Korkaya H, Oberoi R, et al The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase[J]. J Biol Chem, 2004, 279(27):28345-28357.
    [8]. Tyagi S, Korkaya H, Zafrullah M, et al The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2[J]. J Biol Chem, 2002, 277(25):22759-22767.
    [9]. Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy? [J]. Virus Res, 2003, 92:131-140.
    [10]. Tyagi S, Surjit M, Roy AK, et al The ORF3 protein of hepatitis E virus interacts with liver-specific alpha1-microglobulin and its precursor alpha1-microglobulin/bikunin precursor (AMBP) and expedites their export fromthe hepatocyte[J]. J Biol Chem, 2004, 279(28):29308-29319.
    [11]. Surjit M, Oberoi R, Kumar R, et al Enhanced alpha1 microglobulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101[J]. J Biol Chem, 2006, 281(12):8135-8142.
    [12]. Nagashima S, Takahashi M, Jirintai, et al .A PSAP motif in the ORF3 protein ofhepatitis E virus is necessary for virion release from infected cells[J]..J Gen Virol. 2011 ,92(Pt 2):269-78.
    [13]. Ohnishi S, Kang JH, Maekubo H, et al Comparison of clinical features of acute hepatitis caused by hepatitis E virus (HEV) genotypes 3 and 4 in Sapporo, Japan[J]. Hepatol Res, 2006. 36(4):301-307.
    [14]. Inoue J, Nishizawa T, Takahashi M,et al.Analysis of the full-length genome of genotype 4 hepatitis E virus isolates from patients with fulminant or acute self-limited hepatitis E[J]. J Med Virol, 2006, Apr;78(4):476-484.
    [15]. Inoue J, Takahashi M, Mizuo H, et al.Nucleotide substitutions of hepatitis E virus genomes associated with fulminant hepatitis and disease severity[J]. Tohoku J Exp Med, 2009 Aug;218(4):279-284.
    [16].陈焰,田德英,夏宁邵.武汉地区戊型肝炎病毒基因型及ORF3基因序列准种特点[J].华中科技大学学报(医学版), 2006, 35(3):181-187.
    [17]. Ozasa A, Tanaka Y, Orito E, et al Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection[J]. Hepatology, 2006, 44(2):326-334.
    [1]. Graff J, Torian U, Nguyen H, et al. A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus[J]. J Virol, 2006, 80(12): 5919-5926.
    [2]. Zafrullah M, Ozdener MH, Panda SK, et al. The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton[J]. J Virol, 1997, 71(12): 9045-9053.
    [3]. Jameel S, Zafrullah M, Ozdener MH, et al. Expression in animal cells and characterization of the hepatitis E virus structural proteins[J]. J Virol, 1996, 70(1): p. 207-216.
    [4].Tyagi S, Jameel S, Lal SK. Self-association and mapping of the interaction domain of hepatitis E virus ORF3 protein[J]. J Virol, 2001,75(5): p. 2493-2498.
    [5]. Korkaya H, Jameel S, Gupta D, et al. The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK[J]. J Biol Chem, 2001, 276(45): p. 42389-42400.
    [6]. Kar-Roy A, Korkaya H, Oberoi R, et al. The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase[J]. J Biol Chem, 2004, 279(27): p.28345-28357.
    [7]. Moin SM, Panteva M, Jameel S.The hepatitis E virus Orf3 protein protects cells from mitochondrial depolarization and death[J]. J Biol Chem, 2007,282(29): p. 21124-21133.
    [8]. Moin SM, Chandra V, Arya R, et al. The hepatitis E virus ORF3 protein stabilizes HIF-1alpha and enhances HIF-1-mediated transcriptional activity through p300/CBP[J]. Cell Microbiol, 2009, 11(9): p.1409-1421.
    [9]. Chandra V, Kar-Roy A, Kumari S, et al. The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response[J]. J Virol, 2008, 82(14): p.7100-7110.
    [10]. Chandra V, Kalia M, Hajela K, et al. The ORF3 protein of hepatitis E virus delaysdegradation of activated growth factor receptors by interacting with CIN85 and blocking formation of the Cbl-CIN85 complex[J]. J Virol, 2010, 84(8): p.3857-3867.
    [11]. Tyagi S, Surjit M, Roy AK, et al. The ORF3 protein of hepatitis E virus interacts with liver-specific alpha1-microglobulin and its precursor alpha1-microglobulin/bikunin precursor (AMBP) and expedites their export from the hepatocyt[J]e. J Biol Chem, 2004, 279(28): p.29308-29319.
    [12]. Surjit M, Oberoi R, Kumar R, et al. Enhanced alpha1 microglobulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101[J]. J Biol Chem, 2006, 281(12):8135-8142.
    [13]. Graff J, Nguyen H, Yu C, et al. The open reading frame 3 gene of hepatitis E virus contains a cis-reactive element and encodes a protein required for infection of macaques[J]. J Virol, 2005, 79(11): p.6680-6689.
    [14]. Emerson SU, Nguyen H, Torian U, et al. ORF3 protein of hepatitis E virus is not required for replication, virion assembly, or infection of hepatoma cells in vitro[J]. J Virol, 2006, 80(21): p.10457-10464.
    [15]. Tyagi S, Korkaya H, Zafrullah M, et al. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2[J]. J Biol Chem, 2002, 277(25): p.22759-22767.
    [16]. Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy? [J].Virus Res, 2003, 92(2): p.131-140.
    [17]. Yamada K, Takahashi M, Hoshino Y, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells?. J Gen Virol, 2009, 90(Pt8): p.1880-1891.
    [18]. Nagashima S, Takahashi M, Jirintai, et al. A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells?. J Gen Virol, 2011, 92(Pt2): p.269-278.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.