钢筋混凝土框架和框架—剪力墙结构非弹性地震反应性态的识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
框架结构和框架-剪力墙结构是在我国地震区广泛使用的两种钢筋混凝土结构形式。而钢筋混凝土结构在不同水准地震作用下的性态控制目标的实现,主要依靠有效的抗震措施,赋予结构以必要的延性能力和滞回耗能能力,使结构在更高水准的地震作用下以稳定的方式通过非弹性变形耗散地震能量,并保持其竖向承载力和整体稳定性。我国设计规范中有关框架结构和框架-剪力墙结构的系列设计方法和抗震措施主要根据试验结果、震害及工程经验,并借鉴国外规范经验制定,至今未经过理论分析的验证。对于其中的内力调节措施和抗震构造措施的抗震有效程度,到目前为止尚无法做出明确判断。近年来,国外已有利用非弹性动力反应分析程序对典型结构系列进行多条地震波输入下的分析以验证相应规范抗震设计方法和措施有效性的先例。而国内则未见此类研究工作报道。本论文的主要目的是编制功能良好的非弹性动力反应分析程序,并利用它研究严格按规范设计的钢筋混凝土结构在不同水准地震下的抗震性态,以期从理论分析角度识别有别于国外规范的我国抗震措施的有效程度。
     本论文主要完成了以下研究工作:
     (1)在作者所在学科点已有研究成果的基础上,编制完成了适应性较强的框架-剪力墙结构拟三维非弹性动力反应分析程序,其中梁、柱单元采用单分量模型,剪力墙单元采用多竖杆模型;通过与国外同类知名程序以及国外知名研究机构完成的模型结构振动台试验的对比分析,对所编成的计算机程序进行了多途径的检验和考证,同时对剪力墙多竖杆模型中的相对转动中心高度系数c的取值进行了参数分析。
     (2)对钢筋混凝土结构抗震设计原理中的R-μ-T关系和结构超强效应的相关研究成果进行了总结;比较了我国规范与国外有影响的几本规范在能力设计措施方面的不同做法;并对框架结构的关键性抗震措施─柱抗弯能力增强措施中所要考虑的因素及其有效量化方式进行了较深入的探讨。
     (3)严格按修订前《建筑抗震设计规范》(GBJ11-89)7度、8度和9度设防烈度区分别设计了3跨6层的钢筋混凝土框架结构;和严格按修订后规范《建筑抗震设计规范》(GBJ50011-2001)设计了以下框架结构:(a)不同设防烈度区(7度0.10g和0.15g区、8度0.20g和0.30g区以及9度0.40g区)的5组3跨6层典型规则框架结构,其中包括考虑填充墙和不考虑填充墙的两个系列;(b)各设防烈度下高度接近允许上限值的3跨8层和11层的规则框架结构。通过对以上框架结构进行多波输入下的非弹性动力反应分析,对我国规范抗震措施,主要是柱抗弯能力增强措施的有效程度作了初步识别。另外还按5档不同水准的柱抗弯能力增强措施设计了相应的
Frame and frame-wall structures are two kinds of RC structures used widely in earthquake regions in China. The realization of performance objectives of structures under earthquakes at various levels depends on valid seismic fortification measures. These measures assure structures necessary ductility and hysteretic energy-dissipated capacity, make them dissipate stably earthquake energy through inelastic deformation and keep their carrying capacities to vertical loads and the stabilities as a whole under higher earthquake action levels. Series of design methods and seismic measures of our national design codes for frame structures and frame-wall structures are mainly based on experiments, experiences from earthquake disasters and from engineering, and referred to seismic measures in foreign codes. Up to now, these methods and measures still have not been verified by theoretical analyses. The availability of measures of internal forces adjustment and seismic detail can not been evaluated definitely. In recent years, analyses of series of typical structures under certain ground motions have been carried out through inelastic dynamic response analysis program in order to verify some seismic design methods and measures in foreign codes. But the similar research work has not been found in our country. The purpose of this thesis is to develop an inelastic dynamic response analysis program, and to study seismic behaviors of RC structures under earthquakes at various levels through this program, then to verify the validity of seismic measures in Chinese code through theoretical analyses.
     The main research work finished in this thesis is as followings:
     ①Based on the early researches of the author’s research group, an inelastic dynamic response analysis program for RC frame and frame-wall structures was developed. In this program, the one-component model is applied to the beam and column members, and the multi-vertical-element model (MVEM) is applied to wall elements. The program has been verified through the comparisons of results analyzed by this program and those by a well-known similar foreign program IDARC5.5, and the comparisons between simulated results of shaking table tests of model structures analyzed by this program and those tested. The value of the coefficient c of the height of the relative rotation center in MVEM was analyzed.
     ②The research findings of the R-μ-T relation and overstrength effect in seismic design principle of RC structures were summarized. The different methods of capacity
引文
[1] 胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [2] 中华人民共和国国家标准. 建筑抗震设计规范(GBJ11-89)[S]. 北京:中国建筑工业出版社,1989.
    [3] 中华人民共和国国家标准. 建筑抗震设计规范(GB50011-2001)[S]. 北京:中国建筑工业出版社,2001.
    [4] NZS3101: 1995 Concrete Structures Standards[S]. New Zealand, Wellington, 1995.
    [5] UBC(1997): Uniform Building Code[S]. International Conference of Building fficials(ICBO), Whittier, California, 1997.
    [6] EC8(1994): Eurocode 8-Design Provisions for Earthquake Resistance of Structures[S]. ENV 1998, CEN, Brussels, 1994.
    [7] fib(CEB-FIP), Bulletin 25, Displacement-Based Seismic Design of Reinforced Concrete Buildings[R]. Sprint-Digital-Druck, Stutlgart, 2003.
    [8] [美]罗伯特 L. 威格尔主编,中国科学院工程力学研究所译.地震工程学[M].北京:科学出版社,1978.
    [9] Bertero V. V., Aktan A. E., Charney F. A., and Sause R. U.S.-Japan Cooperative Earthquake Research Program: Earthquake Simulation Tests and Associated Studies of a 1/5th –Scale Model of a 7-Story Reinforced Concrete Test Structure[R]. Report No. UCB/EERC-84/05, University of California, Berkeley, California,June 1984.
    [10] Paulay T., Priestley M. J. N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. John Wiley & Sons, INC, 1992.
    [11] CEB-fib. Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response-Design Concepts[M] Comite Euro-international du Beton, Bulletin d' Information No.240, Thomas Telford Ltd, 1998.
    [12] NZS4203: 1992 General Structural Design and Design Loading for Buildings[S]. New Zealand, Wellington, 1992.
    [13] 白绍良,韦锋,杨红. 通过非线性动力分析识别我国抗震框架结构柱梁强度级差措施的有效程度[A]. 第八届全国钢筋混凝土基本理论与工程应用学术会议论文集[C].中国,重庆,2004 年 10 月.
    [14] Aktan A. E., Bertero V. V. RC Structural Wall: Seismic Design for Shear[J]. Journal of Structural Engineering, ASCE, Aug. 1985, Vol. 111, No. 8:1775-1791.
    [15] André Filiatrault, Danilo D'Aronco, and René Tinawi. Seismic Shear Demand of DuctileCantilever Wall: a Canadian Code Perspective[J]. Canadian Journal of Civil Engineering, Vol. 21(1994): 362-375.
    [16] Munshi Javed A. and Ghosh Satyendra K.. Analysis of Seismic Performance of a Code Designed Reinforced Concrete Building[J]. Engineering Structures, Vol. 20(1998), No.7: 608-616.
    [17] Peter Linde. Evaluation of Structural Walls Designed to According to Eurocode 8 and SIA 160[J]. Earthquake Engineering and Structural Dynamic, Vol. 27(1998): 793-809.
    [18] Dooley Kara L. and Bracci Joseph M. Seismic Evaluation of Column-to-Beam Strength Ratios in Reinforced Concrete Frames[J]. ACI Structural Journal, Nov.-Dec. 2001, Vol. 98, No. 6, pp. 843-851.
    [19] ACI 318-99: Building Code requirements for Structural Concrete[S] American Concrete Institute, Farminton Hills, Michigan, USA, 1999.
    [20] 杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究[D].重庆:重庆建筑大学,2000.
    [21] Celebi, M., and J. Penzien. Experimental Investigation into the Seismic Behavior of Critical Region of Reinforced Concrete Components as Influenced by Moment and Shear[R]. Report No. UCB/EERC-73/04, Earthquake Engineering Research Center, University of California at Berkeley, 1973.
    [22] Priestley M. J. N., Park R., and Potangaroa R. T. Ductility of spirally-confined concrete columns[J]. Journal of the Structural Division, Proceeding of the ASCE, January 1981, Vol.107, No. ST1: 181-202.
    [23] Park R., Priestley M. J. N., and Wayne D. Gill. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, Proceeding of the ASCE, April 1982, Vol.108, No. ST4: 929-950.
    [24] Kannan A. E. and Powell G. H. DRAIN-2D, A general purpose computer program for dynamic analysis of inelastic plane structures[R]. Report No. UCB/EERC-73/06, 1973, University of California, Berkeley, California, USA.
    [25] Park, Y. J., Reinhorn, A. M., and Kunnath, S. K. IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures[R]. Technical Report NCEER-87-0008, State University of New York at Buffalo, 1987.
    [26] 孙业扬,余安东 等.高层建筑杆系-层间模型弹塑性动态分析[J] .同济大学学报, 1980 年第 1 期:87-98.
    [27] 李田,吴学敏.高层及复杂结构多维时程弹塑性动力分析[J].建筑结构学报,1992 年 12 月,13(6):2-11.
    [28] 蒋通,宋亚新,楼梦麟.高层框-剪结构空间协同弹塑性地震反应分析[J]. 地震工程与工程振动,June 1998, 18(2):69-78.
    [29] 江建. 钢筋混凝土框架-剪力墙结构空间非线性地震反应[D]. 湖南长沙:湖南大学, 1996.
    [30] Yang Jiang and Mehdi Saiidi. Four-Spring Element for Cyclic Response of R/C Columns[J]. Journal of Structural Engineering, ASCE, April 1990, Vol.116, No.4: 1018-1029.
    [31] 李康宁,洪亮,叶献国. 结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J] . 建筑结构,2001 年 3 月,Vol.31(3):53-61.
    [32] 杜宏彪,房营光,沈聚敏. 空间钢筋混凝土框架结构的非弹性地震反应[J].地震工程与工程振动,1999 年 6 月,19(2):81-86.
    [33] Clough R.W., Benuska K.L., and Wilson E.L. Inelastic earthquake response of tall buildings[A]. Proc. of 3rd World Conference on Earthquake Engineering[C]. New Zealand, 1965, Vol.11: 68-69.
    [34] 尹之潜. 在地震作用下多层框架结构的弹塑性反应[J]. 地震工程与工程振动,1982, 试刊2期。
    [35] 林家浩,丁殿明,田玉山. 串联多自由度体系的弹塑性地震反应分析[J]. 大连理工大学学报,1979,第二期.
    [36] 沈聚敏,张玉良. 弯剪型多自由度体系非弹性地震反应的简化分析[C]. 钢筋混凝土结构的抗震性能,科学研究报告集(3).清华大学抗震抗爆工程研究室编,清华大学出版社,1981.
    [37] 李杰,李国强编著.地震工程学导论[M].北京: 地震出版社,1992.
    [38] Ahmet E. Aktan, Gordon E. Nelson. Problems in Predicting Seismic Response of RC Buildings[J]. Journal of Structural Engineering, Sept. 1988, Vol. 114, No. 9: 2036-2056.
    [39] Maria Gabriella, Giuseppe Gaslini, and Josta Rodelli. Nonlinear Response and Damage Indices in the Seismic Analysis of an RC Frame[J]. Eruopean Earthquake Engineering, 2000(1): 23-39.
    [40] Giberson, M. F.. The Response of Nonlinear Multi-story Structures subjected to EarthquakeExcitation[R]. EERL Report, Earthquake Engineering Research Laboratory, California Institute of echnology, Pasadena, 1967.
    [41] Otani .S.. Inelastic analysis of RC frame structures[J]. Journal of Structural Division, ASCE, 1974, Vol. 100,No.ST7:1433-1449.
    [42] Suko, M., and P. F. Adams,. Dynamic Analysis of Multi-bay Multi-story Frames[J]. Journal of Structural Division, ASCE, Vol. 97, No. ST10, October 1971, pp. 2519-2533.
    [43] Soleimani D., Popov E. P., and Bertero V. V. Hysteretic behavior of reinforced concretebeam-column subassemblages[J]. ACI Structural Journal, 1979,76(11):1179-1195.
    [44] Meyer C., Roufaiel M. S., and Arzoumanidis S. G. Analysis of damaged concrete for cyclic loads[J]. Earthquake Engineering & Structural Dynamic, 1983, Vol. 11: 2207-228.
    [45] 汪梦甫. 高层建筑结构非线性地震反应分析[C]. 中国力学学会第二届青年学术讨论会论文集,安徽合肥,中国力学学会,1990.11.
    [46] Mulas M. G. and Filippou F. C. Analytical procedures in the study of seismic response of reinforced concrete frames[J]. Engineering Structures, 1990, Vol. 12.
    [47] 汪梦甫,沈蒲生.钢筋混凝土框剪结构非线性地震反应分析[J].工程力学,August 1999,Vol.16,No.4:136-143.
    [48] Wen, R. K., and Janssen J. G. Dynamic Analysis of Elasto-Inelastic Frames[C]. Proceedings of Third World Conference on Earthquake Engineering, Wellington, New Zealand, January 1965, Vol. II, pp. 713-729.
    [49] Ambrisi Angelo D’ and Filippou F.C. Modeling of Cyclic Shear Behavior in RC Members[J] . Journal of Structural Engineering, Oct. 1999, Vol. 125, No. 10: 1143-1150.
    [50] Shing-Sham Lai, George T. Will, and Shnsuke Otani. Model for inelastic biaxial bending of concrete members[J]. Journal of Structural Engineering, Nov. 1984, Vol.110, No.11: 2563-2584.
    [51] Saiidi M., Ghusn G. and Jiang Y. Five-spring element for biaxially bent R/C columns[J]. Journal of Structural Engineering, ASCE, 1989, Vol.115, No.2: 398-416.
    [52] Aktan A. E., Pecknold D. A., Sozen M. A. Effect of two dimensional earthquake motion on a reinforced concrete column[R]. Civil Engineering Studies, SRS 399, University of Illinois at Urbana-Champaign, Urbana, Illinois, Mau 1973.
    [53] Kaba S.A., and Mahin S. Refined modeling of reinforced concrete columns for seismic analysis[R]. Report UCB/ERRC-84/03, University of California, Berkeley, CA, April 1984.
    [54] Zeris C., and Mahin S. Analysis of reinforced concrete beam-columns under uniaxial excitation[J]. Journal of Structural Engineering, ASCE, 1988, 114(4): 820-864.
    [55] 陈滔. 基于有限元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D]. 重庆:重庆 大学,2003.
    [56] Fajfar P. and Fischinger M. Mathematical modeling of reinforced concrete structural walls for nonlinear seismic analysis[J]. Structural Dynamic, 1990: 471-478.
    [57] Hiraishi H., Kawashima T. Deformation behavior of shear walls after flexural yielding[A]. Proc. of 9th WCEE[C]. Toyko, 1988, Vol.8: 653-658.
    [58] Kabeysawa T., Shioara T., and Otani S. U.S.- Japan cooperative research on RC full-scale building test, Part 5: Discussion of dynamic response system[A]. Proc. of 8th WCEE[C]. SanFrancisco, U.S.A., 1984, Vol. 6, pp. 627-634.
    [59] Vulcano A., and Bertero V. V. Analytical Models for Predicting the Lateral Response of RC Shear wall:Evaluation of Their Reliability[R]. Report No. UCB/EERC-87/19, University of California, Berkeley, California, Nov. 1987,
    [60] 孙景江,江近仁. 框架-剪力墙结构的非线性随机地震反应和可靠性分析[J]. 地震工程与工程振动,June 1992,Vol.12, NO.2: 59-68.
    [61] 张川. 钢筋混凝土框架-抗震墙结构的抗震性能及模型化研究[D] .重庆建筑大学博士学位论文,1994.
    [62] Peter Linde and Hugo Bachmann. Dynamic Modeling and Design of Earthquake-Resistant Walls [J] . Earthquake Engineering and Structural Dynamic, Vol. 23(1994): 1331-1350.
    [63] Ghobarah A., Youssef M. Modelling of Reinforced Concrete Structural Walls[J]. Engineering Structures, Vol. 21(1999): 912-923.
    [64] Vulcano A., and Bertero V. V. and Colotti V.. Analytical Modeling R/C Structural walls[C]. Proc. 9th WCEE, Vol. VI, Tokio-Kyoto, Japan, pp. 41-46.
    [65] 蒋欢军,吕西林. 用一种墙体单元模型分析剪力墙结构[J]. 地震工程与工程振动, September 1998,Vol.18,No.3:40-48.
    [66] 蒋欢军,吕西林. 一种宏观剪力墙单元模型的应用研究[J]. 地震工程与工程振动,Feb. 2003,Vol.23, NO.1: 38-43.
    [67] 张令心,孙景江 等.钢筋混凝土框架-剪力墙结构拟三维非线性地震反应分析[J]. 世界地震工程, June 2001,Vol.17, No.2:22-28.
    [68] 张令心,孙景江,江近仁.钢筋混凝土剪力墙基于自平衡力的非线性地震反应分析[J].地震工程与工程振动,Dec. 2001,Vol.21,No.4:29-34.
    [69] 汪梦甫,周锡元. 钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用[J].建筑结构学报,Feb.,2002,Vol.23,No.1:38-42.
    [70] 沈蒲生,王海波. 剪力墙结构的非线性地震反应分析[J]. 土木工程学报, May, 2003,Vol.36, No.5: 11-16.
    [71] Shaohua Chen and Toshimi Kabeyasawa. Modeling of Reinforced Concrete Shear Wall for Nonlinear Analysis[C]. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000, CD-ROM, 1596/1-8.
    [72] Takeda T., Sozen M.A., and Nielsen N.N. Reinforced concrete response to simulated earthquake[J]. Journal of the Structural Division, ASCE, 1970, 96(12): 257-2573.
    [73] Saiidi Mehdi and Sozen M.A. Simple and complex models for nonlinear seismic response of reinforced concrete structures[R]. Structural Research Series No. 465, Civil Eingineering Studies,University of Illinois at Urbana-Campaign, Urbana, Illinois, August 1979.
    [74] Roufaiel M. S. L., and Meyer C. Analytical Modeling of Hysteretic Behavior of R/C Frames[J]. Journal of Structural Engineering, March 1987, Vol. 113, No. 3: 429-444.
    [75] Kunnath S.K., Reinhorn A.M., and Park Y.J. Analytical Modeling of Inelastic Seismic Response of R/C Structures[J]. Journal of Structural Engineering, ASCE, April, 1990, Vol. 114, No. 4: 996-1017.
    [76] Eto, H, and Takeda T.. Elasto Plastic Earthquake Response Analysis of Reinforced Concrete Frame Structure [R]. Report, Annual Meeting, Architectural Institute of Japan, 1973, pp. 1261-1262.
    [77] Kabeyasawa T., Shiohara H., Otani S., et. al. Analysis of the Full-scale Seven-story Reinforced Concrete Test Structure [J]. Journal of the Faculty of Engineering, the University of Tokyo, (B), Vol. XXXVII, No. 2, 1983, pp. 431-478.
    [78] 黄翔. 规则变轴力作用下钢筋混凝土框架柱的抗震性能研究[D].重庆:重庆建筑大学,1995.
    [79] Saadeghvaziri M. A. Nonlinear Response and Modeling of RC Columns Subjected to Varying Axial Load[J]. Engineering Structures, Vol. 19 (1997): 417-424.
    [80] Colotti Vincenzo. Shear Behavior of RC Structural Walls [J]. Journal of Structural Engineering, March, 1993, Vol. 119, No. 3: 728-747.
    [81] 中华人民共和国国家标准. 混凝土结构设计规范(GB50010-2002)[S]. 北京:中国建筑 工业出版社,2002.
    [82] 江近仁,孙景江 等.轴向循环荷载下钢筋混凝土柱的实验研究[J].世界地震工程,Dec. 1998,Vol.13, No.4: 12-16.
    [83] Ozcebe Guney, and Saatcioglu M. Hysteretic Shear Model for Reinforced Concrete Members[J]. Journal of Structural Engineering, Jan. 1989, Vol. 115, No. 1: 132-147.
    [84] Vecchio Frank J. and Collins Michael P.. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear[J]. ACI Journal, March-June 1986: 219-231.
    [85] 张令心,杨桦,江近仁.剪力墙的剪切滞变模型[J].世界地震工程,June 1999,Vol.15,No.2:9-16.
    [86] Pedro. A. Hidalgo, Christian A. Ledezma, and Rodrigo. M. Jordan. Seismic Behavior of Squat R/C Shear Walls[J]. Earthquake Spectra, May 2002, Vol.18, No.2: 287-308.
    [87] P. A. Hidalgo, R. M. Jordan and M. P. Martinez. An Analytical Model to the Inelastic Seismic Behavior of Shear-wall, Reinforced Concrete Structures[J]. Engineering Structures, Vol. 24, 2002: 85-95.
    [88] Clough R.W., and Penzien Joseph. Dynamic of Structures[M]. McGraw-Hill Inc., 1975.
    [89] Wilson E.L., and Habibullah A. Static and dynamic analysis of multi-story buildings, including P-Delta effect[J]. Earthquake Spectra, Vol.3, No. 2.
    [90] Aktan Ahmet E., and Bertero V. V. Seismic Response of R/C Frame-Wall Structures[J]. Journal of Structural Engineering, August 1984, Vol. 110, No. 8: 1803-1821.
    [91] 印文铎,冯世平,沈聚敏. 两层钢筋混凝土框架结构拟动力地震反应试验研究[J]. 土木工程学报,1990,23(3):23-35.
    [92] 徐云扉,胡庆昌,陈玉峰等. 低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报,1986,7(3):1-15.
    [93] 钟益村,任富栋,田家骅.二层双跨钢筋混凝土框架弹塑性性能试验研究[J].建筑结构学报,1981 年,2(3):34-41.
    [94] 梁书亭,丁大钧,陆勤. 钢筋砼框架结构抗震控制研究[J]. 建筑结构学报,1994,15(5):43-49.
    [95] 孙景江,江近仁. 高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J] .地震工程与工程振动,June 2001,Vol.21, NO.2:78-83.
    [96] Matej Fischinger, Tatjana Isakovic. Benchmark Analysis of a Structural Wall[C]. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000, CD-ROM, 0416/1-8.
    [97] Thomas T. C. Hsu. Unified Theory of Reinforced Concrete, CRC Press, Boca Ration, Fla, 1993.
    [98] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社,1999.
    [99] Wang T. Y., Bertero V. V., and Popov, E. P. Hysteretic Behavior of Reinforced Concrete Framed Walls[R]. Report No. UCB/EERC-75/23, University of California, Berkeley, California, December 1975.
    [100] Vallenas J. M., Bertero V. V., and Popov, E. P. Hysteretic Behavior of Reinforced Concrete Structural Walls[R]. Report No. UCB/EERC-79/20, University of California, Berkeley, California, August 1979.
    [101] A.E. Fiorato, R.G. Oesterle and W.G. Corley. Behavior of Earthquake Resistant Structural Walls Before and After Repair[J]. ACI Journal, Sept.-Oct. 1983: 403-413.
    [102] Oesterle R.G., Aristizabal-Ochoa J.D., Shiu K.N., and Corley W.G. Web Crush of Reinforced Concrete Structural Walls[J]. ACI Journal, May-June 1984: 231-241.
    [103] Ioannis D. Lefas and Michael D. Kotsovos. Strength and Deformation Characteristics of Reinforced Concrete Wall under Load Reversal[J]. ACI Structural Journal, Nov.-Dec. 1990, Vol. 87, No.6: 716-726.
    [104] Ioannis D. Lefas and Michael D. Kotsovos, and N.N. Ambraseys. Behavior of ReinforcedConcrete Structural Walls: Strength, Deformation Characteristics, and Failure Mechanism[J]. ACI Structural Journal, Jan.-Feb 1990, Vol. 87, No.1: 23-31.
    [105] Kypros Pilakoutas and Amr Elnashai. Cyclic Behavior of Reinforced Concrete Cantilever Walls, Part I: Experimental Results[J]. ACI Structural Journal, May-June 1995, Vol. 92, No. 3: 271-281.
    [106] Kypros Pilakoutas and Amr Elnashai. Cyclic Behavior of Reinforced Concrete Cantilever Walls, Part II: Discussion and Theory Comparision[J]. ACI Structural Journal, July-August 1995, Vol. 92, No. 4: 425-434.
    [107] Thomas N. Salonikios, Andreas J. Kappos, Ioannis A. Tegos, and Georgios G. Penelis. Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test Results[J]. ACI Structural Journal, July-August. 1999, Vol. 96, No.4: 649-660.
    [108] Thomas N. Salonikios, Andreas J. Kappos, Ioannis A. Tegos, and Georgios G. Penelis. Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications[J]. ACI Structural Journal, Jan.-Feb. 2000, Vol. 97, No.1: 132-141.
    [109] M. S. Lope. Experimental Shear-Dominated Response of RC Walls, Part I: Objectives, Methodology and Results[J]. Engineering Structures, Vol. 23(2001): 229-239.
    [110] M. S. Lope. Experimental Shear-Dominated Response of RC Walls, Part II: Discussion of Results and Design Implications[J]. Elsevier, Engineering Structures, Vol. 23(2001): 564-574.
    [111] Chadchart Sittipunt, and Sharon L. Wood. Influence of Web Reinforcement on the Cyclic Response of Structural Walls[J]. ACI Structural Journal, Nov.-Dec. 1995, Vol. 92, No.6: 745-756.
    [112] Chadchart Sittipunt and Sharon L Wood. Development of Reinforcement Details to Improve the Cyclic Response of Slender Structural Walls[C]. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000, CD-ROM, 1770/1-6.
    [113] Chadchart Sittipunt and Sharon L. Wood, et. al. Cyclic Behavior of Reinforced Concrete Structural Walls with Diagonal Web Reinforcement[J]. ACI Structural Journal, July-August.2001, Vol.98, No.4: 554-562.
    [114] Tomii M., and Osaki Y. Shearing resistance of reinforced concrete bracing walls[J]. Transactions, Architectural Institute of Japan, September 1955, No. 51, pp. 83-95.
    [115] Hirosawa M. Past experimental results on reinforced concrete shear walls and analysis on them[R]. Kenchiku Kenkyu Shiryo, No. 6, Building Research Institute, Ministry of Construction, 1975
    [116] Hisahiro Hiraishi, Shigeru Mochizuki. Structural Design Equations and Recommendations for Multi-Story Shear Walls[C]. Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain, 1992, Vol.6: 3285-3290.
    [117] Iztok Perus, Peter Fajfar and Igor Grabec. Prediction of the Seismic Capacity of RC Structural Walls by Non-parametric Multi-dimensional Regression[J]. Earthquake Engineering and Structural Dynamic, Vol.23(1994): 1139-1155.
    [118] 赵杰林. 抗震剪力墙小跨高比洞口连梁有效配筋方式及分析模型研究[D]. 重庆:重庆大学,2003.
    [119] T. Paulay. Coupling Beams of Reinforced Concrete Shear Walls [J]. Journal of Structural Engineering, ASCE, 1971, 97(3): 843-862.
    [120] Tegos I.A., and penelis G. Gr. Seismic Resistance of Short Columns and Coupling Beams Reinforced with Inclined Bars[J]. ACI Structural Journal, 1988, 85(1): 82-88.
    [121] Theodosios P.Tassios, Marina Moretti, and Antonios Bezas. On the Behavior and Ductility of Reinforced Concrete Coupling Beams of Shear Walls[J]. ACI Structural Journal, 1996, 93(6): 711-720.
    [122] Luciano Galano, and Andrea Vignoli. Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts[J]. ACI Structural Journal, 2000, 97(6): 876-885.
    [123] 戴瑞同,孙占国. 菱形配筋剪力墙连梁的承载能力[J]. 工业建筑, 1993, 10: 33-38.
    [124] 张彬彬.高层建筑剪力墙连梁抗震性能的实验研究[D].重庆:重庆大学,2001.
    [125] 曹云峰. 抗震剪力墙小跨高比洞口连梁有效配筋方式的试验研究[D].重庆:重庆大学,2003.
    [126] 徐锐昌.小跨高比洞口连梁有效配筋方式的试验研究[D].重庆:重庆大学,2004.
    [127] Park J.K., and Ang H-S, et.al. Seismic damage analysis and damage-limiting design of R.C. buildings[R]. Tech. Report SRS No.516, Dept. of Civil Eingineering, University of Illinois, Urbana, IL, USA, 1984.
    [128] Panagiotakos T.B., and Fadis M.N. Deformations of reinforced concrete members at yielding and ultimate[J]. ACI Structural Journal, March-April 2001, 98(2): 135-148.
    [129] 沈聚敏,翁义军,冯世平. 周期反复荷载作用下钢筋混凝土压弯构件的性能[J]. 土木工程学报,1982 年 6 月,16(2).
    [130] Valles R.E., Reinhorn, A.M., and Kunnath, S. K, et. al. IDARC 2D Version4.0: A Program for the Inelastic Damage Analysis of Buildings[R]. Technical Report NCEER-96-0010, State University of New York at Buffalo, 1996.
    [131] 张福旺. 较大竖向载荷下框架结构非线性地震反应特征分析[D].重庆:重庆大学,2004.
    [132] Aktan A. E., Bertero V. V., and Chowdhury A.A, et. al. Experimental and analytical predictionof the mechanical characteristics of a 1/5-scale model of a 7-story R/C frame-wall building structure[R]. Report No. UCB/EERC-83/13, University of California, Berkeley, California, June 1983.
    [133] United States/ Japan Joint Tech. Coordinating Committee. Interim Summary Report on Test of 7-story RC Building [J]. Journal of Structural Engineering, ASCE, Oct. 1984, Vol. 110, No. 10: 2393-2411.
    [134] U.S. Members of JJCC Group on RC Building Structures. U.S.-Japan Research: Seismic Design Implication[J]. Journal of Structural Engineering, Sept. 1988, Vol. 114, No. 9: 2000-2016.
    [135] Baumann Hugo, Dazio Alessandro, and Lestuzzi Pierino. Developments in the seismic design of buildings with RC structural walls[C]. Proceedings of the 11th European Conference on Earthquake Engineering, CNIT, Paris Ia Défense, France, September 1998.
    [136] Lestuzzi Pierino, Baumann Hugo. Dynamische Versuche an Stahlbetontragw?nden auf dem ETH-Erdbensimulator[R].Institut Für Baustatik und Konstrukition (IBK), ETH Zürich, Bericht No. 240, ISBN 3-7643-6162-X. Birkh?user Verlag, Basel, 1999.
    [137] Orakcal Kutay, Conte J. P., Wallace J. W. Nonlinear modeling of RC structural walls[A]. The Seventh U.S. National Conference on Earthquake Engineering[C]. Earthquake Engineering Research Institute, Oakland, California, 2002.
    [138] Newmark N. M., and Hall W.J. Earthquake spectra and design[R]. EERI Monograph Series, EERI, Oakland, California, USA, 1982.
    [139] Krawinkler H. and Nassar A. A. Seismic Design Based on Ductility and Cumulative Damage Demand and Capacities[A]. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings[M]. Fajfar and Krawinkler, ed., Elsevier Applied Science, New York, NY, USA, 1992.
    [140] Miranda E. and Bertero V. V. Evaluation of Strength Reduction factor for Earthquake Resistance Design[J]. Earthquake Spectra, 1994, Vol. 10: 357-379.
    [141] Vidic T., Fajfar P. and Fischinger M. Consistent Inelastic Design Spectra: Strength and Displacement[J]. Earthquake Engineering and Structural Dynamics, 1994, Vol. 23: 507-521.
    [142] Borzi B., Calvi G. M. and Elnashai A. S. et al. Inelastic Spectra for Displacement-Based Seismic Design[J]. Journal of Soil Dynamic and Earthquake Engineering, 2001, Vol. 21: 47-61.
    [143] Denis Mitchell and Patrick Paultre. Ductility and Overstrength in Seismic Design of Reinforced Concrete Structures[J]. Canadian Journal of Civil Engineering, Vol. 21(1994): 1049-1060.
    [144] Jain S.K, Navin N. Seismic overstrength in reinforced concrete frames[J]. ASCE, 1995, 121(3): 580–585.
    [145] Humar JL, Ragozar MA. Concept of overstrength in seismic design[C]. In Proceedings 11th WCEE. IAEE, Acapulco, 1996, Mexico. Paper 639.
    [146] A.S. Elnashai, A. M. Mwafy. Overstrength and Force Reduction Factors of Multistory RC Buildings[J]. The Structural Design of Tall Buildings, 2002, Vol.11, pp: 329-351.
    [147] Denis Mitchell, Robert Tremblay, Erol Karacabeyli, et. al. Seismic force modification factors for the proposed 2005 edition of the National Building Code of Canada [J]. Canadian Journal of Civil Engineering, Vol. 30(2003): 308-327.
    [148] Architectural Institute of Japan. Design guidelines for earthquake resistant reinforced concrete buildings based on ultimate strength concept[S]. November 1990, Japan.
    [149] 中华人民共和国国家标准.工业与民用建筑抗震设计规范(TJ11-78)[S]. 北京:中国建筑工业出版社,1978.
    [150] 杨媛.对新西兰、欧共体、美国、日本和中国规范钢筋混凝土结构抗震条文的初步对比和分析[D].重庆:重庆建筑大学,2000.
    [151] 李英民.工程地震动的模型化研究[D].重庆:重庆建筑大学,2000.
    [152] 杨溥,李英民,赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报,2000 年 12 月,33(6): 33-37.
    [153] Pantazopoulou S.J., and French C.W. Slab participation in practical earthquake design of reinforced concrete frame[J]. ACI Structural Journal, July-August 2001, 98(4): 479-489.
    [154] 蒋永生,陈忠范,周绪平 等. 整浇梁板的框架节点抗震研究[J]. 建筑结构学报,1994年 12 月,15(6):11-16.
    [155] Ashutosh Bagchi. Evaluation of the seismic performance of reinforced concrete buildings[D]. Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada, 2001.
    [156] Aktan A. E., and Bertero V. V. The Seismic Resistant Design of R/C Coupled Structural Walls[R]. Report No. UCB/EERC-81/07, June 1981, University of California, Berkeley, California.
    [157] Aktan A. E., Bertero V. V., and Piazza M.. Prediction of the Seismic Responses of R/C Frame-Coupled Wall Structures[R]. Report No. UCB/EERC-82/12, August 1982, University of California, Berkeley, California.
    [158] 陈小英. 基于非线性动力分析的框-剪结构抗震规定的验证[D].重庆:重庆大学,2005.
    [159] 中华人民共和国行业标准.高层建筑混凝土结构技术规程(JGJ3-2002)[S].北京:中国建筑工业出版社,2002.
    [160] Vision 2000 committee. Performance based seismic engineering of buildings[R]. Structural Engineers Association of California (SEAOC), Sacramento, California, USA, 1995.
    [161] Aktan A. E., and Bertero V. V. State of the Art and Practice in the Optimum Seismic Design and Analytical Response Prediction of R/C Frame-Wall Structures[R]. Report No. UCB/EERC-82/06, July 1982, University of California, Berkeley, California.
    [162] Finley Charney and V. V. Bertero. An Evaluation of the Design and Analytical Seismic Response of a Seven-Story Reinforced Concrete Frame-Wall Structure[R]. Report No. UCB/EERC-82/08, University of California, Berkeley, California.
    [163] 吴学敏. 高层建筑剪力墙中连梁设计的探讨[J]. 建筑结构学报,1995 年 2 月,Vol.16, No.1:77-78.
    [164] 吴学敏. 钢筋混凝土结构抗震设计中一些问题的探讨[J]. 建筑结构,1998 年 9 月,第 9期:3-7.
    [165] 赵军,钱稼茹. RC 剪力墙宏单元模型中抗剪弹簧的处理方法[J]. 工程抗震,2003 年 6 月,第 2 期:13-19.
    [166] 梁书亭,丁大钧.框架柱铰的动力反应及耗能分析[J].东南大学学报,May 1994,Vol.24,No.3:75-82.
    [167] 韦锋,杨红,白绍良等. 抗震钢筋混凝土框架底层柱底截面弯矩增强系数合理取值的讨论[J]. 建筑结构,2003 年 5 月,Vol.33,No.5:3-7.
    [168] 韦锋,杨红,白绍良. 钢筋混凝土剪力墙多竖杆模型的应用和讨论[J]. 重庆大学学报(自然科学版),2005 年 1 月,Vol.28,No.1:126-130.
    [169] Yunfeng Zhang and Zhihao Wang. Seismic Behavior of Reinforced Concrete Shear Walls Subjected to High Axial Loading[J]. ACI Structural Journal, Sept.-Oct.2000, Vol.97, No.5, pp. 739-750.
    [170] 杜修力.结构弹塑性地震反应现状评述[J].工程力学,1994,6,Vol.11,No.2:99-104.
    [171] 王亚勇等.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991 年第二期,pp.
    [172] 钟华,易伟建,袁贤讯.钢筋混凝土框架-剪力墙结构中框架的地震层剪力[J].建筑结构,2004 年 1 月,Vol.34,No.1:53-55.
    [173] 叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟[J].土木工程学报,1998 年 8 月,31(4):3-13.
    [174] 孙景江.钢筋混凝土剪力墙非线性分析模型综述分析[J].世界地震工程,1994 年 2 月,第一期:43-46.
    [175] 武藤清著,滕家禄等译.结构物动力设计[M].北京: 中国建筑工业出版社,1984.
    [176] 胡庆昌编写.钢筋混凝土房屋抗震设计[M].北京: 地震出版社,1991.
    [177] 中国建筑科学研究院.高层建筑结构设计[M].北京:科学出版社,1982.
    [178] 赵军,李耕勤,钱稼茹.一种考虑截面翘曲的剪力墙宏模型[J].地震工程与工程振动,April 2003,Vol.23,No.2:37-44.
    [179] Perry Adebar, Ahmed M. M. Ibrahim. Simple Nonlinear Flexural Stiffness Model for Concrete Structural Walls[J]. Earthquake Spectra, August 2002, Vol.18, No.3: 407-426.
    [180] M. Reza Kianouish, Mostafa Ekmorsi, W. K. Tso. Modeling Shear Deformation in Reinforced Concrete Connection[J]. Eruopean Earthquake Engineering, 2000(3): 67-81.
    [181] T. Paulay. Seismic Response of Structural Walls: Recent Developments[J]. Canadian Journal of Civil Engineering, Vol. 28(2001): 922-937.
    [182] R.Tremblay, P. Légor, and J. Tu. Inelastic Seismic Response of Concrete Shear Walls Considering P-delta Effects[J]. Canadian Journal of Civil Engineering, Vol. 28(2001): 640-655.
    [183] A. A. Tasnimi. Strength and deformation of mid-rise shear walls under load reversal[J]. Engineering Structures, Vol. 22 (2000): 311-322.
    [184] 汪梦甫,周锡元.钢筋混凝土框架-剪力墙结构非线性地震反应实用分析方法的研究[J] .土木工程学报, Dec.2002,Vol.35, No.6:32-38.
    [185] 李国强 等.钢筋混凝土剪力墙非线性动力分析模型[J].世界地震工程, June. 2000, Vol.16, No.2: 13-18.
    [186] 陈云涛,吕西林.剪力墙非线性分析中多垂直杆元模型的分析与改进[J].结构工程师,2001(4):19-24.
    [187] 陈亦,何勇毅,蒋欢军.剪力墙结构计算模型分析[J].四川建筑科学研究,March 2001,Vol.27,No.1:1-4.
    [188] 江近仁,李小东.钢筋混凝土框架-剪力墙结构的非线性地震反应分析现状[J].世界地震工程,June 1997,Vol.13,No.2:30-36.
    [189] 陈忠范,丁大均,蒋永生.框架剪力墙结构弹塑性性能的试验研究[J].东南大学学报,May,1994,Vol.24,No.3:47-52.
    [190] 王海波,汪梦甫,沈蒲生. 开洞剪力墙结构的非线性地震反应分析[J]. 工程抗震,2000年 9 月,第 3 期:3-6.
    [191] J. Dario Aristizabal-Ochoa. Seismic Behavior of Slender Coupled Wall Systems[J]. Journal of Structural Engineering, October 1987, Vol. 113, No. 10: 2221-2234.
    [192] E. D. Booth, A. J. Kappos and R. Park. A critical review of international practice on seismic design of reinforced concrete buildings[J]. The Structural Engineer, June 1998, Vol. 76, No. 11: 213-220.
    [193] Y. C. Kurama and K. T. Farrow. Ground motion scaling methods for different site conditions and structure characteristics[J]. Earthquake Engineering and Structural Dynamics, 2003, Vol.32: 2425-2450.
    [194] P. A. Hidalgo, R. M. Jordan and M. P. Martinez. Development and Use of an Analytical Model to Predict the Inelastic Seismic Behavior of Shear Wall, R.C. Buildings[C]. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000, CD-ROM, 0472/1-8.
    [195] J. D. Aristizabal-Ochoa. Seismic Analysis of Slender Coupled Walls[J]. Journal of Structural Engineering, ASCE, July 1983, Vol.109, No.7: 1583-1552.
    [196] K. Nam Shiu, T. Takayanagi and W. Gene. Corley. Seismic Behavior of Coupled Wall System[J]. Journal of Structural Engineering, May. 1984, Vol. 110, No. 5: 1051-1066.
    [197] A. E. Aktan, V. V. Bertero. Evaluation of Seismic Response of RC Buildings Loaded to Failure[J]. Journal of Structural Engineering, May. 1987, Vol. 113, No. 5: 1092-1100.
    [198] 陈云涛,吕西林.联肢剪力墙抗震性能研究-试验和理论分析[J].建筑结构学报,August 2003,Vol.24,No.4:25-34.
    [199] 程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,August 2003,Vol.23,No.4:50-55.
    [200] Thomas Paulay. Earthquake-Resisting Shearwalls— New Zealand Design Trend[J]. ACI Journal, May-June 1980:144-152.
    [201] E L Blaikie, R. A. Davey. Seismic Response of Reinforced Concrete Shear Walls: Yielding in a Combined Shear and Flexural Mode[C]. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000.
    [202] Xhafer Kongoli, Tadao Minami and Yuki Sakai. Effects of Structural Walls on the Elastic-Plastic Earthquake Response of Frame-Wall Buildings[J]. Earthquake Engineering and Structural Dynamics, 1999, Vol. 28: 479-500.
    [203] Andreas J. Kappos. Analytical Prediction of the Collapse Earthquake for R/C Building: Suggested Methodology[J]. Earthquake Engineering and Structural Dynamic, Vol. 20(1991): 167-176.
    [204] Andreas J. Kappos. Analytical Prediction of the Collapse Earthquake for R/C Building: Case Studies[J]. Earthquake Engineering and Structural Dynamic, Vol. 20(1991): 177-190.
    [205] Kent A. Harries. Ductility and Deformability of Coupling Beams in Reinforced Concrete Coupled Walls[J]. Earthquake Spectra, August 2001, 17(3): 457-476.
    [206] Sameh S. F. Mehhanny, Hiroshi Kuramaoto, and Gregory G. Deierlein. Stiffness Model of Reinforced Concrete Beam-Columns for Frame Analysis[J]. ACI Structural Journal, March-April 2001, 98(2): 75-896.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.