双频容性耦合等离子体特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体刻蚀是超大规模集成电路制造工艺中最为关键的工艺流程之一,是实现超大规模集成电路生产中的微细图形高保真地从光刻模板转移到硅片上不可替代的工艺。等离子体反应器和等离子体工艺是十分紧密地联系在一起的。随着集成电路特征尺寸不断地减小,器件线宽越来越窄,集成度越来越高,且膜层越来越薄,对等离子体加工处理及优化过程提出越来越高的要求,需要发展新的能满足特定要求的等离子体源和技术。在这样的背景之下,新型双频驱动的容性耦合等离子体源(双频CCP)被研究,并期望将其用到微电子工业当中。
     在这种使用两个不同频率电源驱动的双频CCP中,一方面可以通过调节高频电源的功率来控制等离子体密度,进而控制入射到鞘层上的离子通量,另一方面还可以通过调节低频电源的功率,对离子的能量进行控制。目前,对这种双频CCP放电的物理过程和相应的刻蚀机理,仍有很多问题需要研究。本文利用补偿朗缪尔探针诊断技术、光强标定的发射光谱技术和质谱技术,研究了双频CCP中的一些物理特性和对反应基团的调控行为。
     1、利用补偿朗缪尔探针技术和Druyvesteyn方法对60/13.56 MHz双频CCP氩气放电的研究表明,在约10 mTorr的低气压下,离子的通量和能量的独立调控有可能在60/13.56 MHz双频CCP中实现,即用60 MHz的高频源控制等离子体密度(离子通量),而用13.56 MHz的低频源来控制离子轰击基片的能量。在50 mTorr及更高的气压下,低频功率也对等离子体密度有明显的影响。在实验中我们发现,在50 mTorr及更高的气压下,随着低频功率的增加,电子能量概率分布函数EEPF由类Druyvesteyn分布的形式变为类麦克斯韦分布的形式。同时,电子密度则随低频功率的上升而增加,而电子温度则随低频功率的上升而降低。与数值模拟的结果比较可知,产生这种变化趋势的原因,除了有低频功率本身所导致的电离因素以外,还有二次电子发射导致的电离过程的影响。高低频功率之间耦合的存在,使得这种独立调控难以实现。
     EEPF随气压的演变表明,在较低的气压下以随机加热为主,在较高的气压下以碰撞加热为主。对射频感应电流的测量表明,在较低的气压下还有等离子体串联共振的加热机制存在。等离子体参数随径向位置的分布则表明,等离子体沿径向位置存在一定程度的不均匀性。
     2、利用光强标定的发射光谱技术,研究了27/2、60/2及60/13.56 MHz CHF3放电等离子体中,驱动频率及功率对反应基团的调控行为。研究显示,射频频率的选择对等离子体中反应基团的形成有重要影响。在双频CCP中,低频频率对反应基团的调控起着更加重要的作用。在我们的27/2和60/2 MHz放电研究中,改变2 MHz射频功率可以有效地调控CHF3等离子体中的活性基团F的相对密度及F/CF2相对密度之比。而这种对反应基团的调控行为在60/13.56 MHz双频CCP中则不能实现。形成这种现象的原因可能是因为,不同双频CCP中电子能量分布函数有差异,而等离子体中的化学反应过程对电子能量分布函数的变化非常敏感。研究显示,在27/2 MHz和60/2 MHz双频CCP中,可能具有相似的电子能量分布函数,而60/13.56 MHz双频CCP中的电子能量分布函数则有较大差别。
     3、利用质谱技术对CHF3放电等离子体的反应基团作了研究。质谱研究的结果显示,在射频驱动的CHF3放电等离子体中,存在着丰富的HF基团,而且,随着驱动频率和功率的升高这种基团更为丰富。
Plasma etching is becoming an important part of the manufacturing process for ultra-large scale integrated circuits (ULSIs). Plasma processing is the only commercial technology that could make the mask pattern being faithfully transferred into the substrate. Plasma reactors are very important in plasma process. The reduction in ULSI feature size proposes higher and higher requirements on the plasma processing technology. There is a need to develop new type of plasma reactors. Thus, the dual-frequency capacitively coupled plasmas (DF-CCPs) driven with two different frequencies, were studied and hoped to be used in the microelectronic industry.
     In the DF-CCPs, it is expected that the ions energy is controlled by low frequency component while the ion flux by the high frequency. There are still a lot of problems need to be studied on the DF-CCPs, such as the mechanisms of discharge and etching. Using compensated Langmuir electrostatic probe, actinometrical optical emission spectroscopy and mass spectrometry, we investigated the characteristic and the control of discharge chemistry in DF-CCPs.
     (1) In Argon DF-CCPs driven with 60/13.56 MHz, the plasma characteristics was investigated using compensated Langmuir electrostatic probe. At the lower pressure (about 10 mTorr), it is possible to control the plasma density and the ion bombardment energy independently. That is, the high frequency (60 MHz) controls the plasma density and hence the ion flux while the low frequency component (13.56 MHz) controls the ions energy. At the pressure of 50 mTorr and higher, this independent control could not be achieved, because the low frequency power also affects the plasma characteristics, such as the electron energy probability functions (EEPFs), electron densities and electron temperatures. As the low-frequency power increases, the EEPF changes from Druyvesteyn-like to Maxwellian-like type at the pressure of 50 mTorr and higher, along with the drop in electron temperature and the rise in electron density. Compared with simulation results, this could be results of enhanced ionization by the low-frequency power and secondary electron emission.
     It can be seen from the variation of EEPF with the pressure that the stochastic heating is predominant in low pressure while the collision heating is predominant in high pressure. The distribution of plasma parameters showed that it was not uniform in radial position for some extent.
     (2) The discharge chemistry of CHF3 in 27/2, 60/2, 60/13.56 MHz DF-CCPs is studied with actinometrical optical emission spectroscopy. The effects of frequency and its power on the generation of reactive species were investigated. It is shown that the chosen of frequency is important in generation of reactive species. The reactive radicals and the density ratio of F/CF2 could be controlled by the 2 MHz rf power in 27/2 and 60/2 MHz DF-CCPs. This control could not be obtained in 60/13.56 MHz DF-CCP by adjusting the power of 13.56 MHz. This could be the result of the different EEPFs in different DF-CCPs. A change in EEPF could lead to radical changes in the plasma chemistry. The results show that the EEPFs in 27/2 MHz DF-CCP may be similar with that in 60/2 MHz DF-CCP, whereas may be quite different from that in 60/13.56 MHz DF-CCP.
     (3) The DF-CCPdischarge chemistry of CHF3 is also studied with mass spectrometry. It was shown that there are abundant HF radicals in CHF3 plasma. Moreover, the HF radicals are even more when the driven frequency and its power are higher.
引文
[1]马腾才,胡希伟,陈银华,《等离子体物理原理》,中国科学技术大学出版社,合肥,1988
    [2]菅井秀郎著,张海波,张丹译,《等离子体电子工程学》,科学出版社,北京,2002
    [3]赵化侨,《等离子体化学与工艺》,中国科学技术大学出版社,合肥,1993
    [4]徐学基,诸定昌,《气体放电物理》,复旦大学出版社,上海,1999
    [5]许根慧,姜恩永,盛京,徐廷献,李振花,《等离子体技术与应用》,化学工业出版社,北京,2006
    [6]等离子体物理学科发展战略研究课题组,《核聚变与低温等离子体》,科学出版社,北京,2004
    [7]李定,《等离子体物理学》,高等教育出版社,北京,2006
    [8]甄汗生,《等离子体加工技术》,清华大学出版社,北京,1990
    [9]吴自勤,王兵,《薄膜生长》,科学出版社,北京,2001
    [10] Chang J P, Mahorowala A P, and Sawin H H, J. Vac. Sci. Technol. A 1997, 15 217
    [11] Inayoshi M, Ito M, Hori M et al. J. Vac. Sci. Technol. A 1998, 16 233
    [12] Yeom G Y and Kushner M J, Appl. Phys. Lett. 1990, 56 857
    [13] Kuah S H, and Wood P C, J. Vac. Sci. Technol. A 2005 23 947
    [14] Lieberman M A and Lichtenberg A J, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994
    [15] Lowe H–D, Goto H H and Ohmi T, J. Vac. Sci. Technol. A 1991 9 3090
    [16] Goto H H, Lowe H–D and Ohmi T, J. Vac. Sci. Technol. A 1992 10 3048
    [17] Kitajima T, Takeo Y, Petrovic Z L and Makabe T, Appl. Phys. Lett. 2000 77 489
    [18] Lieberman M A, IEEE Trans. Plasma Sci. 1988 16 638
    [19] Lieberman M A, IEEE Trans. Plasma Sci. 1989 17 338
    [20] Godyak V A, Piejak R B and Sternberg N, IEEE Trans. Plasma Sci. 1993 21 378
    [21] Gierling J and Riemann K U, J. Appl. Phys. 1998 83 3521
    [22] Edelberg E A and Aydil E S, J. Appl. Phys. 1999 86 4799
    [23] Qiu H T, Wang Y N and Ma T C, J. Appl. Phys. 2001 90 5884
    [24] Dai Z L, Wang Y N and Ma T C, Phys. Rev. E 2002 65 036403
    [25] Dai Z L and Wang Y N, Phys. Rev. E 2002 66 026413
    [26] Dai Z L and Wang Y N, Phys. Rev. E 2004 69 036403
    [27] Orlando Auciello, Daniel L Flamm编著,郑少白,胡建芳,郭淑静,洪明苑译,《等离子体诊断》第一卷:放电参量和化学,电子工业出版社,北京,1994
    [28] Tsai J H and Wu C, Phys. Rev. A 1990 41 5626
    [29] Boeuf J P, Pitchford L C, Fiala A et al. Surf. And Coat. Technol. 1993 59 32
    [30] Young F F and Wu C, IEEE Trans. Plasma Sci. 1993 21 312
    [31] Young F F and Wu C, Appl. Phys. Lett. 1993 62 473
    [32] Rauf S, Kushner M J, IEEE Trans. Plasma Sci. 1999 27 1329
    [33] Rauf S, IEEE Trans. Plasma Sci. 2003 31 471
    [34] Surendra M and Graves D B, IEEE Trans. Plasma Sci. 1991 19 144
    [35] Vahedi V, Birdcall C K, Lieberman M A, Dipeso G and Rognlien T D, Plasma Sources Sci.Technol.1993 2 273
    [36] Georgieva V, Bogaerts A and Gijbels R, J. Appl. Phys. 2003 93 2369
    [37] Georgieva V, Bogaerts A and Gijbels R, J. Appl. Phys. 2003 94 3748
    [38] Georgieva V, Bogaerts A and Gijbels R, Phys. Rev.E 2004 69 0264061
    [39] Georgieva V, Bogaerts A, Phys. Rev. E 2006 73 036402
    [40] Lee J K, Manuilenko O V, Babaeva N Yu, Kim H C and Shon J W, Plasma Sources Sci. Technol. 2005 14 89
    [41] Sato N and Tagashira H, IEEE Trans. Plasma Sci. 1991 19 102
    [42] Sommerer T J and Kushner M J, J. Appl. Phys. 1992 71 1654
    [43] Ventzek P L, Hoekstra R J, Sommerer T J et a1. Appl. Phys. Lett. 1993 63 605
    [44] Kratzer M, Brinkmann R P, Sabischa A et al. J. Appl. Phys. 2001 90 2169
    [45] Wang S, Xu X and Wang Y N, Phys. Plasmas 2007 14 113501
    [46] Wang S, Xu X, Song Y B and Wang Y N, Plasma Sci. Technol. 2008 10 57
    [47] Salabas A and Brinkmann R P, Plasma Sources Sci. Technol. 2005 14 S53
    [48] Boyle P C, Ellingboe A R and Turner M M, J. Phys. D: Appl. Phys. 2004 37 697
    [49] Boyle P C, Ellingboe A R and Turner M M, Plasma Sources Sci. Technol. 2004 13 493
    [50] Kim H C and Lee J K, Phys. Plasmas 2005 12 053501
    [51] Kim H C and Lee J K, Phys. Rev. Lett. 2004 93 085003
    [52] Kawamura E, Lieberman M A and Lichtenberg A J, Phys. Plasmas 2006 13 053506
    [53] Denda T, Miyoshi Y, Komukai Y, Goto T, Petrovic Z Lj and Makabe T, J. Appl. Phys. 2004 95 870
    [54] Karkari S K and Ellingboe A R, Appl. Phys. Lett. 2006 88 101501
    [55] Ohmori T, Goto T K, Kitajima T and Makabe T, Appl. Phys. Lett. 2003 83 4637
    [56] Chung T H, Phys. Plasmas 2005 12 104503
    [57] Kim H C, Lee J K and Shon J W 2003 Phys. Plasmas 10 4545
    [58] Kim H C, Lee J K, J. Vac. Sci. Technol. A 2005 23 651
    [59] Turner M M and Hopkins H B, Phys. Rev. Lett. 1992 69 3511
    [60] Godyak V A and Piejak R B, Phys. Rev. Lett. 1990 65 996
    [61] Robiche J, Boyle P C, Turner M M and Ellingboe A R, J. Phys. D: Appl. Phys. 2003 36 1810
    [62] Franklin R N, J. Phys. D: Appl. Phys. 2003 36 2660
    [63] Georgieva V, Bogaerts A and Gijbels R J, Appl. Phys. 2005 98 023308
    [64] Lee J K, Babaeva N Yu et al, IEEE Trans. Plasma Sci. 2004 32 47
    [65] Wakayama G and Nanbu K, IEEE Trans. Plasma Sci. 2003 31 638
    [66] Kim D H, Ryu C M, Lee S H and Lee J K J. Korean Phys. Soc. 2009 54 317
    [67] Turner M M and Chabert P, Phys. Rev. Lett. 2006 96 205001
    [68] Turner M M and Chabert P, Appl. Phys. Lett. 2006 89 231502
    [69] Turner M M and Chabert P, Plasma Sources Sci. Technol. 2007 16 364
    [70] Chabert P, Levif P, Raimbault J-L, Rax J-M, Turner M M and Lieberman M A, Plasmas Phys. Control. Fusion 2006 48 B231
    [71] Myers F R, Ramaswami M and Cale T S, J. Electrochem. Soc. 1994 141 1313
    [72] Kim H C, Manousiouthakis V I, J. Vac. Sci. Technol. A 1998 16 2162
    [73] Dai Z L, Xu X, Wang Y N, Phys. Plasmas 2007 14 013507
    [74] Guan Z Q, Dai Z L, Wang Y N, Phys. Plasmas 2005 12 123502
    [75] Wang L H, Dai Z L, Wang Y N, Chin. Phys. Lett. 2006 23 668
    [76]王丽红,双频容性耦合等离子体鞘层中粒子输运的流体模拟(硕士学位论文),大连理工大学,2006
    [77]王帅,双频容性耦合等离子体物理特性的混合模拟(博士学位论文),大连理工大学, 2008
    [78] Maeshige K, Washio G, Yagisawa T and Makabe T, J. Appl. Phys. 2002 91 9494
    [79] Maeshige K, Hasebe M, Yamaguchi Y and Makabe T, J. Appl. Phys. 2000 88 4518
    [80] Okazaki K, Makabe T, Yamaguchi Y, Appl. Phys. Lett. 1989 54 1742
    [81] Makabe T, Nakano N and Yamaguchi Y, Phys. Rev. A 1992 45 2520
    [82] Kitajima T, Takeo Y and Makabe T, J. Vac. Sci.Technol. A 1999 17 2510
    [83] Sekine M, Pure Appl. Chem. 2002 74 381
    [84] Gans T, Schulze J, O’Connell D, Czarnetzki U, Faulkner R, Ellingboe A R and Turner M M, Appl. Phys. Lett. 2006 89 261502
    [85] Lee C H, Kim D H and Lee N E, J. Vac. Sci.Technol. A 2006 24 1386
    [86] Ohmori T, Goto T and Makabe T, J. Phys. D: Appl. Phys. 2004 37 2223
    [87] Pearce C W,Fetcho R F, Gross M D, Koefer R F and Pudliner R A J. Appl. Phys. 1992 71 1838
    [88] Worsley M A, Bent S F, Fuller N C M and Dalton T, J. Appl. Phys. 2006 100 083301
    [89] Semmler E, Awakowicz P and Keudell A V, Plasma Sources Sci. Technol. 2007 16 839
    [90] Hebner G A, Barnat E V, Miller P A, Paterson A M and Holland J P 2006 Plasma Sources Sci. Technol. 15 879
    [1]国家自然科学基金委员会编,《等离子体物理学》,科学出版社,北京,1994
    [2] Orlando Auciello, Daniel L Flamm编著,郑少白,胡建芳,郭淑静,洪明苑译,《等离子体诊断》第一卷:放电参量和化学,电子工业出版社,北京,1994
    [3]李定,《等离子体物理学》,高等教育出版社,北京,2006
    [4]马腾才,胡希伟,陈银华,《等离子体物理原理》,中国科学技术大学出版社,合肥,1988
    [5]许根慧,姜恩永,盛京,徐廷献,李振花,《等离子体技术与应用》,化学工业出版社,北京,2006
    [6]赵化侨,《等离子体化学与工艺》,中国科学技术大学出版社,合肥,1993
    [7] Ejiri A and Kawahata K, Jpn. J. Appl. Phys. Part 1, 2000 39 2839
    [8]詹如娟,真空科学与技术,1998 18 390
    [9] Tsang R S and Rego C A, J. Appl. Phys. 1996 79 7264
    [10] Hsu W L, Mcmaster M C, et al, Jpn. J. Appl. Phys. 1994 33 2231
    [11]丁洪斌,刘佳宏,杨学锋,真空科学与技术,1999 19 128
    [12] Hsu W L and Tung D M, Rev. Sci. Instrum. 1992 63 4138
    [13] Foner S N and Hudson R L, J. Chem. Phys. 1962 36 2681
    [14] Korbeinichev O P et al, Pure and Appl. Chem. 1993 65 269
    [15] Fujin T and Shouji K, Phys. Rev. A 1992 46 3555
    [16]刘佳宏,唐书凯,杨学锋,核聚变与等离子体物理,2000 20 43
    [17] Vinogradov I P et al, Plasma Sources Sci. Technol. 1997 6 307
    [18] Den Hartog E A, Hpersing, Wood R C, Appy. Phys. Lett. 1990 57 661
    [19] Den Hartog E A, O’Brian T R, Lawler J E, Phys. Rev. Lett. 1989 62 1500
    [20]吴桂林,刘延伟,邓新绿,量子电子学报,1995 13 458
    [21]邓新绿,吴桂林,张家良等,大连理工大学学报,1997 37 160
    [22] Goeckner M J, Goree J and Sheridan T E, Phys. Fluids 1991 B3 2913
    [23] Hoefnagels J P M, Stevens A A E, et al, Chem. Phys. Lett. 2002 360 189
    [24] O’Keefe A and Deacon D A G, Rev. Sci. Instrum. 1988 59 2544
    [25] Benedikt J, Woen R V, et al, Diamond and Related Materials 2003 12 90
    [26]戴东旭,孙福革,解金春,化学物理学报,1997 10 481
    [27] Alexander C and Michael J Z, Appl. Spectroscopy 1984 38 245
    [28] Den Hartog D J, Cekic M, Measurement sci. & Technol.1994 5 1115
    [29]于全芝,李玉同,实验技术, 2004 33 446
    [30] Doughty D K and Lawler J E, Appl. Phys. Lett. 1984 45 611
    [31] Doughty D K, Den Hartog E A, Lawler J E, Appl. Phys. Lett. 1985 46 352
    [32] Liu X N, Xu.G Y, Solid State Communications 2001 119 397
    [33] Hudis M, Appl. Phys. 1973 44 1489
    [34] Liu D H and Liu Z L, Vacuum 1992 43 803
    [35]徐茵,顾彪等,核聚变与等离子体物理,1997 17 45
    [36]凌一鸣,徐建军,电子学报,2001 29 218
    [37]林揆训,余云鹏,林璇英,王洪,核聚变与等离子体物理,1994 14 56
    [38] Fujita H and Yagura S, Phys. Lett. A 1983 99 317
    [39]刘宇宏,邓新绿,陆文琪,核聚变与等离子体物理,1998 18 48
    [40] Wang E Y, Intrator T and Hershkowitz N, Rev.Sci.Instnun. 1985 56 519
    [41]姚若河,池凌飞,林璇英,石旺舟,林揆训,物理学报,2000 49 922
    [42]池凌飞,林揆训,姚若河,物理学报,2001 50 1313
    [43] Ajit P P, James P M and Sidneg A S, J. Appl. Phys. 1990 67 6718
    [44] Richard A G and Vincent M D, J. Appl. Phys. 1984 56 245
    [45] Richard A D and Allen K D, J. Appl. phys. 1987 62 792
    [46] Vanderelde T, Nesladek M and Stals L, Thin solid Films 1996 290 143
    [47] Dinescu G, Aldea E and Zocco A, Appl. Surf. Sci. 1998 127 697
    [48] G赫兹堡,《分子光谱与分子结构》,科学出版社,北京, 1983
    [49]辛仁轩,《等离子体发射光谱分析》,化学工业出版社,北京,2005
    [50] Coburn J W, Chen M, J. Appl. Phys. 1980 51 3134
    [51] Durrant S F, Mota R P and Mario A B de Moraes, J. Appl. Phys. 1992 71 448
    [52] d’Agostino R, Cramarossa F, Colapico V and d’Ettole R, J. Appl. Phys. 1983 54 1284
    [53] Walker R E, Saenger K L, Selwyn G S, J. Chem. Phys. 1986 84 2668
    [54] Vasile M J and Smolinsky G, Int. J. Mass. Spectrom. Ion Phys. 1976 21 263
    [55] Manory R, Grill A, Carmi U and Anvi R, Plasma Chem. Plasma Proc.1983 3 235
    [1] Lieberman M A and Lichtenberg A J, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994
    [2] Lowe H–D, Goto H H and Ohmi T, J. Vac. Sci. Technol. A 1991 9 3090
    [3] Goto H H, Lowe H–D and Ohmi T, J. Vac. Sci. Technol. A 1992 10 3048
    [4] Kitajima T, Takeo Y, Petrovic Z L and Makabe T, Appl. Phys. Lett. 2000 77 489
    [5] Boyle P C, Ellingboe A R and Turner M M, J. Phys. D: Appl. Phys. 2004 37 697
    [6] Boyle P C, Ellingboe A R and Turner M M, Plasma Sources Sci. Technol. 2004 13 493
    [7] Kim H C and Lee J K, Phys. Plasmas 2005 12 053501
    [8] Kim H C and Lee J K, Phys. Rev. Lett. 2004 93 085003
    [9] Karkari S K and Ellingboe A R, Appl. Phys. Lett. 2006 88 101501
    [10] Godyak V A, Piejak R B, Phys. Rev. Lett. 1990 65 996
    [11] Godyak V A, Piejak R B, J. Appl. Phys. 1997 82 5944
    [12] Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, Lv Y, Wang G, Zhu Y, Acta Phys. Sin. 2007 56 2330 (in Chinese)
    [13] Buddemeier U, Kortshagen U, Pukropski I, Appl. Phys. Lett. 1995 67 191
    [14] You S J, Ahn S K, Chang H Y, Appl. Phys. Lett. 2006 89 171502
    [15]辛煜、狄小莲、虞一青、宁兆元,物理学报2006 55 3494
    [16]池凌飞、林揆训、姚若河、林璇英、余楚迎、余云鹏,物理学报2001 50 1313
    [17] Abdel- Fattah E, Sugai H, Appl. Phys. Lett. 2003 83 1533
    [18] Rauf S, Kushner M J, IEEE Trans. Plasma Sci. 1999 27 1329
    [19] Rauf S, IEEE Trans. Plasma Sci. 2003 31 471
    [20] Berezhnoi S V, Kaganovich I D, Misina M, Bogaerts A and Gijbels R, IEEE Trans. Plasma Sci. 1999 27 1339
    [21] Kaganovich I D and Tsendin L D, IEEE Trans. Plasma Sci. 1992 20 66
    [22] Godyak V A, Piejak R B and Alexandrovich B M, Phys. Rev. Lett. 1992 68 40
    [23] Deegan C M, Goss J P, Vender D and Hopkins M B, Appl. Phys. Lett. 1999 74 1969
    [24] Chung T H, Phys. Plasmas 2005 12 104503
    [25] Hebner G A, Barnat E V, Miller P A, Paterson A M and Holland J P, Plasma Sources Sci. Technol. 2006 15 879
    [26] Semmler E, Awakowicz P and Keudell A V, Plasma Sources Sci. Technol. 2007 16 839
    [27] Misium G R A, Lichtenberg A J and Lieberman M A, J. Vac. Sci. Technol. A 1989 7 1007
    [28] Chabert P, Raimbault J L, Rax J M and Lieberman M A, Phys. Plasmas 2004 11 1775
    [29] Aliev Y M,Kaganovich I D and Schluter H, Phys. Plasmas 1997 4 2413
    [30] Gozadinos G,Turner M M and Vender D, Phys. Rev. Lett. 2001 87 135004
    [31] Turner M M, Phys. Rev. Lett. 1995 75 1312
    [32] Surendra M, Dalvie M, Phys. Rev. E 1993 48 3914
    [33] Park G Y, You S J, Iza F, Lee J K, Phys. Rev. Lett. 2007 98 085003
    [34] Turner M M and Chabert P, Phys. Rev. Lett. 2006 96 205001
    [35] Turner M M and Chabert P, Appl. Phys. Lett. 2006 89 231502
    [36] Chabert P, Levif P, Raimbault J-L, Rax J-M, Turner M M and Lieberman M A, Plasmas Phys. Control. Fusion 2006 48 B231
    [37] Turner M M and Chabert P, Plasma Sources Sci. Technol. 2007 16 364
    [38] Mussenbrock T and Brinkmann R P, Appl. Phys. Lett. 2006 88 151503
    [39] Mussenbrock T, Ziegler D and Brinkmann R P, Phys. Plasmas 2006 13 083501
    [40] Czarnetzki U, Mussenbrock T and Brinkmann R P, Phys. Plasmas 2006 13 123503
    [41] Qiu W D, Bowers K J and Birdsall C K, Plasma Sources Sci. Technol. 2003 12 57
    [1]赵化侨,《等离子体化学与工艺》,中国科学技术大学出版社,合肥,1993
    [2]许根慧,姜恩永,盛京,徐廷献,李振花,《等离子体技术与应用》,化学工业出版社,北京,2006
    [3] Richard A G and Vincent M D, J. Appl. Phys. 1984 56 245
    [4] Richard A D and Allen K D, J. Appl. phys. 1987 62 792
    [5] Vanderelde T, Nesladek M and Stals L, Thin solid Films 1996 290 143
    [6] Dinescu G, Aldea E and Zocco A, Appl. Surf. Sci. 1998 127 697
    [7] Coburn J W, Chen M, J. Appl. Phys. 1980 51 3134
    [8] Durrant S F, Mota R P and Mario A B de Moraes, J. Appl. Phys. 1992 71 448
    [9] Walker R E, Saenger K L, Selwyn G S, J. Chem. Phys. 1986 84 2668
    [10] d’Agostino R, Cramarossa F, Colapico V and d’Ettole R, J. Appl. Phys. 1983 54 1284
    [11] Samukawa S and Furuiya S, Appl. Phys. Lett. 1993 63 2044
    [12] Grill A, J. Appl. Phys. 2003 93 1785
    [13] Zhang H Y, Ye C and Ning Z Y, Chin. Phys. Lett. 2008 25 636
    [14] Boyle P C, Ellingboe A R and Turner M M, J. Phys. D: Appl. Phys. 2004 37 697
    [15] Boyle P C, Ellingboe A R and Turner M M, Plasma Sources Sci. Technol. 2004 13 493
    [16] Kim H C and Lee J K, Phys. Plasmas 2005 12 053501
    [17] Kim H C and Lee J K, Phys. Rev. Lett. 2004 93 085003
    [18] Karkari S K and Ellingboe A R, Appl. Phys. Lett. 2006 88 101501
    [19] Ohmori T, Goto T K, Kitajima T and Makabe T, Appl. Phys. Lett. 2003 83 4637
    [20] Horii N M, Okimura K and Shibata A, Thin Solid Films 1999 343 148
    [21] Takahashi K, Hori M and Goto T, Jpn. J. Appl. Phys.Part 1 1994 33 4745
    [1] Orlando Auciello, Daniel L Flamm编著,郑少白,胡建芳,郭淑静,洪明苑译,《等离子体诊断》第一卷:放电参量和化学,电子工业出版社,北京,1994
    [2] Takahashi K, Hori M and Goto T, Jpn. J. Appl. Phys.Part 1 1994 33 4745
    [3] Jiao C Q, Nagpal R and Haaland P D, Chem. Phys. Lett. 1997 269 117
    [4] Iga I, Sanches I P, Srivastava S K and Mangan M, Int. J. Mass Spectrom. 2001 208 159
    [5] McKoy B V as cited by Jiao C Q et al. in Ref. [3]
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.