西北内陆旱区经济作物节水响应机理及灌溉制度优化模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺和生态环境恶化已成为西北内陆旱区农业可持续发展的制约因素。近年来,压缩高耗水作物、增加节水型经济作物种植比例已成为该地区缓解水资源供需矛盾、促进农民增收的重要举措。因此,研究西北内陆旱区经济作物的节水响应机理,并建立水分高效利用的灌溉制度对促进当地水资源可持续利用、保障生态安全和农业可持续发展具有重要的理论意义和实用价值。本文通过2008-2011年在农业部作物高效用水武威科学观测实验站开展的田间试验研究和土壤水氮迁移转化与作物生长耦合模型(SWNCM)的数值模拟,研究土壤水分和洋葱生理生态、耗水、产量、品质及水分利用效率对亏缺灌溉的响应规律,并建立了三种经济作物(洋葱、辣椒和西红柿)水分高效利用的灌溉制度。主要研究内容和取得成果如下:
     (1)于2008-2009年开展了洋葱膜上畦灌亏缺灌溉试验,采用称重式蒸渗仪定量研究了洋葱的耗水规律,及水分亏缺对洋葱产量和水分利用效率的影响,得到了洋葱的作物系数。膜上畦灌条件下,洋葱全生育期耗水量可达到358mm,耗水强度和耗水模系数均为鳞茎膨大期>发叶期>苗期>成熟期。洋葱产量可达到62.12t hm-2,鳞茎膨大期水分亏缺使产量显著降低。作物系数在生育期内呈抛物线形变化,在初始生长期、生育中期和成熟期平均分别为0.73、1.28和0.70。
     (2)于2009~2010年开展了洋葱膜下滴灌调亏灌溉试验,分析了洋葱生理、生态指标对水分亏缺的响应。结果表明洋葱的株高、颈粗、叶片数、叶面积指数、各部分生物量、光合速率、蒸腾速率和气孔导度在灌水量低于0.8ETc时均受到水分亏缺的显著影响而减小;苗期水分亏缺抑制了洋葱生长,但差异不显著;发叶期水分亏缺使各生长指标和生理指标显著降低,鳞茎膨大期水分亏缺显著降低各部分生物量、光合速率、蒸腾速率和气孔导度,成熟期水分亏缺对各生长量无显著影响。
     (3)膜下滴灌条件下,洋葱全生育期耗水量达到414mm。产量随灌水量(0.4~1.0ETc)的增加而增加,灌水量低于0.8ETc时,减产显著;苗期和成熟期水分亏缺对产量的影响不显著,发叶期和鳞茎膨大期水分亏缺均使产量显著降低。水分亏缺可提高洋葱的水分利用效率。灌水量为0.8ETc时可获得较高的鳞茎可溶性固形物和蛋白质含量,水分亏缺均使鳞茎维生素C含量提高。构建了洋葱全生育期和分阶段的水分生产函数;由Jensen模型分阶段水分生产函数求得洋葱的水分敏感指数为鳞茎膨大期>发叶期>苗期>成熟期。
     (4)通过田间实测的农田土壤水分动态和作物生长过程数据对SWNCM模型进行率定和验证。结果表明,率定和验证后的SWNCM模型能够较好的模拟试验地区洋葱、辣椒和西红柿等经济作物在亏缺灌溉条件下农田土壤水分动态和作物生长过程,及其对作物产量和耗水的影响,可对该地区此类经济作物的灌溉制度进行模拟优化。
     (5)基于率定后的SWNCM模型,探讨了不同灌水量和灌水频率对水量平衡组成项、作物产量和水分生产率的影响。得到洋葱、辣椒和西红柿以节水、高产、高效和减少损耗为目标的灌溉制度为:采用膜下滴灌,灌水频率分别为间隔5、5、5~7d灌水,灌水定额分别为0.65ETc、0.73ETc和0.72~0.74ETc(ETc为本模拟中率定后的作物系数Kc与ETo的乘积)。
The shortage of water resources and the deterioration of the ecological environment in the arid Northwest China have been the limiting factors for its sustainable development of agriculture. In recent years, reducing the planting area of highly water consumptive crops and increasing the planting proportion of cash crops which are water saving is becoming one of the important strategies to relieve the contradiction between supply and demand of water resources, as well as increase ingatherings of the peasantry. Therefore, study the response of cash crops'growth to water saving practices and establish the irrigation schedules with high water use efficiency is scientifically and practically significant for promoting the sustainable utilization of water resources, and guaranting the ecological security and agricultural sustainable development in this arid region. In this research, field experiments'data analysis and model simulation were combined to study the responses of soil water content, crop ecological and physiological characteristics, crop evapotranspiration, yield and its quality as well as water use efficiency to water deficit, and the irrigation schedules for three cash crops, i.e., onion, pepper and tomato, were established. The field experiments were conducted at the Wuwei Experimental Station of Crop Water Use, Ministry of Agriculture, located in Gansu Province of northwest China in2008-2011. The soil-water-nitrogen-crop growth model (SWNCM) was adopted to predict the dynamics of soil water content and crop growth, as well as optimizing the irrigation schedules. The main results are as follows:
     (1) Deficit irrigation experiment on onion under border irrigation with plastic mulch were carried out in2008and2009, nine weighing lysimeters were used to estimate onion evapotranspiration. The effects of water deficit on onion yield and water use efficiency (WUE) were investigated, and the crop coefficient was obtained. The seasonal evapotranspiration of onion was up to358mm, water consumption rate and percentage at different growth stages ranked as bulbification stage>development stage>establishment stage>ripening stage. Onion yield can be up to62.12t hm-2, water deficit during bulbification stage can significantly reduce onion yield. The crop coefficients of onion at initial, mid-season and late season stage were0.73,1.28and0.70, respectively.
     (2) Regulated deficit irrigation experiment on onion under drip irrigation with plastic mulch were conducted in2009and2010, the response of crop growth and physiological indexes to different water saving practices were analysed. The results showed that onion growth indexes (i.e., plant height, neck thickness, number of leaves, leaf area index and dry matter of different parts) and physiological characteristics (i.e., photosynthesis, transpiration and stomatal conductance) were significantlty affected by water deficit when irrigation depth less than0.8ETC. Water deficit at the establishment stage can restrain the crop growth of onion in a certain degree, but the effect was not remarkable. Water stress significantly reduced the growth and physiological indexes when water deficit imposed at the development stage. Water deficit occurred at the bulbification stage can remarkably reduce the dry matter of different parts and the physiological indexes. No significant effects were found in crop growth indexes when water deificit imposed at the ripening stage.
     (3) Seasonal evapotranspiration of onion can be up to414mm under mulched drip irrigation. Onion yield increased with the increase of irrigation depth significantly when irrigation depth less than0.8ETc. Water deficit during the development and bulbification sages reduced bulb yield significantly, while during establishment and ripening stages, the effects of water deficit on bulb yiled were not well marked. All water deficit treatments improved the water use efficiency of onion. Higher total soluable solids and protein content in onion bulb can be obtained under treatment with irrigation depth of0.8ETc, and water deficit can improve the vitamine C content. The water sensiticity indexes of water production function indicated that bulbification stage is the most critical stage for onion irrigation.
     (4) The SWNCM model was calibrated and validated by the observed soil water content and crop growth data. The results indicated that the model can be used to simulate the effects of deficit irrigation on the soil water dynamics, crop growth processes, crop yield and evapotranspiration of onion, chili pepper and tomato in this study area. And then, the appropriate irrigation management for the cash crop can be evaluated by the model.
     (5) Based on the calibrated model, various scenarios of different irrigation amounts and frequencies were studied on the water balance, crop yield and water productivity. With the consideration of water saving, high crop yield and water productivity, the appropriate irrigation schedules for onion, chili pepper and tomato are irrigating with intervals of5,5,7days and the irrigation quota are0.65ETc,0.73ETc and0.72~0.74ETc, respectively, under mulched drip irrigation.
引文
[1]水利部发展研究中心形势分析课题组.对2020年我国水资源供需形势的初步判断.水利发展研究,2008,5:5-7
    [2]范广洲,程国栋.青藏高原隆升对西北地区降水量变化的影响.高原气象,2003,22(增):67-74
    [3]张林源,苏桂武.中国西北干旱区的成因、特征与环境优化.干旱区资源与环境,1993,7(3,4):1-10
    [4]邱巨龙,曲建升,李燕.2000-2009年甘肃省社会水资源压力状况评价.开发研究,2011,3:70-74
    [5]康绍忠,粟晓玲,杨秀英,等.石羊河流域水资源合理配置及节水生态农业理论与技术集成研究的总体框架.水资源及水工程学报,2005,16(1):1-9
    [6]甘肃省水利厅,甘肃省发展和改革委员会.甘肃省石羊河流域重点治理规划.甘肃省水利厅石羊河流域管理局,2007
    [7]康绍忠,粟晓玲,沈清林,等.石羊河流域水资源利用与节水农业发展模式的战略思考.水资源与水工程学报,2004,15(14):1-8
    [8]石培泽,粟晓玲.武威市石羊河流域种植结构调整与节水思路.节水灌溉,2009,5:55-57
    [9]崔远来,李远华.作物缺水条件下灌溉供水量最优分配.水利学报,1997,3:37--42
    [10]韩万海.西北旱区膜下滴灌洋葱需水规律及优化灌溉制度试验研究.节水灌溉,2010,5:30-33
    [11]钱万林,范宏伟,宋雄儒.河西高海拔冷凉灌区洋葱全地面覆盖栽培技术.甘肃农业科技,2006,7:65-66
    [12]胡志桥,田霄鸿,张久东,等.石羊河流域主要作物的需水量及需水规律的研究.干旱地区农业研究,2011,29(3):1-6
    [13]周继莹.覆膜沟灌条件下水肥控制对番茄产量和品质的影响[硕士学位论文].兰州:甘肃农业大学,2013
    [14]郭玉琳,郭秀珍,宋克清.武威辣椒高产优质规范化栽培技术总结.甘肃农业科技,1995,6:18-19
    [15]程凤林.膜下滴灌灌溉定额及灌溉次数对辣椒生长及生理的影响[硕士学位论文].兰州:甘肃农业大学,2010
    [16]Munns R. Comparative physiology of salt and water stress. Plant, Cell and Environment,2002,25: 239-250
    [17]山仑,邓西平,张岁歧.生物节水研究现状及展望.中国科学基金,2006,2:66-71
    [18]Vurayai R, Emongor V, Moseki B. Effect of water stress imposed at different growth and development stages on morphological traits and yield of bambara groundnuts (Vigna subterranean L. Verde). American Journal of Plant physiology,2011,6(1):17-27
    [19]Jones H G. Irrigation scheduling:Advantages and pitfalls of plant-based methods. Journal of Experimental Botany,2004,55:2427-2436
    [20]Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport:using physiological processes in global predictions. Trends Plant Science,2000,5:482-488
    [21]Ghaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology,2003,30:239-264
    [22]Huang B, Gao H. Root Physiological characteristics associated with drought resistance in Tall Fescue cultivars. Crop Science,2000,40(1):196-203
    [23]Huang B, Duncan R R, Carrow R N. Drought-resistance mechanisms of seven warm-season turfgrass under surface soil drying:Ⅱ. Root aspects. Crop Science,1997,37(6):1863-1869
    [24]徐兴友,张风娟,龙茹,等.6种野生耐早花卉幼苗叶片脱水和根系含水量与根系活力对干旱胁迫的反应.水土保持学报,2007,21(1):180-184
    [25]Lilley J M, Ludlow M M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Research,1996,48:185-197
    [26]Jongdee B, Fukai S, Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research,2002,76:153-163
    [27]康绍忠,史文娟,胡笑涛,等.调亏灌溉对于玉米生理指标及水分利用效率的影响.农业工程学报,1998,12:82-87
    [28]郑健.温室小型西瓜高效用水机理及灌溉模式研究[博士学位论文].杨凌:西北农林科技大学,2009
    [29]Kumar S, Imtiyaz M, Kumar A, et al. Response of onion (Allium cepa L.) to different levels of irrigation water. Agricultural Water Management,2007,89(1-2):161-166
    [30]Turner N C. Plant water relations and irrigation management. Agricultural Water Management, 1990,17:59-75
    [31]Kang S, Liang Z, Pan Y, et al. Alternate furrow for maize production in an arid area. Agricultural Water Management,2000,45:261-214
    [32]Bekele S, Tilahun K. Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agricultural Water Management,2007,89:148-152
    [33]Kirnak H, Higgs D, Kaya C, et al. Effects of irrigation and nitrogen rates on growth, yield and quality of muskmelon in semiarid regions. Journal of Plant Nutrition,2005,28:621-638
    [34]Du T, Kang S, Zhang J, et al. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agricultural Water Management,2008,95:659-668
    [35]Kang S, Shi P, Pan Y, et al. Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas. Irrigation Science,2000,19:181-190
    [36]山仑.植物水分利用效率和半干早地区农业用水.植物生理学通讯,1994,2:61-66
    [37]Davies W J, Bason M A, Thompson D S. Regulation of leaf and fruit growth in plants growing in drying soil:exploitation of the plants'chemical signaling system and hydraulic architecture to increase the efficiency of water use in agriculture. Journal of Experimental Botany,2000,51(350): 1617-1626
    [38]Dry P R, Loveys B R. Factors influencing grapevine vigor and the potential for control with partial root zone drying. Australian Journal of Grape and Wine Research,1998,4:140-148
    [39]Kirnak H, Higgs D, Kaya C, et al. Effects of irrigation and nitrogen rates on growth, yield and quality of muskmelon in semiarid regions. Journal of Plant Nutrition,2005,28:621-638
    [40]Zeng C Z, Bie Z L, Yuan B Z. Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse. Agricultural Water Management,2009,96: 595-602
    [41]Aujla M S, Thind H S, Buttar G S. Fruit yield and water use efficiency of eggplant (Solanum melongema L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Scientia Horticulturae,2007,112:142-148
    [42]Webber H A, Madramootoo C A, Bourgault M, et al. Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation. Agricultural Water Management, 2006,86:259-268
    [43]Igbadun H E, Ramalan A A, Oiganji E. Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria. Agricultural Water Management,2012,109:162-169
    [44]Kirda C. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. Deficit Irrigation Practices, FAO Water Reports, Rome,2000
    [45]Sensoy S, Ertek A, Gedik I, et al. Irrigation frequency and amount affect yield and quality of field-grown melon(Cucumis melo L.). Agricultural Water Management,2007,88:269-274
    [46]王锋,康绍忠,王振昌.甘肃民勤荒漠绿洲区调亏灌溉对西瓜水分利用效率、产量与品质的影响.干旱地区农业研究,2007,25(4):123-129
    [47]Cui N, Du T, Kang S, et al. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees. Agricultural Water Management,2008,95:489-497
    [48]Zayton A M. Effect of soil-water stress on onion yield and quality in sandy soil. Misr Journal of Agricultural Engineering,2007,1:141-160
    [49]Olalla F M, Padilla A D, Lopez R. Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agriculture Water Management,2004,68(1):77-89
    [50]Pelter G Q, Mittelstadt R, Leib B G, et al. Effects of water stress at specific growth stages on onion bulb yield and quality. Agricultural Water Management,2004,68:107-115
    [51]Kumar S, Imtiyaz M, Kumar A. Effect of different soil moisture and nutrient regimes on postharvest attributes of onion(Allium cepa L.). Scientia Horticulturae,2007,112:121-129
    [52]Shock C C, Feibert E B G, Saunders L D. Onion yield and quality affected by soil water potential as irrigation threshold. Horticultural Science,1998,33:1188-1191
    [53]Well J A, Nugent P E. Effect of high soil moisture on quality of muskmelon. Hortscience,1980,15: 258-259
    [54]Rouphael Y, Colla G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Scientia Horticulturae, 2005,105:177-195
    [55]Dogan E, Kirnak H, Berekatoglu K, et al. Water stress imposed on muskmelon (Cucumis Melo L.) with subsurface and surface drip irrigation systems under semi-arid climatic conditions. Irrigation Science,2008,26:131-138
    [56]Hartz T K, Hochmuth G J. Fertility management of drip irrigated vegetables. Horticultural Technology,1996,6(3):168-172
    [57]Ensico J, Wiedenfeld B, Jifon J, et al. Onion yield and quality response to two irrigation scheduling strategies. Scientia Horticulturae,2009,120:301-305
    [58]Ayas S, Demirtas C. Deficit irrigation effects on onion (Allium cepa L. E.T. Grano 502) yield in unheated greenhouse condition. Journal of Food, Agriculture and Environment,2009,7(3&4): 239-243
    [59]Kadayifci A, Tuylu G, Ucar Y, et al. Crop water use of onion (Allium cepa L.) in Turkey. Agricultural Water Management,2005,72:59-68
    [60]Shock C C, Feibert E B G, Saunders L D. Irrigation criteria for drip irrigated onions. Hortscience, 2000,35(1):63-66
    [61]Prashar C R K, Sharma G C, Gandah M. Evapotranspiration of onion in Sahelian Niger. Experimental Agriculture,1994,30:473-476
    [62]Orta A H, Sener M. A study on irrigation scheduling of onion (Allium cepa L.) in Turkey. Online Journal of Biological Sciences,2001,1(8):735-736
    [63]Sarkar S, Goswami S B, Mallick S, et al. Different indices to characterize water use pattern of micro-sprinkler irrigated onion. Agricultural Water Management,2008,95:625-632
    [64]Al-Jamal M S, Ball B, Sammis T W. Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production. Agricultural Water Management,2001,46:253-266
    [65]Patel N, Rajput T B S. Effect of subsurface drip irrigation on onion yield. Irrigation Science,2009, 27:97-108
    [66]Ensico J, Jifon J, Wiedenfeld B. Subsurface drip irrigation of onions:effects of drip tape emitter spacing on yield and quality. Agricultural Water Management,2007,92:126-130
    [67]王和洲,张晓萍.调亏灌溉条件下的作物水分生态生理研究进展.灌溉排水,2001,20(4):73-75
    [68]Marouelli W A, Abdalla R P, Madeira N R, et al. Water use and onion crop production in no-tillage and conventional cropping systems. Horticulture Brasileira,2010,28:19-22
    [69]王凤仙,李韵珠.土壤水氮资源的利用与管理Ⅱ.土壤水氮资源的利用、损失和周年利用效率模拟.植物营养与肥料学报,1995,5(4):297-306
    [70]Teixeira J L, Pereira L S. ISAREG, an irrigation scheduling model. ICID Bulletin,1992,41(2): 29-48
    [71]van Dam J C, Huygen J, Wesseling J G, et al. Theory of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil-Water-Air-Plant environment. Report 71, Department of Water Resources, Wageningen Agricultural University, Tech. Docu.45, DLO Winand Staring Centre, Wageningen, the Netherlands,1997
    [72]Wu L, Mcgechan M B. A Review of carbon and nitrogen processes in four soil nitrogen dynamics models. Journal of Agricultural Engineering Research,1998,69:279-305
    [73]Ahuja L R, Rojas K W, Hanson J D, et al. Root zone water quality model. Modeling management effects on water quality and crop production. Water Resources Publications,2000
    [74]Williams J R. The EPIC model. Highlands Ranch, CO:Water Resources Publications,1995, 909-1000
    [75]Leonard R A, Knisel W G, Still D A. GLEAMS:ground water loading effects of agricultural management systems. Transaction of the ASAE,1987,30:1403-1418
    [76]Shaffer M J, Pierce F J. A user's guide to NTRM, a soil-crop simulation model for nitrogen, tillage, and crop-residue management. Conservation Research Report (USA),1987
    [77]Wagenet R J, Huston J L. LEACHMN:leaching estimation and chemistry model. Ver.2. Cornell University. Ithaca, NY,1989
    [78]Hoogenboom G, Jones J W, Wilkens P W, et al. Crop models. DSSAT version,3(2),1994,95-244
    [79]Stockle C O, Nelson R. CropSyst user's manual (version 2.0). Biological Systems Engineering Department, Washington State University, Pullman, WA, USA,1996
    [80]Jones C A, Kiniry J R. CERES-Maize:A simulation model of maize growth and development. Texas A&M University Press, College Station, Texas,1986
    [81]Ritchie J T, Otter S. Description and performance of CERES-Wheat:A user-oriented wheat yield model, p.159-175. In ARS wheat yield project. ARS-38. National Technical Information Service, Springfield, VA.1985
    [82]Ritchie J T, Godwin D C, Otter-Nacke S. CERES-Wheat:A simulation model of wheat growth and development. ARS. US Department of Agriculture,1985
    [83]Liu Y, Dong B. Real-time irrigation scheduling model for cotton. In:Pereira L S, Gowing J W (Eds.), Water and the Environment:Innovation Issues in Irrigation and Drainage, London,1998
    [84]刘钰,Pereira L S.考虑地面灌水技术制约的灌溉制度优化.农业工程学报,2003,04:74-79
    [85]蒋静.石羊河流域咸水非充分灌溉农田土壤水盐运移试验与模拟研究[博士学位论文].北京:中国农业大学,2011
    [86]潘志勇.基于试验与模型的C-N循环研究[博士学位论文].北京:中国农业大学,2005
    [87]王相平.再生水灌溉条件下农田水氮迁移转化的RZWQM模拟[硕士学位论文].北京:中国农业大学,2007
    [88]冯绍元.土壤-水-植物系统中氮素运移、转化与吸收模拟研究[博士后研究工作报告].北京:北京农业工程大学,1995
    [89]武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究.灌溉排水,1996,15(4):10-15
    [90]丛振涛,倪广恒,雷志栋.用于田间作物-水分关系研究的ThuSPAC模型.沈阳农业大学学报,2004,35(5~6):459-461
    [91]丛振涛,雷志栋,胡和平,等.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究Ⅱ: 模型的验证与应用.水利学报,2005,36(6):741-745
    [92]胡克林,李保国,陈研,等.作物生长与土壤水氮运移联合模拟的研究Ⅰ—模型.水利学报,2007,38(7):779-785
    [93]王相平.区域农田水氮利用效率及氮素淋失风险模拟研究[博士学位论文].北京:中国农业大学,2010
    [94]徐旭,黄冠华,黄权中.农田水盐运移与作物生长模型耦合及验证.农业工程学报,2013,29(4):110-117
    [95]王军.甜瓜沟灌条件下水氮迁移转化与高效利用研究[博士学位论文].北京:中国农业大学,2013
    [96]Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration. FAO Irrigation and Drainage Paper No.56, Rome,1998
    [97]高俊凤.植物生理学实验技术.西安:世界图书出版公司,2000,145-166
    [98]Pereira L S, Cordery I, Iacovides I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management,2012,108:39-51
    [99]杨会颖.西北早区膜下滴灌条件下辣椒耗水规律及灌溉制度研究[硕士学位论文].北京:北京师范大学,2012
    [100]贾冬冬.膜下滴灌条件下西红柿控水调质试验研究[硕士学位论文].北京:中国农业大学,2011
    [101]张柯桢.膜下滴灌条件下番茄控水调质试验研究[硕士学位论文].北京:中国农业大学,2012
    [102]杨仁义,高析,张付平,等.不同灌水量对洋葱产量及效益的影响.农业科技与信息,2009,23:32-34
    [103]刘士平,杨建锋,李宝庆,等.新型蒸渗仪及其在农田水文过程研究中的应用.水利学报,2000,3:29-36
    [104]Wan S, Kang Y, Wang D, et al. Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area. Agricultural Water Management,2007,90(1):63-74
    [105]Wang D, Kang Y, Wan S. Effect of soil matric potential on tomato yield and water use under drip irrigation condition. Agricultural Water Management,2007,87(2):180-186
    [106]A1-Jamal M S, Sammis T W, Ball S, et al. Yield based, irrigated onion crop coefficients. ASAE Applied Engineering in Agriculture,1999,15:659-668
    [107]Bossie M, Tilahun K, Hordofa T. Crop coefficient and evapotranspiration of onion at Awash Melkassa, Central Rift Valley of Ethiopia. Irrigation and Drainage Systems,2009,23:1-10
    [108]Lancaster J E, Triggs C M, De Ruiter J M, et al. Bulbing in onions:photoperiod and temperature requirements and prediction of bulb size and maturity. Annals of Botany,1996,78:423-430
    [109]Neumann P M. The role of cell wall adjustment in plant resistance to water deficits. Crop Science, 1995,35:1258-1266
    [110]李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系.植物生理学通讯,1998,34(3):161-167
    [111]赵金梅,栗锡令.气温光照对农作物产量的影响.国土与自然资源研究,1993,1:44-47
    [112]FAO-Water Development and Management. Crop water information:onion. (Accessed on March 28,2013). http://www.fao.org/nr/water/cropinfo_onions.html
    [113]Greenwood D, Gerwitz A, Stone D, et al. Root development of vegetable crops. Plant and Soil, 1982,68:75-96
    [114]Smith R, Biscaro A, Cahn M, et al. Fresh market bulb onion production in California. UC/DANR Publication 7242
    [115]Channagoudra R F, Prabhudeva A, Kamble A S. Response of onion (Allium cepa L.) to different levels of irrigation and sulphur in alfisols of northern transitional tract of Karnataka. Asian Journal of Horticulture,2009,4(1):152-155
    [116]Abbey L, Joyce D C. Water-deficit stress and soil type effects on spring onion growth. Journal of Vegetable Crop Production,2004,10(2):5-18
    [117]Geremew E B. Modeling the soil water balance to improve irrigation management of traditional irrigation schemes in Ethiopia (chapter 7 growth and yield response of onions (Allium cepa L.) to water stress at different growth stages) [PhD thesis]. Pretoria:University of Pretoria,2008. http://upetd.up.ac.za/thesis/available/etd-05242009-121531/. (Accessed on 21 Feb 2012)
    [118]Parashar S K. Effect of soil water stress at different stages of onion bulb. Indian Journal of Agronomy,1976,20:489-493
    [119]Kanton R A L, Abbey L, Gbene R H. Irrigation schedule affects onion (Allium cepa L.) growth, development, and yield. Journal of Vegetable Crop Productio,2003,9(1):3-11
    [120]Bhatt R M, Rao N K, Srinivasa G, et al. Response of bulb onion (Allium cepa L.) to water stress: photosynthesis, stomatal conductance and osmotic adjustment. Indian Journal of Horticulture,2006, 63(3):276-280
    [121]Metwally A K. Effect of water supply on vegetative growth and yield characteristics in onion (Allium Cepa L.). Australian Journal of Basic and Applied Sciences,2011,5(12):3016-3023
    [122]Miyashita K, Tanakamaru S, Maitani T, et al. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany,2005,53(2):205-214
    [123]Cowan I R. Stomatal behavior and environment. Advances in Botanical Research,1977,4: 117-228
    [124]王会肖,刘昌明.作物光台、蒸腾与水分高效利用的试验研究.应用生态学报,2003,14(10):1632-1636
    [125]王峰.温室番茄产量与品质对水分亏缺的响应及节水调质灌溉指标[博士学位论文].北京:中国农业大学,2011
    [126]康绍忠,熊运章.作物缺水状况的判别方法与灌水指标的研究.水利学报,1991,1:34-39
    [127]雷廷武.土壤·作物与水的关系.农业工程学报,1995,11(2):189-194
    [128]张宪法,于贤昌,张凌云,等.水分对蔬菜生长动态和生理活动的影响.中国蔬菜,2000,4:48-50
    [129]Bazza M. Improving irrigation management practices with water-deficit irrigation. In:Kirda C, Moutonnet P, Hera C, et al. (Eds.), Crop Yield Response to Deficit Irrigation. Kluwer Academic Publishers, Dordrecht, The Netherlands,1999
    [130]Zhang B, Li F, Huang G, et al. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management,2006,79(1):28-42
    [131]郑健,蔡焕杰,陈新明,等.调亏灌溉对温室小型西瓜水分利用效率及品质的影响.核农学报,2009,23(1):159-164
    [132]张振华,蔡焕杰,杨润亚,等.沙漠绿洲区膜下滴灌作物需水量及作物系数研究.农业工程学报,2004,20(5):97-100
    [133]Ebel R C, Proebsting E L, Patterson M E. Regulated deficit irrigation may alter apple maturity, quality, and storage life. HortScience,1993,28(2):141-143
    [134]孟兆江,贾大林,刘安能,等.调亏灌溉对冬小麦生理机制及水分利用效率的影响.农业工程学报,2003,19(4):66-69
    [135]康绍忠,杜太生,孙景生,等.基于生命需水信息的作物高效节水调控理论与技术.水利学报,2007,38(6):661-667
    [136]杜太生,康绍忠.基于水分-品质响应关系的特色经济作物节水调质高效灌溉.水利学报,2011,42(2):245-252
    [137]段学义,胡秉安,殷晓燕.甘肃省洋葱产业存在的问题与发展建议.中国蔬菜,2010,9:9-11
    [138]闵宪梅.有机肥对洋葱产量、品质及贮藏特性影响的研究[硕士学位论文].长春:吉林农业大学,2005
    [139]Chopade S O, Bansode P N, Hiwase S S. Studies on fertilizer and water management to onion. PKV Research Journal,1998,22:44-47
    [140]Abd El-Al F S, Shaheen A M, Rizk F A, et al. Influence of irrigation intervals and potassium fertilization on productivity and quality of onion plant. International Journal of Academic Research, 2010,2(1):110-116
    [141]Leskovar D I, Agehara S, Yoo K, et al. Crop coefficient-based deficit irrigation and planting density for onion:growth, yield, and bulb quality. HortScience,2012,47(1):31-37
    [142]Dhindsa R S, Cleland R E. Water stress and protein synthesis. Ⅱ. Interaction between water stress, hydrostatic pressure, and abscisic acid on the pattern of protein synthesis in Avena coleoptiles. Plant Physiology,1975,55:782-785
    [143]Marschner H. Mineral Nutrition of Higher Plants. Academic Press, London,1995
    [144]Matzner S L, Richards J H. Sagebrush (Artemisia tridentate Nutt.) roots maintain nutrient uptake capacity under water stress. Journal of Experimental Botany,1996,47(301):1045-1056
    [145]El-Shouny M M, Bayoumi M A, Abd El-Rahman A. Growth, yield and some yield quality of onion (Allium cepa L.) as affected by different irrigation intervals and nitrogen fertilizers. Minufiya Journal of Agricultural Research,2011,36(5):1387-1401
    [146]张一卉.不同洋葱品种贮藏后品质变化研究及一种贮藏病害的鉴定[硕士学位论文].泰安: 山东农业大学,2011
    [147]A1-Jamal M S, Sammis T W, Ball S, et al. Computing the crop water production function for onion. Agricultural Water Management,2000,46(1):29-41
    [148]沈荣开,张瑜芳,黄冠华.作物水分生产函数与农田非充分灌溉研究述评.水科学进展,1995,6(3):248-254
    [149]Stewart J T, Hagan R M, Pruitt W O, et al. Optimizing crop production through control of water and salinity levels in the soil. Utah Water Lab, PRW 6-161-1,1977
    [150]Howell T, Hiller E A. Optimization of water use efficiency under high frequency irrigation. Transactions of the ASAE,1971,18:873-878
    [151]Singh P, Wolkewitz H, Kumar R. Comparative performance of different crop production functions for wheat (Triticum aestivim L.). Irrigation Science,1987,8(4):273-290
    [152]Jensen M E. Water consumption by agricultural plants, water deficits and plant growth. Academic Press, New York,1968
    [153]Hanks R J. Model for predicting plant yield as influenced by water use. Agronomy Journal,1974, 66(5):660-665
    [154]Minhas B S, Parikh K S, Srinivasan T N. Toward the structure of a production function for wheat yields with dated inputs of irrigation water. Water Resources Research,1974,10(3):383-393
    [155]Rao N H, Sarma P B S, Chander S. A simple dated water-production function for use in irrigated agriculture. Agricultural Water Management 1988,13(1):25-32
    [156]刘钰,Pereira,L S.对FAO推荐的作物系数计算方法的验证.农业工程学报,2000,16(5):26-30
    [157]Allen R G, Pereira L S. Estimating crop coefficients from fraction of ground cover and height. Irrigation Science,2009,28,1:17-34
    [158]Zheng J, Huang G, Jia D, et al. Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agricultural Water Management,2013,129:181-193
    [159]Li S, Kang S, Li F, et al. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in Northwest China. Agricultural Water Management,2008,95: 1214-1222
    [160]马国军,刘君娣,林栋,等.石羊河流域水资源利用现状及生态环境效应.中国沙漠,2008,28(3):592-597
    [161]Van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980,44(5):892-898
    [162]Williams J R, Singh V P. The EPIC model. Computer Models of Watershed Hydrology,1995: 909-1000
    [163]Legates D R, McCabe G J. Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research,1999,35(1):233-241
    [164]Moriasi D N, Arnold J G, van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE,2007,50(3): 885-900
    [165]Visser C d. ALCEPAS, an onion growth model based on SUCROS87. I. Development of the model. Journal of Horticultural Science,1994,69(3):501-518
    [166]Brewster J L, Lawes W, Whitlock A J. The phenology of onion bulb development at different sites and its relevance to incomplete bulbing ("thick-necking"). Journal of Horticultural Science,1987, 62(3):371-378
    [167]De Visser C. Concept and development of a dynamic simulation model for onion growth. Acta Horticulturae,1990,267:401-409
    [168]Cabelguenne M, Debaeke P, Puech J, et al. Real time irrigation management using the EPIC-PHASE model and weather forecasts. Agricultural Water Management,1997,32:227-238
    [169]粟晓玲,康绍忠.石羊河流域多目标水资源配置模型及其应用.农业工程学报,2009,25(11):128-132
    [170]Mermoud A, Tamini T D, Yacouba H. Impacts of different irrigation schedules on the water balance components of an onion crop in a semi-arid zone. Agricultural Water Management,2005, 77(1):282-295
    [171]刘昌明,周长青,张士锋,等.小麦水分生产函数及其效益的研究.地理研究,2005,24(1):1-10
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.