磁尾等离子体团的观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体团是行星际和地球磁层中一种常见并十分重要的物理现象。等离子体团的形成与宇宙等离子体的爆发性过程有紧密联系。在行星际空间中等离子体团表现为行星际磁云,在磁层中表现为磁层顶和磁尾的磁通量绳和磁岛。磁层物理中一个重要的方面是研究磁尾重联,亚暴动力学以及与此相联系而产生的各种等离子体结构——磁岛,磁通量绳等等。卫星在磁尾观测的磁岛和磁通量绳信号近似,即先南后北或者先北后南的磁场信号,磁岛和磁通量绳的区别在于在磁通量绳内部有明显的强核心场的存在,而在磁岛中心磁场强度几乎为零。
     过去的研究表明,等离子体团存在于由近磁尾到远磁尾的广阔范围内,但研究重点集中于中远磁尾等离子体团。近来随着近地空间探测卫星如ClusterⅡ,双星计划的发射,近磁尾的等离子体团研究逐渐引起人们的重视,本文就是利用双星计划和ClusterⅡ的数据对近地磁尾等离子体团的观测特征,内部磁场和粒子结构,产生机制,及其对应的行星际磁场条件,与磁层亚暴的关系进行了研究,主要研究工作和结果在以下三方面:
     1分析了2004年7月至9月双星计划TC-1卫星在磁尾的磁场数据,发现近地磁尾存在等离子体团(plasmoid),首次给出了TC-1对近地( X >-13Re处)等离子体团的观测结果。根据等离子体团内磁场结构的不同,我们分析两个事件:9月14日磁环(magnetic loop )型的等离子体团具有闭合磁力线结构,8月6日磁通量绳(magnetic flux rope)型的等离子体团具有开放磁力线结构。两个事件与背景流场相比都具有高速地向速度。粒子可以沿着开放的磁力线从磁通量绳逃逸出来,而磁环由于其闭合磁力线结构可以束缚住粒子。TC-1对磁尾地向等离子体团的观测为多X线重联在磁尾的发生提供了证据并表明重联地点应该位于X <-10Re的磁层尾部区域。
     2我们利用Grad-Shafranov方法研究了近地磁尾X=-14.75Re处的地向运动磁通量绳的内部磁场结构。磁通量绳的不变轴位于晨昏方向,垂直于不变轴的横截面上磁场分布被重构出来,沿着不变轴方向有强核心场存在。对应于这一事件的AE指数表明通量绳被观测到前后没有磁层亚暴发生。最近的一些研究表明等离子体片中的磁通量绳形成可以用多X线重联来解释。我们的计算结果显示横截面上磁场分布为非轴对称圆环结构,这一分布结构确实需要由多X线重联来产生。所以我们的结果为磁尾多X线重联的发生提供了进一步的证据。
     3收集了Cluster卫星2001年—2005年间观测到的磁尾磁通量绳事件,并对磁通量绳(magnetic flux rope)形成及其内部磁场结构与行星际磁场(IMF)的关系作了统计研究。考虑磁通量绳被观测到时行星际磁场条件,在所有73个通量绳事件中,IMF By分量在IMF中占有主导地位的事件有80%,78%的事件具有与IMF By相同方向的核心场。IMF通过在磁层顶与地球磁场相互作用改变南北等离子体片内磁场相对方向,形成有利于磁通量绳形成的磁场位形,并且IMF By的方向对通量绳内部核心场的方向具有决定性影响。从统计结果来看,磁通量绳的形成并不会依赖于IMF Bz分量的方向。
     论文具体安排如下:第一章对地球磁层及其结构做了简要介绍,由于本文研究内容与磁层亚暴和多X线重联有密切关系,在第二章,第三章对亚暴和多X线重联进行简要介绍,第四章对磁尾等离子团的研究做了回顾和总结,第五、六、七章详细介绍作者自己的工作,第八章是对所做工作的总结和对未来工作的展望。
The plasmoid is a common and very important physical phenomenon which occurs throughout the earth’s magnetosphere and interplanetary space. It is the important feature in the various kinds of eruptive process in cosmic plasmas. In the interplanetary space the plasmoid appears as the magnetic cloud, and it appears as the magnetic island or magnetic flux rope at the magnetopause and the magnetotail. One important subject of the magnetosphere physics is the magnetic reconnection related to the substorm and the resulted plasma structure such as magnetic island and magnetic flux rope at the magnetotail. As the satellite crosses the magnetic island and magnetic flux rope the similar magnetic signals of south-then-north or north-then-south are observed. The different signal observed by the satellite is that there is the strong core field in the center of the flux rope but the field in the center of the magnetic island is nearly 0.
     The early studies indicate the plasmoids exist at the wide range from the near-earth magnetotail to the distant magnetotail. The more attention has been paid to plasmoids in the distant magnetotail at X<-60 Re .Now the launch of more and more satellites covering other regions of the magnetotail, such as Geotail, Cluster and Double Star, has allowed observation of plasmoids in the near-Earth magnetotail, at X>-30Re. Using the data from Cluster and Double Star we study the plasmoids at the near tail and our contributions are as follows:
     1 We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find plasmoids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids in the magnetotail at X>-13 Re. According to the difference of the magnetic field structure in plasmoids, we choose two typical cases for our study: the magnetic flux rope on 6 August has the open magnetic field and the magnetic loop on 14 September has the closed magnetic field. Both of the cases are associated with the high speed earthward flow and the magnetic loop is related to a strong substorm. The ions can escape from the magnetic flux rope along its open field line, but the case of the closed magnetic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate the multiple X-line magnetic reconnection occurs beyond the distance of X=-10 Re from the earth.
     2 We investigate the magnetic structure of a small earthward-moving flux rope observed by Cluster in the near-earth plasma sheet through application of the Grad-Shafranov (GS) technique to reconstruct the transverse magnetic field distribution perpendicular to the flux rope axis at X=-14.75 Re. We find that the principal axis of the flux rope lies approximately along the dawn-dusk direction and that the diameter of the flux rope is about 1.5 Re. There is a strong dusk-ward core magnetic field in the center of the flux rope. According to the AE index, there is no obvious substorm associated with the magnetic flux rope. Recent studies indicate that the formation of the flux rope in the plasma sheet can be understood in terms of simultaneous reconnection at multiple X-line points in the near-tail. The distribution of the transverse magnetic field on the cross section is the asymmetric circles, which requires that the reconnections at multiple X-line points occur. So our results also provide additional evidence for the occurrence of multiple-X line reconnection in the magnetotail.
     3 The magnetic flux ropes observed by Cluster from 2001 to 2005 in the magnetotail are surveyed in this work. We have performed a statistic study on the relationship between the formation of the magnetic flux ropes and interplanetary magnetic field (IMF). Considering the IMF condition when the flux ropes are observed, for the 80% of the total 73 flux ropes cases, there are dominant By in IMF accordingly, while in the 78% of all cases there are core fields with the same direction as the IMF By. It is possible that IMF can change the relative direction of the magnetic fields in the northern and southern plasma sheet to form the magnetic topology favoring the formation of the magnetic flux rope. IMF also has a decisive effect on the directions of the core fields in the flux ropes. As indicated in these statistic results, the formation of the flux ropes in the magnetotail does not depend on the direction of the IMF Bz.
     We arrange the thesis as follows: A brief introduction of the magnetosphere is presented in Chapter 1. Because our work has the close relation with magnetosphere substorm and multiple-X line reconnection, we introduce them briefly in Chapter 2 and Chapter 3. Chapter 4 gives a review of the early study of the plasmoid and a summary of the nowaday study. From Chapter 5 to Chapter 7 we introduce our works in detail. The summary of our work and prospects are given in the last chapter.
引文
W. Baumjohann and R. A. Treumann,《Basic Space Plasma Physics》, Imprerial College Press, 1986.
    刘振兴,濮祖荫等,《太空物理学》,哈尔滨工业大学出版社,2006
    叶永煊,吕保维,《空间物理学进展》,四川科学技术出版社,1988
    吕保维,叶永煊,刘振兴,《空间物理学进展(第三卷)》,科学出版社,2001
    王水,李罗权,《磁场重联》,安徽教育出版社,1999
    Gold, T., Origin of the radiation near the earth discovered by means of satellites, Nature, 1959, 183:355.
    Chapman S and Ferraro V C A. A new theory of magnetic storms, Part 1, The initial phase, Terr. Magn. Atmosph. Elec., 1931, 36(77): 171.
    Storey, L.R.O., An investigation of whistling atmospherics, Phil. Trans. Roy. Soc., 1953, A246:113.
    Van Allen, J.A., The geomagnetically-trapped corpuscular radiation, J. Geophys. Res., 1959, 64:1683.
    Chaill L. J. and Patel V. L. The boundary of the geomagnetic field, Planet. Space Sci. 1967, 15: 997.
    Axford W. I. and Hines C. O. A unifing theory of high-latitude geophysical phenimana and geomagnetic storms. Can. J. Phys. 1961, 39: 1433.
    Haerendel G. and Paschmann G. Interaction of the solar wind with the dayside magnetopause,in Magnetospheric Plasma Physics. ed by Nishida A., okyo: Center for Academic Publications 1982, p.49.
    Russell C.T. The structure of the magnetopause, in Geophys. Mono. 90. Physics of the Magnetopause. ed. by Song P. Sonnerup B. U. O. and Thomsen M. F. Washington, DC., American Geophysical Union, 1995, p.81-98.
    Liu Z X., Chen T, Shen C, and Pu Z.Y, Transient reconnection at themagnetopause boundary Layer, in Proceedings of the First General Assembly of Asian Plasma and Fusion Association Joint with the Third Asia Pacific plasma Theory Conference, in Chinese Physics Letters, 1999, ISSN 0256-307X:187-193.
    Akasufu, S.-I., Physics of Magnetspheric Substorm, D. Reidel Pub. Co., Dordrecht, Holland, 1977.
    Rostoker, G., S.-I. Akasofu, J. Foster, R.A. Greenwald, Y. Kamide, K. Kawasaki, A.T.Y. lui,R.L. McPherron, and C.T. Russell, Magnetospheric substorms-definition and signatures, J. Geophys. Res., 1980, 85: 1663.
    Rostoker, G., S.-I. Akasofu, W. Baumjohann, Y. Kamide, and P. L McPhrron, The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms, Space Sci. Rev., 1987,46:93.
    McPherron, R.L., Magnetospheric substorms, Review of Geophysics and Space Physics, 1979, 17: 657.
    McPherron, R.L., C.T. Russell, and M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968. 9. Phenomenological model for substorms, J. Geophys. Res., 1973, 78: 3133.
    Hones, E.W., Jr., Transient Phenomena in the magnetotail and their relation to substorms, Space Sci. Rev., 1979, 23: 393.
    Baker, D.N., T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R.L. McPherron, Neutral line model of substorms: Past results and present view, J. Geophys. Res., 1996, 101:12975.
    Angelopoulos,V., W. Baumjomhann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R.Pellat, R.J. Walker, H. Luhr, and G. Paschmann, Bursty bulk lows in the inner central plasma sheet, J. Geophys. Res., 1972, 87: 4027.
    Birn and Hesse, Details of current disruption and diversion in simulations of magnetotail dynamics, J. Geophys. Res., 1996, 101:15345.
    Shiokawa, K., W. Baumjohann, G. Haerendel, Braking of high-speed flowsin the near-Earth tail, submitted to Geophys. Res. Lett., 1997, 24: 1179.
    Kan, J. R., L. Zhu, and S.-I. Akasofu, A theory of substorm: Onset and sub-sidence, J. Geophys. Res., 1988, 93: 5624.
    Lui, A.T.Y., Current disruption in the Earth's magnetosphere: Observation and models, J. Geophys. Res., 1996, 101: 13067.
    Roux, A., S. Perraut, P. Robert, A. Morane, P. Pedersen, A. Korth, G. Kremser, B. Aparicio, D. Rodgers, R. Pellinen, Plasma sheet instability related to the westward traveling surge, J. Geophys. Res., 1991, 96: 17697.
    濮祖荫,洪明华,王宪民等,亚暴膨胀相近磁尾位形不稳定性模型Ι: 近磁尾位形不稳定性,地球物理学报,1996, 39: 441.
    Pu, Z. Y., A. Korth, Z. X. Chen, R.H.W. Friedel, Q.G. Zong, X.M. Wang, M.H. Hong, S.Y. Fu, Z.X.Liu, and T.I. Pulkkinen, MHD drift instability near the inner edge of the NECS and its application to substorm onset, J. Geophys. Res., 1997, 102: 14397.
    Dungey,J.M., Interplanetary magnetic field and the aural zones,Phys. Rev.Lett.,6,47,1961
    Sweet, P. A., The neutral point theory of solar flares, in“Electromagnetic pheomena in Cosmical Physics”, Ed. By B. Lehnert,Cambridge Univ. Press,Lodon,123,1958
    Parker,E. N., Sweet’s mechanism for merging magnetic field in conducting fluids,J. Geophys. Res., 62, 509,1957
    Petscheck,H.E.,Magnetic field annihilation, in”ASS-NASA Symposium on the Physics of Solar Flares”, NASA Spec. Pub.SP-50,425,1964
    Paschmann,G, Sonnerup, B. U. O., et al., Plasma acceleration at the earth’s magnetopause : Evidence for reconnection,Nature,282,243,1979.
    Sonnerup, B. U. O, Paschmann,G. et al, Evidence for magnetic field reconnection at the earth’s magnetopause, J. Geophys. Res., 86,10049,1981.
    Russel,C.T. and Elphic, R. C., ISEE observations of flux transfer events atthe dayside magnetopause,Geophys.Res. Lett., 6, 33,1979.
    Lee,L.C. and Fu. Z. F., A theory of magnetic flux transfer at the earth’s magnetopause, Geophys.Res. Lett., 12, 105, 1985
    FU,Z.F. and Lee,L.C. ,Simulation of multiple X line reconnection at the dayside magnetopause, Geophys Res Lett.,12,271,1985
    FU,Z.F. and Lee,L.C. ,Multiple X line reconnection,2. The dynamics, J Geophys Res., 91, 13373, 1986
    Baker D N et al.1987. Averrage plasma and magnetic field variations in the distant magnetotail associated with near-earth Substorm defects. J Geophys Res, 92: 71-83
    Fairfield D H et al. 1989. Substorms, plasmoids, fluxropes and magtetotail flux loss on March 25 1983: CDAW 8, J Geophys Tes, 94: 15135-15152
    Hones Jr E W.1979. Structure of the magnetotail at 220 Re and its responces to geomagnetic activity, Geophys Res Lett.11: 5-7
    Moldwin M B and Hughes W. 1993. Geomagnetic substorm association of plasmoids J Geophys Res, 98: 81-88
    Nishida A et al. 1986. Quasi-stagnant plasmoid in the middle tail : A new pre-expansion phase phenomenon. J Geophys Res, 91, 4245-4255
    Richardson I G et al. 1987. Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: Properties of plasmoids and the post plasmoid plasma sheet. J Geophys Res, 92, 9997-10013.
    Richardson I and Cowley S W H. 1987. Plasmoid associated energetic ion bursts in the deep geomagnetic tail. In: T Y Lui, editor, magnetotail Physics, pp. 251-256, AGU, Baltomore and London
    Scholer M.1986. A review of the Isee-3 geotail superthermal ion and electron results.Planet Space Sci, 34: 915-930.
    Scholer M et al.1984. Fast flowing plasma structure in the distant magnetotail. J Goephys Res, 89: 6717-6727.
    Scholer M et al.1984.Charactristics of plasmoidlike structures in the geomagnetic tail. J Geophys Res, 89: 8872-8876.
    Slavin J A et al.1989. CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment.J Geophys Res,94: 15153-15446.
    Tsututani B T et al.1984.Plasmasheet magnetic fields in the distant tail. Geophys Res Lett, 11: 1062-1065.
    Kivelson M G et al. 1993. The Galileo earth encounter: magnetometer and allied measurements.J Geophys Res, 98: 11299-11318
    Frank LA et al 1994. Imagers for the magnetosphere, aurora and plasmasphere. Optical engineering, 33(2), 391-408.
    Frank LA et al 1994. Ion velocity distribution in the vicinity if the current sheet in earth’s distant magnetotail. In : JR Kan, J D Graven,and SI Akasofu,editors, Procddeingd of International Conference on Substorms 2, Fairbanks,U S A ,March 7-11,pp.99-104,Univ of Alaska,Faitbanks
    Frank LA et al 1996. Plasma velocity distributions in the near-earth plasma sheet: A first look with the Geotail spacecraft. J Geophys Res, 101:10627-10637
    Lui A T Y et al.1988. A case study of magnetotail current sheet disruption and diversion. Geophys Res Lett, 15: 721-724
    Lui A T Y et al.1994. A preliminary assessment of energetic ion species in fluxrope /plasmoids in the distant tail.Geophys Res Lett, 21: 3019-3022
    Machida S et al.1994.Plasma distribution functions in the earth’s magnetotail (Xgsm-42 re)at the time of a magnetosphereic substorm: Geotail/lep observation. Geophys Res Lett, 21, 1027-1030
    Machida S et al.1994. Geotail low enetgy particle and magnetic field observations if a plasmoid at Xgsm=-142 Re.Geophys Res Lett, 21: 2295-2298.
    Nakai T et al. 1994. Initial Geotail survey of magnetic substorm signatures in the magnetotail.Geophys Res Lett, 21:2991-2994
    Zong Q G et al. 1996 Geotail observation of energetic ion species and magnetic field in plasmoid-like structures. in :Procddeings if the Third International Conferences on Substorms(ICS-3),619-624, Eur SpaceAgency Publ,SP-389,ESA
    Zong Q G abd Wilken B.1997, Energetic oxygen ion bursts in the distant magnetotail. In : A T Y Lui, editor,MRAT Proceedings of the COSPER Series,Elsevier Science, United Kingdom
    Hones Jr E W.1979. Transient phnomena in the magnetotail at 220 Re and its response to geomagnetic activity. Geophys Res Lett, 11: 5-7
    Hones Jr E W. and McPherron R L.1994.Eviedence supporting the near-earth neutral line model of substorms: A reminder and update , in J R Kan, J D Craven and S I Akasofu,editors, Proceedings of International Conference in Substorms 2 ,pp.167-173,Univ of Alaska,Fairbanks
    Moldwin M B and Hughes W. 1992. On the formatin and evolution of plasmamoids : A survey of ISEE 3 geotail data. J Geophys Res. 97,: 19259-19282
    Moldwin M B and Hughes W 1994. Observations of earth and tailward propagating flux rope plasmoids: Expanding the plasmoid model of geomagnetic substorms.J Geophys Res., 99: 81-88
    Moldwin M B and Hughes W. 1994. Expanding the plasmoid model of geomagnetic substorms, in J R kan and S I Akasofu,editors,Sustorms 2 –Proceeding of the Second International Conference on Substorms, pp.541-544,Geophys insti,Fairbanks,Alaska
    Richardson I G et al.1989. ISEE3 observations during the CDAW 8 interval : Csae studies of the distant geomagnetic tail covering a wide range of geomagnetic activities. J Geophysics Res, 94:15189-15220
    Zong Q G et al. 1997. Geotail observation of energetic ion soecics and magnetic field in plasmoid-like structures in the course of an isolated substorm event. J Geophys Res, 102: 11409-11428
    Lepping R P and Behannon K W.1980. Magnetic field directional discontinuities: 1., minimum variance errors. J Geophys Res, 85: 4695-4703
    Mukai T et al .1994. Geotail observation of cold ion streams in the mediumdistance magnetotail lobe in the course of a substorm.Geophys Res Lett, 21: 1023-1026
    Slavin J A et al. 1993. ISEE 3 observations of traveling compression regions in the earth’s magnetotail . J Geophys Res, 98: 15425-15446
    Zong Q G, Fritz T A, Pu Z Y, et al. Cluster observations of earthward flowing plasmoid in the tail. Geophys Res Lett, 2004, 31: L18803 doi: 10.1029/ 2004GL020692
    Hughes, W. J., Sibeck, D.: On the 3-dimensional structure of plasmoid. Geophys Res Lett, 14: 636-639, 1987.
    Sibeck D G et al. 1984. Magnetotail fluxrope. Geophys Res Lett, 11: 1090-1093
    Lepping R P et al. 1995. Cross-tail magnetic flux ropes as observed by the geotail spacecraft. Geophys Res Lett, 22: 1193-1196
    Slavin J A, Lepping R P, Gjerloev J et al. Geotail observations of magnetic flux ropes in the plasma sheet. J Geophys Res, 2003, 108(A1): 1015 doi: 10.1029/ 2002JA009557
    Schindler, K..: A theory of the substorm mechanism, J. Geophys. Res., 79, 2803-2810, 1974.
    Slavin, J. A., Lepping, R. P., Gjerloev, J. et al.: Cluster electric current density measurements within a magnetic flux rope in the plasma sheet, Geophys. Res. Lett., 30(7), 1362, 2003b.
    Liu Z X, Escoubet C P, Pu Z Y, et al. The Double Star mission. Ann. Geophys, 2005, 23:2707-2712
    Carr C, Brown P, Zhang T L, et al. The Double Star magnetic fieldinvestigation: instrument design, performance and highlights ofthe first year’s observations. Ann Geophys, 2005, 23:2713-2732
    R′eme H, Dandouras I, Aoustin C, et al. The HIA instrument on board the Tan Ce 1 Double Starnear-equatorial spacecraft and its first results. Ann Geophys, 2005, 23: 2757-2774
    Nagai T, Fujimoto M, Saito Y, et al. Structure and Dynamics of magneticreconnection for substorm onsets with GEOTAIL observations. J Geophys Res, 1998, 103: 4419-4440
    Nagai T, Shinohara I, Fujimoto M, et al. Geotail observations of the Hall current system: Evidence of magnetic reconnection in the magnetotail. J Geophys Res, 2001, 106: 25929-25949
    Deng X H, Matsumoto H, Kojima H, et al. Geotail encounter with reconnection diffusion region in the Earth's magnetotail: Evidence of multiple X lines collisionless reconnection? J Geophys Res, 2004, 109(A5): A05206
    Cowley S W H. Magnetospheric asymmetries associated with the Y component of the IMF, Planet Space Sci, 1981, 29: 79-96
    Eastwood J P, Sibeck D G, Slavin J A, et al. Observations of multiple X-line structure in the Earth’s magnetotail current sheet: A Cluster case study. Geophys Res Lett, 2005, 32:L11105 doi: 10.1029/2005GL022509
    Lee L C. A review of magnetic reconnection: MHD models, in Physics of the Magnetopause. In: Song P, Sonnerup B U O, Thomsen M F, eds. Geophys Monogr Ser, vol. 90. Washington D C: AGU, 139-153
    Shen, C., Li, X., Dunlop, M., Shi, Q. Q., Liu, Z. X., Lucek, E., and Chen, Z. Q.: Magnetic Field Rotation Analysis and the Applications, J. Geophys. Res., 112(A6), A06211, doi:10.1029/2005JA011584, 2007.
    Elphic, R. C. and Russell, C. T.: Magnetic flux ropes in the Venus ionosphere: Observations and models, J. Geophys. Res., 88, 58–72, 1983.
    Hau, L.-N., and B. U. O¨. Sonnerup (1999), Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data, J. Geophys. Res., 104, 6899– 6917.
    Hasegawa, H., Sonnerup, B. U. O¨, Dunlop, M. W., et al.: Reconstruction of two- dimensional magnetopause structures from Cluster observations: verification of method, Ann. Geophys., 22, 1251–1266, 2004.
    Hasegawa, H., Sonnerup, B. U. O¨., Klecker, B., Paschmann,G., Dunlop, M. W. and Re`me, H.:Optimal reconstruction of magnetopause structuresfrom Cluster, Ann. Geophys., 23, 973– 982,2005.
    Hu, Q., and B. U. O¨. Sonnerup (2002), Reconstruction of magnetic clouds in the solar wind: Orientations and configurations, J. Geophys. Res., 107(A7), 1142, doi:10.1029/2001JA000293.
    Sonnerup, B. U. O¨., H. Hasegawa, and G. Paschmann (2004), Anatomy of a flux transfer event seen by Cluster, Geophys. Res. Lett., 31, L11803, doi: 10.1029/2004GL020134.
    deHoffmann, F., and E. Teller (1950), Magnetohydrodynamic shocks, Phys.Rev. A,80, 692–703.
    Khrabrov, A. V., and B. U. O¨. Sonnerup (1998), DeHoffmann-Teller analysis, in Analysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. W. Daly, chap. 9, pp. 221– 248, Int. Space Sci. Inst., Bern, Switzerland.
    Sonnerup, B. U. O¨. and Cahill, Jr., L. J., Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171, 1967.
    Balogh, A., et al. (1997), The cluster magnetic field investigation, Space Sci. Rev., 79, 65– 91.
    Reme, H., et al. (1997), The cluster ion spectrometry (CIS) experiment, Space Sci. Rev., 79, 303– 350.
    Johnstone A. D., Alsop, C., Burge, S., et al.: Peace: A Plasma electron and current experiment, Space Sci. Rev., 79, 351–398, 1997.
    Baker D N, Pulkkinen T I, Angelopoulos V, et al. Neutral line model of substorm: Past results and present view. J Geophys Res, 1996, 101: 12975-130
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.