某些非线性发展方程孤立波解的稳定性和动力系统的性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先研究刻画深水波的Benjamin-Ono方程的孤立波解和激光等离子体相互作用而得的广义Zakharov方程组孤立波解的轨道稳定性,这两个方程存在孤立波解,而且可以化为Hamilton形式(du)/(dt)=JE'(u),其中E是能量泛函,J是一个反对称线性算子.然后利用M.Grillakis,J.Shatah和W.Strauss[21,22]提出的抽象的轨道稳定性理论以及详尽的谱分析,证明了它们的孤立波解是轨道稳定的.
     接着讨论描述等离子体中非线性漂移波演化过程[78,79]的Hasegawa-Mima(简记为HM)方程,主要证明了三维情形下描述静态的电子漂移波和离子声波耦合[76]的广义HM方程组周期初边值问题和Cauchy问题整体光滑解的存在性和惟一性.并给出了具粘性项ε△~2u的二维HM方程初值问题当粘性系数ε趋向零时局部光滑解趋向于相应的HM方程初值问题的解,以及收敛速度阶数的估计.
     本论文分为五章:
     第一章,介绍Benjamin-Ono方程、Zakharov方程和HM方程的研究背景和进展情况,并阐述我们的主要结果.
     第二章,首先阐述M.Grillakis等人提出的轨道稳定性理论,并应用该方法给出Benjamin-Ono方程孤立波解的轨道稳定性证明.
     第三章,应用轨道稳定性理论结合谱分析证明了广义Zakharov方程组孤立波解的轨道稳定性.
     第四章,用Faedo-Gal(?)rkin方法讨论三维广义HM方程组周期初边值问题和Cauchy问题解的适定性.
     第五章,证明了具粘性项ε△~2u的二维HM方程初值问题当粘性系数ε趋向零时局部光滑解趋向于相应的HM方程初值问题的解,以及收敛速度阶数的估计.
In this dissertation we firstly consider the orbital stability of solitary waves for Benjamin-Ono equation which derived from fluids of great depth and for the generalized Zakharov equations which is the interaction of laser and plasma, respectively. There exist solitary waves of these two equations, and they can be rewritten in the following abstract Hamiltonian systems of the form(du)/(dt)=JE'(u),here E is a functional (the energy) and J is a skew-symmetric linear operator. By applying the abstract theorem of M. Grillakis , J. Shatah and W. Strauss[21, 22] and the detailed spectral analysis, we obtain their solitary waves are orbital stability .
     Secondly, we study Hasegawa-Mima(abrreviate HM) equation[78, 79] which describes the evolution of nonlinear drift waves in plasma, we discuss the generalized HM equations coupled electrostatic electron-drift waves and ion-acoustic waves[76] in three-dimensions, the existence and uniqueness of the global smooth solution for the periodic boundary problem and Cauchy problem are proved. And we also prove that the local smooth solution for the initial problem of HM equation with viscous termε△~2u in two dimensions can converge to the solution for the initial problem of the corresponding HM equation when the viscous coefficientεvanished, and give the estimate for the order of the convergent speed.
     The dissertation consists of five chapters:
     In chapter 1, we briefly introduce the background in physics and developments of Benjamin-Ono equation, Zakharov equation and HM equation, in addition the mam results of the dissertation is described.
     In chapter 2, we interpret the abstract orbital stability of M. Grillakis et. al, and prove that solitary waves of Benjamin-Ono equation is orbitally stable.
     In chapter 3, by applying the abstract stability theorem and detailed spectral analysis we obtain the orbital stability of the solitary waves for the generalized Zakharov equations.
     In chapter 4, we consider the well-posedness of the periodic boundary problem and Cauchy problem for the generalized HM equations in three dimensions.
     In chapter 5, we study HM equation in two dimensions, and prove that the local smooth solution for the intial problem of the HM equation with viscous termε△~2u can converge to the solution for the initial problem of the corresponding HM equation when the viscous coefficientεvanished, and give the estimate for the order of the convergent speed.
引文
[1] R. A. Adams, Sobolev Space, Academic Press, New York, 1975.
    
    [2]王元明,徐君祥,索伯列夫空间讲义,东南大学出版社,2003.
    
    [3]郭柏灵,庞小峰,孤立子,科技出版社,1978.
    
    [4]郭柏灵,非线性演化方程,上海科技教育出版社, 1995.
    
    [5]郭柏灵,无穷维动力系统(上、下册),国防工业出版社,2000.
    
    [6]郭柏灵,粘性消去法和差分格式的粘性,科学出版社,1993.
    
    [7] Kosaku Yosida, Functional Analysis, Springer-Verlag, sixth Edition, 2004.
    
    [8]张恭庆,郭懋正,泛函分析,(上、下册)北京大学出版社,2001.
    
    [9]张兆顺,湍流,国防工业出版社,2002.
    
    [10]李大潜,陈韵梅,非线性发展方程,科学出版社,1999.
    
    [11] Lawrence C. Evans, Partial Differential Equations, American Mathematical Society, Providence Rhode Island, 1998.
    
    [12] Philip Hartman, Ordinary Differential Equation, Birkhauser, Boston-Basel-Stuttgart, 1982.
    
    [13] A. Lunardi, Semigroups and Optimal Regularity in Partial Problems, Basel, Boston; Berlin:Birkhauser,1995.
    
    [14] J. L. Lions, Quelques méthodes de résolution des problemes aux limites nonlinéaires , Dounod. Paris, 1969.
    
    [15] P. L. Lions, The concentration-compactness principle in the Calculus of Variations . The locally compact case, part 1, Ann. Inst. H. Poincare, Annl. Non Lineare, Vol. 1, 1984, 109-145.
    
    [16] P. L. Lions, The concentration-compactness principle in the Calculus of Variations . The locally compact case, part 2, Ann. Inst. H. Poincare, Annl. Non Lineare, Vol. 4, 1984, 223-283.
    
    [17] J. Shatah and W. Strauss, Instability of nonlinear bound states, Commun. Math. Phys., 100, 1985, 173-190.
    
    [18] M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave problem, Commun. P.D.E., 12, 1987, 1133-1173.
    
    [19] J. L. Bona, P.E. Souganidis and W.A. Strauss, Stability of solitary waves of Korteweg-de Vries type, Pro. R. Soc. Lond. A 411, 1987, 395-412.
    
    [20] Joachim Stubbe, On the linear stability of solitary waves in Hamiltonian systems with symmetry, Integralble Systems and Applications, Lecture Notes in Physics, Vol. 342, 1989, 328-335.
    
    [21] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74, 1987, 160-197.
    
    [22] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94, 1990, 308-348.
    
    [23] T. B. Benjamin, Internal wave of permanent form in fluids of great depth, J. Fluid Mech., 29, 1967, 559-592.
    
    [24] Hiroaki Ono, Algebraic solitary waves in stratified fluids, J. Phys. Sco. Japan, 39(4), 1975, 1082-1091.
    
    [25] R. I. Joseph, Solitary waves in a finite depth fluid, J. Phys. A: Math. Gen., 10, 1977, 225-227.
    
    [26] Akira Nakamura, Backlund transform and conservation laws of the Benjamin-Ono equation, J. Phys. Sco. Japan, 47(4), 1979, 1335-1340.
    
    [27] J. Satsums and Y. Ishimori, Periodic wave and rational soliton solutions of the Benjamin-Ono equation, J. Phys. Sco. Japan, 46, 1979, 681-687.
    
    [28] Y. Matsuno, Interaction of the Benjamin-Ono solitons, J. Phys. A: Math. Gen., 13, 1980, 1519-1536.
    
    [29] Y. Matsuno, Soliton and algebraic equation, J. Phys. Sco. Japan, 51, 1982, 3375-3380.
    
    [30] Y. Matsuno, Recurrence formula and conserved quantity of the Benjamin-Ono equation, J. Phys. Sco. Japan, 52, 1983, 2955-2958.
    
    [31] C. J. Amickand J. F. Toland, Uniqueness of Benjamin's solitary-wave solution of the Benjamin-Ono equation, IMA J. Appl. Math., 46, 1991, 21-28.
    
    [32] Rafael Jose Iorio, Jrs., On the Cauchy problem for the Benjamin-Ono equation , Comm. in Partial Differential Eqs., 11, 1986, 1031-1084.
    
    [33] L. Abdelouhab J. L. Bona, M. Felland, J. C. Saut, Nonlocal models for nonlinear dispersive waves, Phys. D, 40, 1989, 1092-1099.
    
    [34] J. Albert and J. L. Bona, Total positivity and stability of internal waves in stratified fluids of finite depth, IAM. J. Appl. Math. 46, 1991, 1-19.
    
    [35] Yulin Zhou and Boling Guo, Global solutions and there large-time behavior of Cauchy problem for equations of deep water type, J. Partial Diff. Eqs. 9, 1996, 1-41.
    
    [36] H. H. Chen and D.J. Kaup, Linear stability of internal waves in a deep stratified fluid, Phys. Fluids, 23, 1980, 235-238.
    
    [37] D. P. Bennett, R. W. Brown, S. E. Stansfield, J. D. Stroughair and J. L. Bona, The stability of internal solitary waves, Math. Proc. Camb. Phil. Soc. 94, 1983, 351-379.
    
    [38] J. P. Albert, J. L. Bona and D. B. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves, Physica 24D, 1987, 343-366.
    
    [39] J. A. Pava, Existence and stability of solitary wave solution of the Benjamin Equation, J. Diff. Eqs. 152, 1999, 136-159.
    
    [40] Guo Boling and Zhaohui Huo, The well-posedness of the Korteweg-de Vries-Benjamin-Ono equation, J. Math. Anal. Appl. 295, 2004, 444-458.
    
    [41] A.P. Calderon, Commutator of singular integral operators, Pro. Nat. Acad. Sci. U.S.A., 53, 1965, 1092-1099.
    
    [42] D. Luenberger, Optimization by vector space methods, Wileyand Sons, New York, 1969.
    
    [43] Yang Hui, Orbital stability of solitary waves to Benjamin-Ono equation J. Math. Study, 39(3), 2006, 240-245.
    
    [44] T. Kato, Perturbation theory for linear operators, 2nd ed., springer, Berlin, 1979.
    
    [45] Guoboling and Wu Yaping , Orbital stability of solitary waves for the nonlinear derivative Schrodinger equation, J. D. E., 123(1), 1995, 35-55.
    
    [46] Guo Boling and Chenlin, orbital stability of solitary waves of coupled KdV equations, Diff. Int. Equ., 12(3), 1999, 295-308.
    
    [47] Guo Boling and Chen Lin, orbital stability of solitary waves of the long waveshort wave resonance equations, Math. Meth. Aappl. Sci., 21, 1998, 883-894.
    
    [48] Chen Lin, Stability and instability of solitary waves for generalized symmetric regularized-long-wave equation, phys. D, 118, 1998, 53-68.
    
    [49] V. E. Zakharov, The Collopse of Langmuir Waves, Soviet. Phys., JETP, 35, 1972, 908-914.
    
    [50] G. J. Morales and Y. C. Lee, Spiky turbulence generated by a propagating electrostatic wave of finite spatial extent, Phys. Fluids, 19, 1976, 690-704.
    
    [51] G. J. Morales and Y. C. Lee, Generation of density cavities and localized electric fields in a nonuniform plasma, Phys. Fluids, 20, 1977, 1135-1147.
    
    [52] V.G. Makhankov, Dynamics of classical solitons. Phys. Reports, 35, 1978, 1-125.
    
    [53]郭柏灵,Zakharov方程周期边界条件一类有限差分格式的收敛性和稳 定性,《计算数学》,第4期,365-372.
    
    [54]郭柏灵,沈隆均,Zakharov 方程周期初值问题整体古典解的存在唯一 性,《应用数学学报》,第5卷第3期,310-324.
    
    [55] Wu Yaping, Orbital stability of solitary waves of Zakharov system, J.Math. Phys., 35, 1995, 2413-2422.
    
    [56] Guo Buoling, The initial-boundary value problem for generalized Zakharov system, Applied Mathmetics-A Journal of Chinese University, 9(1), 1994, 1-12.
    
    [57] Guo Boling, Global smooth solutions for the system of Zakharov equations in nonhomogeneous medium, Notheastern Math. J., 6(4), 1990, 379-390.
    
    [58] Guo Boling, On global solution for a class of systems of multi-dimensional generalized Zakharov type equation, Acta. Math. Appl. Sinica, 10(4), 1994, 419-433.
    
    [59] I. Flahaut, Attractor for the dissipative Zakharov system, Nonlinear Analysis , Theory, Method & Applications, 16, 1991, 599-633.
    
    [60] J. Bourgain and J. Colliander, On wellposedness of the Zakharove system, Internat. math. Res. Noticed, 11, 1996, 515-546.
    
    [61] J. Ginibre, Y. Tsussumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151, 1997, 384-436.
    
    [62] F. Merle, Blow-up result of viriel type for Zakharov equations, Comm. Math., 175, 1996, 433-455.
    
    [63] T. Ozawa ang Y. Tsutsum, Existence and smoothing effect of solutions for the Zakharov equations, Publ. Res. Inst. Math. Sci., 28, 1992, 329-361.
    
    [64] Vincent Masselin, A result on the blow-up for the Zakharov system in dimension 3, SIAM J. Math. Anal., 33(2), 2001, 440-447.
    
    [65] Yang Hui, Orbital stability of solitary waves for generalized Zakharov system J. Partial Differential Eqs., 20(3), 2007, 252 - 264.
    
    [66] You Shujun, The posedness and blowup of solutions on the periodic initial value problem for generalized Zakharov equations, Nonlinearity, preprint.
    
    [67] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun.pure appl. Math., 39, 1986, 51-68.
    
    [68] J. Garcia-Cuerva , An extrapolation theorem in the theory of A_p weights, Proc. Amer. Math. Soc, 87, 1983, 422-426.
    
    [69] J. A. Krommes, Statistical plasma physics in a strong magnetic field: paradigms and problems, Mathematical and physical theory of turbulence, Chapman & Hall/CRC, Edited by John Cannon and Bhimsen Shivamoggi, 2006, 68-88.
    
    [70] S. I. Braginskii, Transport process in a plasma. In M.N. Leontovich, Editor, Reviews of Plasma Physics, Consultants Bureau, New York, Vol. I, 1965, 205-311.
    
    [71] E. W. Laedke and K. H. Spatschek, Drift vortices in inhomogeneous plasma: Stationary states and stability criteria, Phys. Fluids, 31(6), 1988, 1492-1498.
    
    [72]刘式适,刘式达,谭本馗著,非线性大气动力学,国防工业出版社,北 京,1996.
    
    [73] V. I. Petviashvili , Red spot of Jupiter and the drift soliton in a plasma, JETP Lett, 1980, 32, 619-22.
    
    [74] V. I. Petviashvili and O. A. Pokhotelov, Solitary vortices in plasma, The NASA Astrophysics Data System, 1986, 12, 1127-44.
    
    [75] J. Nycander, Stationary drift vortices with large amplitude Phys. Fuilds B, 1991, 3, 931-37.
    
    [76] J. D. Meiss and W. Horton, Solitary drift waves in the presence of magnetic shear Phys. Fluids, 1983, 26, 990-97.
    
    [77] J. A. Crotinger and T. H. Dupree, Trapped structure in drift wave turbulence Phys. Fuilds B, 1992, 4, 2854-70.
    
    [78] A. Hasegawa and K. Mima, Pseudo-Three-dimensional turbulence in magnetized nonuniform plasma, Phys. Fluids, 1978, 21, 87-92.
    
    [79] A. Hasegawa and G. C. Maclennan, Nonlinear behavior and turbulence spectra of drift waves and Rossby, Phys. Fluids, 1979, 22(11), 2122-2129..
    
    [80] H. O. Akerstedt, J. Nycander and V. P. Pavlenko, Three-dimensional stability of drift vortices, Phys. Plasmas, 1996, 3, 160-167.
    
    [81] E. W. Laedke and K. H. Spatschek, Stability of Two-Dimensional Monopolies in Plasmas, Phys. Lett. A 113, 1985, 259-262.
    
    [82] J. G. Charney, Geophys., Public. Kosjones Nors. Videnshap. Akad. Oslo, 1948, 17, 3.
    
    [83] S. V. Bulanov, T. Zh. Esirkepov, M. Lontano and F. Pegoraro, The stability of single and double vortex films in the framework of the HM equation, Plasma Phy. Rep., 1997, 23(8), 660-669.
    
    [84] R. Crauer, An energy estimate for a perturbed HM equation, nonlinearity, 1998, 11, 659-666.
    
    [85] T. Iwayama, T. Watanabe and T. G. Shepherd, infrared Dynamics of Decaying Two-Dimensional Turbulence Governed by the Charney-HM equation, J. Phy. Japan 2001, 70(2), 376-386.
    
    [86] N. Kukharkinand Orszag, Generation and structure of Rossby vortices in rotating fluiss, Phy. Rev. E, 1996, 45(5), R4524-R4527.
    
    [87] H. Ertel, Ein neuer hydrodynamische wirbdsatz. Meteorology Zeitschr, Braunschweig,1942, 277-281. (in German)
    
    [88] J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, 1979, 38-42.
    
    [89] Zhou Yulin, Guo Boling and Zhang Linghai, Periodic boundary problem and Cauchy problem for the fluid dynamic equation in geophysics, J. Partial Diff. Eqs, 1993, 6, 173-192.
    
    [90] Joseph Pedlosky, Geophysical fluid dynamics, Springer-Verlag, 2nd edition, 1987.
    
    [91] K. H. Spatschek, W. Zhang, V. Naulin and A. Muhm, Self-organization of nonlinear waves and vortices in driven and damped systems, Nonlinear Dispersive Waves, L. Debhnath, Ed., World Scientific, Singapore, 1992, 507-538.
    
    [92] Guo Boling and Han Yongqian, Existent and unique global solution of the HM equation, J. Math. Phys., 2004, 45, 1639-1647.
    
    [93] Zhang Ruifieng and Guo Boling, Global attractor for HM equation, Applied Mathematics and Mechanics, 2006, 27(5), 567-574.
    
    [94] Zhang Ruifeng and Guo Boling, Dynamical behavior for the three-dimensional generalized HM equations, J. Math. Phys., 2007, 48, 012703.
    
    [95] A. J. Majida and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, 2002.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.