基于快速原型制造技术的缺损颅骨修补研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类生活质量的提高,人类平均寿命延长,对人工骨骼的需求量日增。对骨损伤的修复要求也越来越高,人工骨的制造是骨损伤修复过程中的关键步骤,快速成型技术的医学应用是现代医学与制造技术相结合的发展趋势,已成为国内外研究的热点问题之一。基于快速成型技术的仿生制造(Bionic Manufacturing)是近年来迅速发展起来的先进制造技术的一个分支,是传统制造技术与生命科学、信息科学、材料科学等领域结合,采用生物形式实现制造或以制造生物活体为目标的一种制造方法通过逆向工程对人体缺损的颅骨组织进行三维重建,利用仿生造型与生物制造的原理和方法,采用快速原型技术制造的颅骨修复体在形状精度与尺寸精度上都得到很大的提高,减少并发症的发生,提高吻合度。因此,利用逆向工程与快速原型技术制作颅骨修复体有着一定的实际价值与意义。
     本文结合吉林省科技发展计划项目“人工颅骨生物活性材料及快速制造技术的研究”主要研究了颅骨缺损的重构并利用快速原型制造的技术。
     本文利用Visual C++开发出具有图像增强、分割、轮廓跟踪、坐标变换及坐标点数据输出功能的CT图像处理软件,利用Matlab软件实现对颅骨缺损区域的拟合,最后在CAD三维软件中成了颅骨修复体模型的三维重建并将模型以STL格式输出,最终在快速成型机中完成实体的原型制造。实验结果表明本文采用的图像处理技术和RP制造技术可以完成颅骨修复体从CT图像数据到实体模型的制作过程。
In recent years, rapid prototyping technology based on bionic manufacturing is a research hot spot, which belong to the many cross-disciplinary research topics, related to manufacturing technology, computer graphics, biomedical, materials science and other technology, bones and organs in the body of the recycling and have a wide range of life-saving applications, the use of biological forms in order to achieve the manufacture or production of biological targets in vivo for a manufacturing method of reverse engineering on the human body through the skull defect organization of three-dimensional reconstruction, the use of bionic and biological modeling of the principles and methods of manufacture using rapid prototyping technology in the shape of the skull prosthesis precision and dimensional accuracy have been on a lot of improve, reduce complications, improve with degrees. Therefore, the use of reverse engineering and rapid prototyping technology production skull prosthesis must have a practical value and significance.
     This article is scientific and technological development project of Jilin Province "artificial skull Express Bioactive Materials and Manufacturing Technology Research", Study of the skull defect major restoration of the rapid prototyping manufacturing technology. Using Visual C + + developed with image enhancement, segmentation, contour tracking, coordinate transformation and the coordinates of the CT data output function of image processing software, use of Matlab software implementation of the skull defects of the fitting region, and finally in the CAD software has become a three-dimensional skull repair The three-dimensional reconstruction model to STL format and the model output, and ultimately rapid prototyping machine at the completion of the prototyping and manufacturing entities. In this paper, experimental results show that the image processing technology and manufacturing technology can achieve RP prosthesis skull CT image data from the solid model to the production process. The following is a brief introduction of the course of the study:
     (1) skull CT image processing
     In this paper, in cooperation with Jilin University hospital X-ray radiation the second section of the German Siemens Sensation 16 machine spiral CT scan of the skull entities have been the fault of skull CT images, using Visual C + + has developed a simple CT image processing software system, completed a CT scan images obtained from the median filter, image segmentation, such as a series of image processing operations, and ultimately get a better edge image information; to prepare for the back of the curve fitting, such as the use of surface modeling.
     (2) curve of the skull images to build bridges
     According to the theory of Bezier curves to identify the type curve and point out the need for bridging the curve fitting, and then curve out to the bridge test, on the basis of the use of Matlab software development on the curve of the bridge system, implementation, including fault data entry, curve fitting and data implementation of the output. Curve in the process of building a bridge, the bridge in order to make both ends of the curve and achieve a better cable connection, the paper start from the point of view of graphics, design with G2 continuous link to reach the bridge algorithm - generated through the interactive general Bezier curve of the control points, thus bridging the curve configuration. At the same time, taking into account the surface characteristics of the skull, but also realize the G1 curve for building a bridge. In this paper, the development of the corresponding bridge system so that visualization of bridge lines, and referred to the bridge to verify the theory and algorithms. Through the system and the analysis of experimental results to verify the proposed hydro-bridge skull algorithm can achieve the perfect outline of the edge of bridge lines.
     (3) Construction of the surface defects of the skull domain
     We can get at the skull defect region based on the fitting curve of the construction of surface, and surface construction are the focus of this issue, but also difficult. First of all, the use of "interactive Bezier curves have the general control point" approach, and ultimately form a complete curve can be shown. Moreover, the formation of the Q curves are Bezier curves of five bands, three of the four boundary surfaces Bezier curves are Bezier curves, so that the skull defect to build up the surface region. And to build a quality analysis of the surface, consists mainly of two aspects:①error analysis;②smoothing quality inspection. Finally the use of image processing software received a document, in three-dimensional modeling CAD software Pro / E in the human skull were reconstructed three-dimensional solid model for rapid prototyping and manufacturing foundation.
     (4) skull prosthesis produced rapid prototyping model
     First stage in the three-dimensional modeling to generate STL file into the MEM-300-II Express molding machine comes with the Aurora data processing software, the operation as follows: "File→input→STL", select a STL file, the system start read into the STL model, and in the bottom section shows the status of the surface film to read a few and Vertices. Cark software to run, read into the skull of the CLI model paper at molding temperatures of the temperature settings, click the main menu "System Initialization→Modeling", then system interface equipment will be prompted to the lower-left corner of the state of the current "system XY axis back to zero, you can start modeling, "preparation work is fully completed, we can carry out the processing, after processing the model, the model should not be removed immediately, but declined to table some distance from the model remain in the forming section of room time to make the model the temperature gradually dropped out immediately to avoid damage the shape of the model. Figure 2 for the skull and prosthesis prototype ABS model.
     (5) Conclusion
     This article is scientific and technological development project of Jilin Province "artificial skull Express Bioactive Materials and Manufacturing Technology Research," Study of the skull defect major restoration of the rapid prototyping manufacturing technology.
     In this paper, the use of Visual C + + developed with image enhancement, segmentation, contour tracking, coordinate transformation and the coordinates of the CT data output function of image processing software, use of Matlab software implementation of the skull defects of the fitting region, and finally in the CAD software has become a three-dimensional skull Repair of three-dimensional reconstruction model to STL format and the model output, and ultimately rapid prototyping machine at the completion of the prototyping and manufacturing entities. In this paper, experimental results show that the image processing technology and manufacturing technology can achieve RP prosthesis skull CT image data from the solid model to the production process. Its flow as follows:
引文
[1]陈光,崔崇.新材料概论[M].北京:科学出版社,2003.
    [2]颜永年,崔福斋,张人佶.人工骨的快速成形制造[J].材料导报,2000, 14(2): 11-13.
    [3]国家新材料行业生产力促进中心,国家新材料产业发展战略咨询委员会.中国新材料发展报告(2004)[M].北京:化学工业出版社,2004.
    [4]王运赣.快速成形技术[M].武汉:华中理工大学出版社,1999.
    [5]金杰,张安阳.人工骨快速成型制造的研究进展.浙江工业大学学报,2005, 33(6): 692-695.
    [6]李延平,常勇.基于CT图像与反求技术的缺损器官三维CAD建模[J].工程图学学报,2006, 03: 97-101.
    [7] Vàrady T., Martin R., Cox J. Reverse Engineering of Geometric Models an Introduction. Computer Aided Design[J]. , 1997, 29(4): 255-268.
    [8]许英勋,丁浩,朱世根.自由曲面反求工程关键技术.机械传动,2006,30(3):32-40.
    [9]李增民,李立新,谭建波,快速原型制造技术的发展及应用前景.河北科技大学学报,2003,24(2):43-47.
    [10]张冰,刘军营.快速成型技术及其发展.农业装备与车辆工程,2006,12:47-51.
    [11]王俊萍,方勇耕.激光快速原型制造技术及应用.浙江水利水电专科学校学报.2004,16(1):31-32.
    [12]于殿泓,李涤尘,卢秉恒.一种新型制造加工手段——快速成型制造技术.工术,2000,34(4):8-10.
    [13]杨莉玲,孙文磊.基于快速成型的颅骨断层影像模型重建的探讨.组合机床与自动化加工技术,2007,01:41-45.
    [14]刘之生,黄纯颖反求工程.程技术.北京:机械工业出版社,1992
    [15] Sarkar B., Menq C.H. Smooth-surface approximation and reverse engineering [J]. ComputerAided Design, 1991, 23(9): 623-628
    [16]田晓东,史桂蓉,阮雪榆.复杂曲面实物的逆向工程及其关键技术[J].机械与制造工程,2000, 29(4): 1-6
    [17]贺健康,李涤尘,卢秉恒等.复合型人工半膝关节制造方法研究[J].中国机械工程,2006,17(增刊):227-229.
    [18] Singare S., Li D.C., Lu .H., et al. Customized Design and Manufacturing of Chin Implan Based on Rapid Prototyping [J]. Rapid Prototyping Journal, 2005, 11(2): 113-118.
    [19] Liu Z.K., Wang L.H., Lu B.H. Integrating cross-sectional imaging based reverse engineering with rapid prototyping [J]. Computers in Industry, 2006, 57: 131-140.
    [20]刘海霞.细胞直接三维受控组装技术研究[D].北京清华大学,2006.
    [21]刘海霞,颜永年,刘丰等.一种基于快速成形技术的细胞—材料三维受控组装工艺[C].中国科协第二届优秀博士学术年会,004: 27-730.
    [22]颜永年,刘海霞,李生杰等.生物制造工程的发展和趋势[J].中国科学基金,2007, 2: 65-80.
    [23] Wang X.H., Yan Y.N., Zhang R.J., Rapid prototyping as a tool for manufacturing bioartificial livers [J]. TRENDS in Biotechnology, 2007, 25: 505-513.
    [24]邹波.快速成型的医学应用现状与趋势[J].机电产品开发与创新,2005, 6: 173-175.
    [25] Sokovic M., Kopac J. RE(reverse engineering) as necessary phase by rapid productdevelopment [J]. Journal of Materials Processing Technology, 2006, 175: 389-403.
    [26] Dusaussoy N.J., Cao Q.Z., Yancey R.N., et al. Image processing for CT-assisted reverse engineering and part characterization [J]. International Conference on Image Processing (ICIP’95), 1995, 03.
    [27] Stanley J.H. CT_assisted solid freeform fabrication. Proceedings of the sixth International Conference on Rapid Prototyping [C], Dayton, OH, USA, 1995: 267-274
    [28]张景涛.基于逆向工程的缺损颅骨曲面模型重建技术研究[D].江苏大学,2005, 5.
    [29]吴家升,张义力,王军杰.逆向工程数据采集方法的研究和展望[J].机械制造,2005, 43(489): 14-17.
    [30]贾永红.数字图像处理[M].武汉:武汉大学出版社,2003,9
    [31]朗锐.?数字图像处理学[M].北京:北京希望电子出版社,2002:231~292
    [32]田捷,包尚联等.医学影像处理与分析[M].北京:电子工业出版社,2003:35~39
    [33]赵荣椿,迟耀斌,朱重光.图像分割技术进展[J].中国体视学与图像分析,1998, 3(2): 121~126
    [34]张新峰,沈兰荪.图像分割技术研究[J].电路与系统学报,2004 ,9(2): 92~97
    [35]聂斌.医学图像分割技术及其进展[J].泰山医学学院学报,2002, 4(23): 422~426
    [36]赵志峰,张尤赛.医学图像分割综述[J].华东船舶工业学院学报,2003, 17(3): 43~48
    [37]黄建军,喻建平.一种图像分割算法的选择方法[J].深圳大学学报,2000, 17(4): 21~25
    [38] Aubert G.,Kornprobst P. Mathematical Problems in Image Processing: Partial Diferential Equations and the Caculus of Variations, volume 147 of Applied Mathematical Sciences. Springer, New York, 2002.
    [39]余松煜,周源华,张瑞.数字图像处理[M].上海:上海交通大学出版社,2007: 316-321.
    [40]章毓晋.图象工程(上册)图象处理和分析[M].北京:清华大学出版社,1999: 179-180.
    [41]蒋金山.图像模式分类与检索[D].华南理工大学,2004.
    [42]谢小棉,李树祥,刘析星等.一种新的体数据场二维表面重建方法[J].第一军医大学学报,2002,22(10): 919-921.
    [43] Gustafson, Carl. Design and implementation of software for assembly andbrowsing of 3D brain atlases [J]. Computer Methods and Programs in Biomedicine, 2002, 72(1): 53-61.
    [44]陈兵旗,孙明.Visual C++实用图像处理[M].北京:清华大学出版社,2004.
    [45]周杰,卢春雨,张长水等.人脸自动识别方法综述[J]。电子学报,2000,(04).
    [46]张宇.医学图像三维重建的研究[D].电子科技大学,2006.
    [47]秦绪佳.医学图像三维重建及可视化技术研究[D].大连理工大学,2001.6.
    [48]孙亦博.基于CT数据的三维重构相关技术的研究与应用[D].西北大学,2007,06,06.
    [49]马艳,张治辉.几种边缘检测算子的比较,工况自动化,2004, 1: 54-56.
    [50]郭开波,周钢.一种基于断层测量图片的实体轮廓提取算法[J].计算机辅助工程,2001, (4): 50 54.
    [51]任国成,王广春.面向RP骨骼CT图像的轮廓提取与精简[J].山东大学学报(工学版),2004, 34(3): 5-8
    [52]张威,隋中天,赵卫.CT图像表面重建技术中的边缘轮廓提取方法[[J].机械科学与技术,2002, 21: 91-92
    [53] Hagen H., et al. Surface interrogation algorithm. IEEE Transaction on Computer Graphic and Application, 1992, l2(5): 53-60
    [54]郑卫国,颜永年.基于CT图像的快速成型数据建模方法[J].中国机械工程,2003, 20(10): 1734-1736.
    [55]朱心雄等.自由曲线曲面造型技术[M].北京:科学出版社,2000
    [56]王国瑾,汪国昭,郑建民.计算机辅助几何设计[M].北京:高等教育出版社,2001
    [57]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001
    [58]张永吉.曲线拟合中的加权处理[J].计算机与应用化学.1994, l1(3): 238-240
    [59]穆国旺,朱心雄,涂杰等.曲面光顺的分片能量法[J].工程图学学报,1999, (1): 29-34
    [60]武殿梁,洪军,丁玉成,等.大型曲面类产品的快速制造技术研究[J].中国机械工程,2002, 7:43-47
    [61]崔汉锋.反求工程中的多曲面光滑重建[J].机械与电子,1996, 6: 32-36
    [62]齐天鹏,金烨,王军杰.基于点云数据的曲面重构方法研究[J].工程图学学2001, 1: 96-101
    [63]周显,陈斯亮.曲面建模中棱线的作用[C].UGS中国用户论文集.2001, 72-74
    [64] Pal Benko, Geza Kos, Tamas Varady. Constrained Fitting in Reverse Engineering [J], Computer Aided Geometric Design, 2002, 19: 173-205
    [65] Werner A., Skalski K., Piszcatowski S., et al. Reverse Engineering of Free-form Surfaces [J]. Journal of Materials Processing Technology. 1998,76: 128-132
    [66] Chih-Young L., Chung-Shan L., Jing-Yih L. A Surface-Lofting Approach for Smooth-surface Reconstruction from 3D Measurement Data [J]. Computers in Industry, 1997, 34: 73-85
    [67] Chen H.Y., Lee I.K., Leopoldseder S. On Surfacer Approximation Using Developable Surfaces [J]. Grephical Models and Image Processing. 1999, 61: I10-124
    [68]陈旭玲,刘苏.Pro_Engineer在逆向工程曲面造型上的应用[J].微机发展,2004, 14(9): 60-62.
    [69]二代龙震工作室.Pro/ENGINEEI Wildfire 3.0.电子工业出版社,2007: 365-437.
    [70]雷刚,邹昌平,黄剑鸣.快速逆向工程研究进展[J].机械工艺师,2000,10: 54-57
    [71] Klass R. Correction of local irregularities using reflection lines [J]. Computer Aided Design,1980, 12(2): 73-77
    [72] Poeschl T. Detecting surface irregularities using isophotes [J]. Computer Aided Geometric Design, 1984, 1(2): 163-168
    [73]黄树魁,肖跃加等.快速成型技术的展望[J].中国机械工程,2000, 11(1-2): 195-170
    [74]郭淑威.基于逆向工程的颅骨修复体快速制造技术的研究[D].吉林大学,2008
    [75]徐健,颜永年等.快速成形技术的发展方向[J].航空制造技术,2002, 11: 25-27
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.