一种新型多电极插入式电磁流量传感器及其基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统电磁流量计在大管径流量测量应用中存在制造和安装成本过高的问题,而插入式电磁流量计结构特点使得它在大管径流量测量中有制造与安装成本低,易于拆卸与维修,一种规格的传感器可用于多种口径管道等突出优点,因而深受用户的欢迎。但也存在仪表精度受流体流场特性影响大,现场需有较长直管段长度等问题。因此,研究提高插入式电磁流量计的性能一直是流量检测领域中重要的课题之一。
     本文主要进行多电极测量的插入式电磁流量传感器基础研究。插入式电磁流量传感器是以电磁感应为基础和以测量流场分布为前提的流量传感器,权重函数分布、电磁场分布和流场分布对其测量结果的影响是至关重要的。因而必须从流场分布、权重函数和电磁场分布三个方面来研究插入式电磁流量传感器。同时,计算流体力学CFD和有限元计算技术的发展为插入式电磁流量传感器的研究提供了崭新途径,扩展了新的空间和新的方法。利用CFD方法研究传感器几何物理模型,以数值仿真方法分析流场变化对插入式电磁流量传感器的相关影响。总结了传感器测量杆在管道流场中三个特殊的高流速区的特点,为消除流场变化对传感器的影响,提出了一种新型的多电极插入式电磁流量传感器的方案,采用多电极的多点信息测量方法,为解决插入式传感器特性对流场敏感的问题提供了新的途径。
     本论文的整个工作围绕着新型传感器的关键技术展开研究。首先,叙述总结了插入式电磁流量计测量方面的相关理论基础及研究方法。分析了现有插入式电磁流量计传感器的基本测量方程及测量权重函数、现有插入式电磁流量传感器工作流场的传统Nikuradse模型等经验模型和一般插入式电磁流量计的测量模型。从麦克斯韦方程组的有限元分析方法入手,介绍插入式电磁流量传感器电磁场模型、分析工具和研究方法。对基于CFD的流场数值模拟的方法进行了详细的介绍。详细分析了纳维-斯托克斯方程(简称N-S方程)等基本控制方程、雷诺时均方程及其标准的k-ε模型、大涡模拟方法和壁面函数与近壁模型。并对控制方程的常用求解方法进行了讨论。
     其次,进行了CFD并行计算平台建设、管道流场分布仿真、钝体绕流仿真和插入式电磁流量传感器的流场仿真等四个方面的研究。在研究并行计算环境的基础上成功搭建了一套微机并行计算集群系统,并对并行计算平台的基本性能进行测试。对管道流场分布进行了仿真,给出了基于CFD模型圆管湍流仿真的流速分布,其与传统Nikuradse模型流速分布较好符合,并能更接近实际流场。钝体绕流仿真则给出了圆柱状、梯形发生体的旋涡产生、脱落的详细过程和发生机理。确定了钝体绕流产生涡街的本质及测量研究方法。进行了插入式电磁流量传感器的流场仿真,从圆柱状插入式电磁流量计传感器对流场影响的角度探讨插入式电磁流量计测量管道流场的方法,提出了用多对电极测量流速及其流场扰动,并给出了传感器测量杆周围的三个高流速特征区域。
     然后,从流场分布角度进行了多电极插入式电磁流量测量原理的研究分析,讨论了多插入式电磁流量传感器测量和多电极径流速计型插入式电磁流量测量的改进方法,提出了多电极插入式电磁流量传感器测量原理及解决方案。进行了传感器的结构设计及模型研究,建立了电极、流场和磁场的空间关系及其多电极对下的测量原理。同时给出了传感器多点测量的测量方程。论文使用matlab PDE工具的有限元分析方法,分析了普通电磁传感器权重函数、插入式电磁传感器权重函数和插入式电磁传感器工作磁场,在此基础上研究确定了多电极插入式电磁流量传感器的权重函数和磁场实现方案,从理论上确定了设计插入式电磁流量传感器最优工作磁场的方法。
     最后,为验证本文研究的可行性及实用性,设计制作了多电极插入式电磁流量传感器,并设计实现了信号转换器系统和相应的试验管道系统,在此基础上进行了多电极测量空间关系的试验,对试验数据结果进行分析。实验数据给出了传感器各对电极上的信号大小与流速呈线性关系,显示了三对电极上的信号特征符合三个流速特征区域的变化情况,验证了多电极传感器对流场分布和绕流信号的可测性,为最终降低流场分布对传感器测量的影响,以及提高插入式电磁流量计的性能提供了依据。
Traditional electromagnetic flowmeters have significant limitations for meas-uring the flow of large diameter pipelines, while the insertion electromagnetic flowmeter is becoming increasingly popular among users for the same usage with its hightlighting advantages of low price, small weight, easy disassembly and repair as well as good versatility. What’s more, one specification may be used in pipelines of various diameters. However, this kind of flowmeter has its own disadvantages, namely, it’s not only deeply affected by the fluid flow characteristics, but also need to have a longer length of straight pipe at the application scene. Therefore, develop-ing the key technology which improves the performance of insertion electromag-netic flowmeter has been an important subject in flow measurement.
     This dissertation mainly focuses on the basic study of insertion electromagnetic flow sensor with multi-electrode measurement. Insertion electromagnetic flow sen-sor is based on the electromagnetic induction and the fluid velocity distribution of measuring the flow field. And the distribution of weighting function and electro-magnetism field and flow field play a key role in affecting its measurement result. Thus, the research of insertion electromagnetic flow sensor must be carried out in the three perspectives which are the flow field, the electromagnetic field and the weight function. At present, the development of the finite element technique and CFD (Computational Fluid Dynamics) has provided the brand-new way for the re-search on insertion electromagnetic flow sensor, and has also expanded the new space and the new method for it. The method of CFD is used to study physical model of the sensor geometry, and the numerical simulation is employed to analyze the relevant effects of the flow field change upon the sensor. The characteristics of three special regions of high flow velocity around the sensor staff are summarized. To remove the effects of the flow field change upon the sensor, the feasible design of new Multi-electrode insertion electromagnetic flow sensor is proposed. Adopting technology of the Multi-electrode multi-point measurement, a new way to solve the problem of sensor which is deeply affected by the flow field is provided.
     This dissertation is carried out around the study of key technologies of the new type sensor. First of all, a summary of the theoretic basis related to the insertion electromagnetic flowmeter and the research methodology are introduced. The basic measurement equation and weighting function of existing insertion electromagnetic flow sensor are analyzed. The empirical models of flow field distribution like tradi-tional Nikuradse model and the measurement model of existing insertion electro-magnetic flowmeter are also analyzed. Based on the finite element method of Max-well equations, the electromagnetic field models of insertion electromagnetic flow-meter and the analysis tools and research methods are introduced. The CFD-based numerical simulation methods of flow field are introduced in detail. The governing equation such as Navier-Stokes (N-S) equation, the Reynolds time-averaged equa-tions and its standard k-εmodel, the Large eddy simulation (LES) method, the wall function and near wall model are analyzed in detail. And the methods of the com-monly used solution to the governing equation are discussed.
     Secondly, this thesis tries to study the four aspects as follows: the parallel computing platform of CFD, the pipeline flow field distribution simulation, the flow around a bluff body simulation and the insertion electromagnetism flow sensor's flow field simulation. Based on the research of parallel computing environment, the very excellent parallel computing cluster systems has been built, and the basic per-formance of the parallel computing platform is tested. Based on the CFD turbulent model, the simulation of flow field distribution gives out the velocity profile of pipeline, which is in line with the velocity profile of traditional Nikuradse model perfectly and closer to actual flow field. The Simulations of flow around bluff body show us the cylindrical shape, the trapezoidal body along with the detailed process and the occurrence mechanism which vortex produced and were shedding. The vor-tex production essence of flow around bluff body and the research methods of measurement flow are identified. The measurement methods are discussed from the angle of the simulation of flow field and the influence of cylindrical probe head to the flow field. And then, this dissertation proposes the plan of multi-electrode meas-uring flow velocity and the disturbance of flow. This dissertation also gives out the three characteristic regions of flow velocity around the sensor staff.
     Then, the dissertation analyzes the measurement principles from the perspec-tive of the flow field distribution. The improved measuring methods of the multi-insertion electromagnetic flowmeter and the multi-electrode radial tachometer type insertion electromagnetic flowmeter are discussed. The measurement principle and solution of multi-parameter and multi-electrode insertion electromagnetism flow sensor are proposed. The study gives the structural design of the sensor and its model study. And the spatial relations among electrode, flow field and magnetic field are established. And the principle of multi-electrodes measuring is given out. The measurement equation of sensor multi-point measuring is presented. Base on the matlab PDE tool's finite element method analysis, the weighting function of electromagnetic flowmeter sensor and insertion electromagnetic sensor are simu-lated and analyzed. The work magnetic field of insertion electromagnetic sensor are also simulated and analyzed. The research discusses the weighting function and the magnetic field design of the multi-electrode insertion electromagnetic flow sensor. Theoretically, the design method is determined for designing the most superior work magnetic field of insertion electromagnetic flow sensor.
     Finally, in order to verify the feasibility and practicality of the design, a multi-electrode insertion electromagnetic flow sensor and a signal converter system have been manufactured, and the corresponding experiment pipeline test system has also been set up. Based on this, the experiments on the spatial relations measuring with multi-electrode are carried out, and the results of test data are analyzed. The results confirm that the signal of multi-electrode sensor has linear relationship with the flow rate, and the signal characteristics of three pairs of electrodes are true re-flection of the changes of the three flow rate characteristic regions. The results also confirmed the measurability of multi-electrode sensor which measures the data of flow field distribution and the signal of flow around. All of these provide the basis to reduce the influence of flow field distribution in the sensor measuring finally, and to improve the insertion electromagnetic flowmeter's performance.
引文
【1】张学庆,流量测量的意义及流量传感器的现状[J].石油化工自动化, 2005 ,No.5, pp.99-101
    【2】苏文.浅谈流量计的发展及现状[J].中国仪器仪表,2002,No.6, pp.1-4,9
    【3】《中国计量》编辑部.计量综述[J].中国计量,2006,No.z1,pp.5-9
    【4】黄宝森等,电磁流量计,北京:原子能出版社[M],1981.10.
    【5】梁国伟,蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社,2002:262-287.
    【6】曾为民,李斌.电磁流量计综述.上海大学学报[J],1997,Vol.3,pp.267-270
    【7】蔡武昌,孙淮清,纪纲.流量测量方法和仪表选用[M].北京:化学工业出版社,2001:1-2, 20-25,143-153.
    【8】朱德祥,张廷柱,朱福茂.流量仪表原理和应用[M].上海:华东化工学院出版社,1992: 65-75.
    【9】纪纲.流量测量仪表应用技巧[M].北京:化学工业出版社,2003: 3-6.
    【10】Tavoularis S. Measurement in Fluid Mechanics[M]. Cambridge: Cambridge University Press, 2005.
    【11】Shercliff. J. A. The Theory of Electro-magnetic Flow Measurement[M]. Cambridge Univer-sity Press, 1962.
    【12】蔡武昌,马中元,瞿国芳.电磁流量计[M].中国石化出版社.2004.3
    【13】美国ARC咨询公司,中国电磁流量计市场动向调查[R]. 2004.8
    【14】戴忠明,郝瑞云.电磁流量计的应用与发展[J].科技情报开发与经济.2003. Vol.13 No.8, pp.121-122
    【15】孙延祚.2020年流量仪表科技发展规划建议[J].自动化信息,2004,No.2, pp.16-16
    【16】李素蓉.电磁流量计的现状、发展及应用行业差异性与市场份额分配浅析[J].中国仪器仪表,2003,No.5, pp.4-5
    【17】蔡武昌.流量仪表应用和发展若干动态[J].自动化仪表,2006, Vol.27, No.6, pp.1-7
    【18】Jesse Yoder. Ultrasonic flowmeter market expected to grow strongly[J]. Pipeline and Gas Journal. 2002.4, pp.22-28
    【19】Kinghorn F C. Industrial needs for cost-effective flow measurement[C]. The 8th International Conference on flow Measurement. 1996
    【20】A.Michalski, J.Staezynski, S.Wincenciak. 3D approach to designing the excitation coil of an electromagnetic flowmeter[C]. IEEE Transactions on Instrumentation and Measurement, 2002, Vol. 51, No.4, pp.833– 839
    【21】A.Michalski, W.Piotrowski. Applying a metric space to design a primary transducer of elec-tromagnetic flow meter for open channels[J]. IEEE Transactions on Instrumentation and Measurement, 2002, Vol.52,No.1, pp.14-17.
    【22】A.Michalski, J.Starzynski, S.Wincenciak. Electromagnetic flowmeters for open chan-nels-two-dimensional approach to design procedures[J]. IEEE Sensors Journal, IEEE Sensors Journal,2001, Vol.1 No.1, pp.52 - 62
    【23】孙淮清.“流量测量方法和仪表选用”讲座——第九讲插入式流量计.重庆工业自动化仪表研究所. 1997.
    【24】J. Hemp,I. Youngs. Problems in the theory and design of electromagnetic flowmeters for dielectric liquids. Part 3a. Modelling of zero drift due to flux linkage between coil and electrode cables[J]. Flow Measurement and Instrumentation.2003.Vol.14, No.3, pp.65-78
    【25】马中元,刘克金.电磁流量计低电导率流体测量问题的讨论[J].自动化仪表, 2000, Vol.21,No.5, pp.5-7,31
    【26】J.Hemp, M.L. Sanderson,A.V. Koptioug, B.Liang, D.J. Sweetland, R.H. A1 Rabeh. Prob-lems in the theory and design of electromagnetic flowmeters for dielectric liquids. Part 2b: theory of noise generation by charged particles[J]. Flow Measurement and Instrumentation, 2002, Vol.13, No.4, pp.143-171
    【27】T J Cox, T J Cox,D G Wyatt An electromagnetic flowmeter with insulated electrodes of large surface area[J], J Phys. E: Sci. Instrum, 1984, Vol.17, No.6, pp.488-503.
    【28】Huang S M, A high frequency stray-immune capacitance transducer based on the charge transfer principle[J], IEEE Transctions on IM, 1988, Vol.37, No.3, pp.368-373.
    【29】傅建国.无电极式电磁流量计[J].仪器与未来,1993, No.12, pp.4-4
    【30】Eggert Appel. Capative type electro-magnetic flowmeter[P]. US Patent, 1990.9.4, No. 4,953,408
    【31】赵雨斌,居滋培.特大口径电磁流量计的检定[J].计量学报, 2000.10.Vol.21. No.4, pp.291-295
    【32】张小章,电磁流量计的理论模型及其在干标定上的应用[J].南京航空学院学报, 1990.3, Vol.22, No.1, pp.118-121
    【33】J. Hemp. A technique for low cost calibration of large electromagnetic flowmeters[J]. Flow Measurement and Instrumentation, 2001. Vol.12, No.2, pp.123-134
    【34】C.J. Bates, B. Franklin. The performance characteristics of a novel multi-electrode elec-tromagnetic flowmeter[J]. Measurement. 2004. Vol.35, No.4, pp.399-408
    【35】C.J. Bates.Upstream installation and misalignment effects on the performance of a modified electromagnetic flowmeter[J]. Flow Measurement and Instrumentation, 1999, Vol.10,No.2, pp.79–89
    【36】张小章.基于流动电磁测量理论的流场重建[J].计量学报, 1998.1,Vol.19,No.1, pp.39-43
    【37】B Horner. A multi-sensor induction flowmeter reducing errors due to non-axisymmetric flow profile[J], Meas. Sci. Technol., 1996, Vol.7, No.3, pp.354-360.
    【38】B Horner. A novel profile-insensitive multi-electrode induction flowmeter suitable for in-dustrial use[J]. Measurement, 1998, Vol.24, No.3, pp.131-137.
    【39】Ki Won Lim,Myung Kyoon Chung.Numerical investigation on the installation effects of electromagnetic flowmeter downstream of a elbow-laminar flow case[J]. Flow Measure-ment and Instrumentation, 1999, Vol.10, No.3, pp.167-174
    【40】Xuejun Fan.Experiments on turbulent channel flow with electromagnetic turbulence con-trol[D].Thesis (Ph.D.)--Princeton University, 2000.5
    【41】王国强,吕波,张小章.非对称流动对电磁流量计输出的影响[J].计量技术, 2003, No.10, pp.3-5
    【42】C.J. Bates. Upstream installation and misalignment effects on the performance of a modified electromagnetic flowmeter[J]. Flow Measurement and Instrumentation, 1999, Vol.10, No.2, pp.79-89
    【43】徐立军,王亚,姜印平,徐苓安.电磁流量计电场动态平衡过程分析[J].仪器仪表学报, 2004.2, Vol.25, No.1, pp.39-43
    【44】King-Wah W. Yeung, James D. Meindl, An Intelligent Mu1tiplexer/Driver Integrated Circuit for an Implantable Multichannel Blood Flowmeter[J]. IEEE Journal of solid-state circuits, 1990, Vol. 25, No.2, pp.451-457
    【45】张宏建,管军,胡赤鹰.基于电磁感应原理的多电极流量测量方法[J].计量学报, 2004.1,Vol.25, No.1, pp.41-46
    【46】Hua P., Woo E.J., Webster J.G., Tompkins W.J. Finite Element Modeling of Electrode-Skin Contact Impedance in Electrical Impedance Tomography[J]. IEEE Trans. on Bio. Engng, 1993, Vol.40, No.4, pp.335-342.
    【47】Teshima Taiichi, Electromagnetic flowmeter with multiple poles and electrodes[J]. IEEE Instrumentation and Measurement Technology Conference, 1994, Vol.3, pp.1221-1224.
    【48】徐立军,王亚,乔旭彤,徐苓安.多对电极电磁流量计传感器电极阵列设计[J].仪器仪表学报, 2003.8. Vol.24, No.4, pp.335-339
    【49】张宏建.多电极电磁式流量测量方法[J].世界仪表与自动化, 1999.2.Vol.3 No.1, pp.30-31
    【50】吴国玢,闵轩.非轴对称速度分布简化模型及其在电磁流量计数值计算中的应用[J].上海机械学院学报, 1991, Vol.13, No.4, pp.29-38
    【51】徐立军,郝莹,王亚,等.多对电极电磁流量测量方法的仿真研究[J].东北大学学报(自然科学版), 2000,Vol.21,No.S1, pp.85~88.
    【52】金文兵.非满管管道流量的测量[J].机电工程,2005.1,Vol22,No.1, pp.31-33
    【53】蔡武昌.明渠流量仪表(下)[J].世界仪表与自动化, 2003,Vol.7,No.2, pp.33-36.
    【54】周小锌.不满管管道中的电磁流量测量[J].传感器世界, 2000,Vol.6, No.2, pp.20-22
    【55】蔡武昌.“流量测量方法与仪表选用讲座”——第廿一讲明渠流量计(一) [J].自动化仪表, 1998, Vol.19, No.11, pp.43-46.
    【56】Blake Doney. EMF Flow Measurement in Partially Filled Pipes[J]. Sensors Magazine, 1999, Vol.16, No.10, pp.65-68
    【57】John Flood.Single-Sensor Measurement of Flow in Filled or Partially Filled Process Pipes[M].Sensors Magazine online,1997.
    【58】常凤筠,崔旭东.超声波明渠流量计的设计[J].传感器技术, 2005, Vol.24 No.6, pp.44-46
    【59】田伟平,王亚铃.水力学[M].北京:人民交通出版社,2003,7.
    【60】柯葵,朱立明,李嵘.水力学[M].上海:同济大学出版社,2000,5.
    【61】李斌,田才忠.电磁流量计信号处理的新方法[J].电子技术, 1991, Vol.18, No.12, pp.5-7
    【62】李斌,包海燕.电磁流量计的信号处理方法探讨[J].上海理工大学学报.1998,Vol.20, No.2, pp.147-151
    【63】李小京.电磁流量计放大滤波电路的设计[J].化工自动化及仪表, 2000, Vol.27, No.2, pp.50-52
    【64】蒋永清,梁原华,刘正梅.电磁流量计基波平均值信号处理方法的研究[J].哈尔滨理工大学学报, 2002.8. Vol.7 No.4, pp.36-38
    【65】李克奇,袁维宝,何予鹏,电磁流量计测量误差分析[J].河南农业大学学报, 2000, Vol.34, No.3, pp.266-268
    【66】张涛,李斌.电磁流量计中的抗工额干扰问题[J].测控技术. 2003.Vol.22 No.2, pp.65-67
    【67】孙向东,何晓芹.电磁流量计的智能化前端信号电路设计[J].单片机与嵌入式系统应用,2002, .No.7, pp.66-68
    【68】王新堂.激磁信号控制技术及其在电磁流量计中的应用[J].电测与仪表, 1995, No.7, pp.21-23
    【69】李小京.电磁流量计放大滤波电路的设计[J].化工自动化及仪表, 2000.2, Vol.7, No.2, pp. 50-52
    【70】胡婷,梁原华.电磁流量计几种激磁方式的分析[J].哈尔滨理工大学学报.2001.4. Vol.6 No.2, pp.104-106
    【71】石治林朱自明.电磁流量计常见故障检测判别及其解决方法[J].自动化仪表,2005.8, Vol26.No.8, pp.57-60
    【72】Wada Ichiro Kanagawa ken. Electromagnetic flowmeters and method of producing elec-tromagnetic flowmeters with slits to reduce eddy currents[P]. US Patent,1996.8.6, No.5542301
    【73】S.Perovic, E.H.Higham. Electromagnetic flowmeters as a source of diagnostic informa-tion[J]. Flow Measurement and Instrumentation, 2002, Vol.13, No.3, pp.87-93
    【74】蔡武昌.电磁流量计测量值与应用参比值不符的分析[J].自动化仪表, 2001, Vol.22, No.5, pp.32-35
    【75】李忠诚,邦菲克.一种克服电磁流量计中交直流干扰的方法[J].仪表技术与传感器, 1999, No.4, pp.33-35
    【76】张奎,袁恒水,鲍秀华等.多CPU电磁流量计转换器的研制[J].现代测量与实验室管理, 2002, Vol.10, No.5, pp.11-14
    【77】胡婷,梁原华.电磁流量计几种激磁方式的分析[J].哈尔滨理工大学学报, 2001.4, Vol.6, No.2, pp.104-106
    【78】马中元,杜海宽,魏庆等.电磁流量计零点偏移实例的解析[J].中国仪器仪表, 2000, No.3, pp.6-8
    【79】李小京,王萍,卢景山.互相关流量测量的原理及算法研究[J].化工自动化及仪表, 2004.6, Vol.31, No.6, pp.66-68
    【80】M S A Abouelwafa, The use of capacitance sensors for phase percentage determination in multiphase pipeline[J]. IEEE Transaction IM, 1980, Vol.29, No.1, pp.24-27.
    【81】Xie C G, 8-electrode capacitance system for two component flow identification Part 1, Tomographic flow imaging[J]. IEE Proceedings-G, 1989, Vol.136, No.4, pp.173-182.
    【82】R Kraft, J Hemp,M.L Sanderson. Investigation into the use of the electromagnetic flow-meter for two-phase flow measurements[R]. IEE Colloquium on Advances in Sensors for Fluid Flow Measurement. London, UK, 1996.4.18
    【83】Jae-Eun Cha,Yeh-Chan Ahn,Kyung-Woo Seo, Ho-Yun Nam, Moo-Hwan Kim, Jong-Hyun
    【68】王新堂.激磁信号控制技术及其在电磁流量计中的应用[J].电测与仪表, 1995, No.7, pp.21-23
    【69】李小京.电磁流量计放大滤波电路的设计[J].化工自动化及仪表, 2000.2, Vol.7, No.2, pp. 50-52
    【70】胡婷,梁原华.电磁流量计几种激磁方式的分析[J].哈尔滨理工大学学报.2001.4. Vol.6 No.2, pp.104-106
    【71】石治林朱自明.电磁流量计常见故障检测判别及其解决方法[J].自动化仪表,2005.8, Vol26.No.8, pp.57-60
    【72】Wada Ichiro Kanagawa ken. Electromagnetic flowmeters and method of producing elec-tromagnetic flowmeters with slits to reduce eddy currents[P]. US Patent,1996.8.6, No.5542301
    【73】S.Perovic, E.H.Higham. Electromagnetic flowmeters as a source of diagnostic informa-tion[J]. Flow Measurement and Instrumentation, 2002, Vol.13, No.3, pp.87-93
    【74】蔡武昌.电磁流量计测量值与应用参比值不符的分析[J].自动化仪表, 2001, Vol.22, No.5, pp.32-35
    【75】李忠诚,邦菲克.一种克服电磁流量计中交直流干扰的方法[J].仪表技术与传感器, 1999, No.4, pp.33-35
    【76】张奎,袁恒水,鲍秀华等.多CPU电磁流量计转换器的研制[J].现代测量与实验室管理, 2002, Vol.10, No.5, pp.11-14
    【77】胡婷,梁原华.电磁流量计几种激磁方式的分析[J].哈尔滨理工大学学报, 2001.4, Vol.6, No.2, pp.104-106
    【78】马中元,杜海宽,魏庆等.电磁流量计零点偏移实例的解析[J].中国仪器仪表, 2000, No.3, pp.6-8
    【79】李小京,王萍,卢景山.互相关流量测量的原理及算法研究[J].化工自动化及仪表, 2004.6, Vol.31, No.6, pp.66-68
    【80】M S A Abouelwafa, The use of capacitance sensors for phase percentage determination in multiphase pipeline[J]. IEEE Transaction IM, 1980, Vol.29, No.1, pp.24-27.
    【81】Xie C G, 8-electrode capacitance system for two component flow identification Part 1, Tomographic flow imaging[J]. IEE Proceedings-G, 1989, Vol.136, No.4, pp.173-182.
    【82】R Kraft, J Hemp,M.L Sanderson. Investigation into the use of the electromagnetic flow-meter for two-phase flow measurements[R]. IEE Colloquium on Advances in Sensors for Fluid Flow Measurement. London, UK, 1996.4.18
    【83】Jae-Eun Cha,Yeh-Chan Ahn,Kyung-Woo Seo, Ho-Yun Nam, Moo-Hwan Kim, Jong-Hyunbore pipes: An experimental comparison between two different types of insertion flow-meters[J], ISA Transactions. 2003,Vol 42.pp:171–179
    【97】李曦,张小章,插入式电磁流量计的理论研究[J],计量技术.2008,2:3-6
    【98】陈淮茂.插入式电磁流量变送器[P],中国实用新型专利, 87211968
    【99】泮祥明.插入式电磁流量传感器[P],中国实用新型专利, 87207370
    【100】方春国,徐海继,韩育民.插入式电磁流量传感器[P],中国实用新型专利,91218366.7
    【101】冀智.插入式电磁流量传感器[P],中国实用新型专利,92201320.9
    【102】田红良.插入式电磁流量计的传感装置[P],中国实用新型专利, 94212506.1
    【103】张立志.插入式电磁流量计传感器[P],中国专利, 200310109710.X
    【104】詹益鸿.插入式电磁旋涡流量计[P],中国实用新型专利, 03223950.5
    【105】学金艳,周泉等.插入式电磁流量计的研制[J],工业仪表与自动化装置.2006,1:63-64
    【106】傅新等,插入式电磁流量计传感器的干标定方法[P],中国(发明)专利,200610155285.1
    【107】夏敖敖,夏奇峰.插入式电磁流量计的研制[J],自动化仪表. 2004,25(6):12-14
    【108】C.J. Bates, B. Franklin. The performance characteristics of a novel multi-electrode elec-tromagnetic flowmeter[J]. Measurement. 2004. Vol.35, No.4, pp.399-408.
    【109】C.J. Bates.Upstream installation and misalignment effects on the performance of a modified electromagnetic flowmeter[J]. Flow Measurement and Instrumentation, 1999, Vol.10,No.2, pp.79–89.
    【110】张小章.基于流动电磁测量理论的流场重建[J].计量学报, 1998.1,Vol.19,No.1, pp.39-43.
    【111】B Horner. A multi-sensor induction flowmeter reducing errors due to non-axisymmetric flow profile[J], Meas. Sci. Technol., 1996, Vol.7, No.3, pp.354-360.
    【112】B Horner. A novel profile-insensitive multi-electrode induction flowmeter suitable for in-dustrial use[J]. Measurement, 1998, Vol.24, No.3, pp.131-137.
    【113】Ki Won Lim,Myung Kyoon Chung.Numerical investigation on the installation effects of electromagnetic flowmeter downstream of a elbow-laminar flow case[J]. Flow Measure-ment and Instrumentation, 1999, Vol.10, No.3, pp.167-174.
    【114】Xuejun Fan.Experiments on turbulent channel flow with electromagnetic turbulence con-trol[D].Thesis (Ph.D.)--Princeton University, 2000.5.
    【115】王国强,吕波,张小章.非对称流动对电磁流量计输出的影响[J].计量技术, 2003, No.10, pp.3-5.
    【116】C.J. Bates. Upstream installation and misalignment effects on the performance of a modified electromagnetic flowmeter[J]. Flow Measurement and Instrumentation, 1999, Vol.10, No.2, pp.79-89.
    【117】Hua P., Woo E.J., Webster J.G., Tompkins W.J. Finite Element Modeling of Electrode-Skin Contact Impedance in Electrical Impedance Tomography[J]. IEEE Trans. on Bio. Engng, 1993, Vol.40, No.4, pp.335-342.
    【118】Teshima Taiichi, Electromagnetic flowmeter with multiple poles and electrodes[J]. IEEE Instrumentation and Measurement Technology Conference, 1994, Vol.3, pp.1221-1224
    【119】徐立军,王亚,乔旭彤,徐苓安.多对电极电磁流量计传感器电极阵列设计[J].仪器仪表学报, 2003.8. Vol.24, No.4, pp.335-339.
    【120】张宏建.多电极电磁式流量测量方法[J].世界仪表与自动化, 1999.2.Vol.3 No.1, pp.30-31.
    【121】吴国玢,闵轩.非轴对称速度分布简化模型及其在电磁流量计数值计算中的应用[J].上海机械学院学报, 1991, Vol.13, No.4, pp.29-38
    【122】徐立军,郝莹,王亚,等.多对电极电磁流量测量方法的仿真研究[J].东北大学学报(自然科学版), 2000,Vol.21,No.S1, pp.85~88.
    【123】Horner B,Mesch F,Trachtler A. A multi-sensor induction flowmeter reducing errors due to non-axisymmetric flow profiles[J] . Meas Sci Technol, 1996, Vol.7, No.3, pp.354 - 360.
    【124】O’sullivan V T. Performance of an electromagnetic flowmeter with six point electrodes[J] . Phys E : Sci Instrum,1983,Vol.16,No.12, pp.1183 - 1188.
    【125】Yousif A Al-Khazrajit. Roger C Baker. .Analysis of the performance of three large-electrode electromagnetic flowmeters[J]. J. Phys. D: Appl. Phys., 1979, Vol. 12, No.9, pp.1423-1434
    【126】乔旭彤,徐立军,董峰.多电极电磁流量计励磁线圈的优化与设计[J]仪器仪表学报.2002.6,Vol.23,No3, pp.867-869
    【127】Lawrence B,Marsh. Averaging velocity sensor for measuring fluid flow in a conduit[P],U.S. Patent No.4688432,1986
    【128】徐连粮.插入式多电极成相电磁流量计[P],中国实用新型专利, 00205134.6
    【129】McCrometer Inc. Specifications-Multi-Mag Models. 2006.
    【130】V. Hans, G. Poppen, E. von Lavante, S.Perpeet. Vortex shedding flowmeters and ultrasound detection: signal processing and influence of bluff body geometry[J]. Flow Measurement and Instrumentation, 1998, 9: 7982
    【131】Volker H. Hans. New aspects of the arrangement and geometry of bluff bodies in ultrasonic vortex flow meters[C]. IEEE Instrumentation and Measurement Technology Conference, 2002: 1661一1664
    【132】E. von Lavante, S. Perpeet, V. Hans, G. Poppen. Optimization of acoustic signals in a vortex-shedding flowmeter using numerical simulation[J].International Journal of Heat and Fluid Flow, 1999, 20: 402-404
    【133】Volker Hans, Harald Windorfer. Comparison of pressure and ultrasound meas-urements in vortex flow meters[J]. Measurement, 2003, 33:121一133
    【134】王波光纤涡街流量计的研究[[J].光纤光缆传输技术,2003, 2: 31-34.
    【135】周晓军,刘文达.光纤涡街流量计的研究[[J].传感器技术,1994, 2: 23-25.
    【136】S.C. Bera, J.K. Ray, S. Chattopadhyay. A modified inductive pick-up type technique of measurement in a vortex flowmeter[J]. Measurement, 2004, 35: 19-24.
    【137】莫德举,李立平,郭红晓.电磁法检测漩涡频率的涡街流量计[[J].北京化工大学学报,2001,28(1): 70-72.
    【138】王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004,9
    【139】A. Hilgenstock, R. Ernst. Analysis of installation effects by means of computatiionalfluid dynamics-cfd vs experiments[J] Flow measurement and instrumentation, 1996,7:161–171.
    【140】Johnson, A., Tezduyar, T., Liou, J.. Numerical simulation of flows past periodic arrays of cylinders[J]. Computational Mechanics. 1993, 11:371-383.
    【141】M. Cheng, GR. Liu. Effects of afterbody shape on flow around prismatic cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84:181-196
    【142】Sung-Eun Kim, Ferit Boysan. Application of CFD to environmental flows[J].Journal of Wind Engineering and Industrial Aerodynamics, 1999, 81:145一158
    【143】G. Iaccarino, A. Ooi, P.A. Durbin, M. Behnia. Reynolds averaged simulation of unsteady separated flow[J]. International Journal of Heat and Fluid Flow, 2003,24:147-156
    【144】D. Rocchi, A. Zasso. Vortex shedding from a circular cylinder in a smooth and wired con-figuration: comparison between 3D LES simulation and experimental analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90:475-489
    【145】D. Bouris, G. Bergeles. 2D LES of vortex shedding from a square cylinder[J].Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80: 31-46
    【146】李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动[J].水科学进展,2000, 11(4): 357-361
    【147】M. Matsumoto. Vortex shedding of bluff bodies: a review[J]. Journal of Fluids and Struc-tures, 1999, 13, 791一811
    【148】Christiansen, J.P. Numerical simulation of hydromechanics by the method of point vor-tices[J]. Journal of Computational Physics. 1973,13, 363–379.
    【149】A.K.TolPadi,J.A.Tollman,L.Ei-Gabry.Thrbine airfoil heat transfer Predietions using CFD[J].Proeeedings of the ASME Turbo ExPo.2005,Vol.3(A):P79-86
    【150】D.Castineira and T.F.Edgar. CFD for simulation of steam-assisted and air-assisted fiare-combustion systems. Energy and fuels[J]. 2006, Vol. 20(3): P1044-1056
    【151】O. Hjertager, K. Lene, B. H. Hjertager. ExPeriments and CFD modeling of fast chemieal-reaetion in turbulent liquid fiows[J]. Intemational joumal of chemieal reactor engineer-ing.2005,VOl.3:P1-30
    【152】朱自强,麻晓波,付鸿雁等.流场分析和设计的并行计算[J].科学技术与工程.2003,12:582-587
    【153】余舜京,徐田荣,邹维日. CFD大型软件系统分布式并行处理模型研究[J].空气动力学学报.2002,3:112-115
    【154】魏存祥,龚建春,仉洪云.基于ANSYS的并行计算发展及实现[J].机械工程师.2007 ,10 :95-96
    【155】曾宇,王洁.中国高性能计算机技术及标准现状分析[J].信息技术与标准化,2006,10:9-12
    【156】李根国,桂亚东,刘欣.浅谈高性能计算的地位及应用[J].计算机应用与软件,2006,23(9):3-4
    【157】Reynolds,O.An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in Parallel channels[J].Proe.R.Soc.Land.1883 35:84-99
    【158】Prandtl,L.Zur turbulenten Str?mung in Rohren und langs Platten[J], Ergebnisse der Aerodynamisehen Versuehsanstalt zu G?ttingen, 4, Lieferung, in German, 1932
    【159】何龙德.管道截面的流速分布参数及其在涡街流量计标定中的应用[J].气动实验与测量控制,1995,6:67-72
    【160】屈敏,几种插入式流量计α系数计算方法的探讨[J],自动化仪表. 2005,26(11):19-21
    【161】李国光,常太华,田沛等.基于测点流速的流量测量实用方法[J],中国电力.1998,8(31):23-25
    【162】全卫国,李国光,金秀章等.用圆管中最大流速测量流量的实验研究[J].华北电力大学学报.2001,10:39-42
    【163】周宁宁,梁国伟.速度面积法中不同特征点位置选择法之比较[J].中国计量学院学报. 2003,14(2):0104~0108
    【164】梁国伟,李长武,王芳.多点热式气体质量流量测试方法实验研究[J].传感技术学报,2005,12:785-788
    【165】宁利中,李建中.光滑圆管进口段紊流边界层发展[J].水动力学研究与进展,1991,9:79-87
    【166】苏中地.非牛顿幂律流体圆管湍流的新速度分布式[J].中国计量学院学报,1997,6:112-115
    【167】张东飞,苏中地,何馨雨.一种适用于均速管测量的管内统一速度分布式[J].中国计量学院学报,2007,9:200-203
    【168】郭仁东,胡冰,王立捷等.圆管流体平均流速与管道半径的关系[J].沈阳大学学报,2008,2:1-3
    【169】毛新业.流速精度不等于流量精度:探询插入流量计的精确度[J].贵州科学,2002,12:149-152
    【170】SmagorinskY J S. General circulation experiments with the primitive equations-I, the basic experiment [J]. Monthly Weather Review, 1963 ,91 :99 -164.
    【171】Deardorff J W. A numerical study of three dimensional turbulent channel flow at large Reynolds numbers[J].Journal of Fluid Mechanics, 1970, 4(1) :453-480.
    【172】Poimelli U,Ferziger J H,Moin P,etal. New approximation boundary conditions for large eddy simulations of wall boundary flows[J] . Physics of Fluids,1989 ,1 :1061-1068.
    【173】Moin P , KimJ . Numerical investigation of turbulent channel flow[J]. Journal of Fluid Mechanics,1982 ,118 :341-377.
    【174】Rodi W,Ferziger J H,Breuer M,etal. Status of large eddy simulation: results of a workshop [J]. Journal of Fluids Engineering, 1997,119:248-262.
    【175】Yu Da2hai ,Kareem Ashan. Numerical simulation of flow around rectangular prism[J]. J Wind Eng Ind Aero ,1997 ,67&68 :195-208.
    【176】J.H.Gerrard. The mechanics of the formation region of vortices behind bluff bod-ies[J].Journal of Fluid Mechanics, 1966, 25(2): 401-413.
    【177】M.M.ZDravkovich. Different modes of vortex shedding:an overview[J]. Journal of Fluids and Structures, 1996, 10, 427-427.
    【178】童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].北京:国防工业出版社,1993:281-300.
    【179】Y Nakamura. Vortex shedding from bluff bodies with splitter plates[J]. Journal of Fluids and Structures, 1996, 10: 147-158
    【180】Y Nakamura. Vortex shedding from bluff bodies and a universal Strouhal number[J]. Journal of Fluids and Structures, 1996, 10: 159-171
    【181】C.H.K. Williamson. Advances in our understanding of vortex dynamics in bluff body wakes[J]. Journal of Wind Engineering and Industrial Aerodynam-ics,1997,69-71:3-32.
    【182】S. Goujon-Durand, P. Jenffer and J.E. Wesfreid. Downstream evolution of the Benard- von Karman instability[J]. Physical Review E, 1994, 50(1): 308-313.
    【183】R. Kahawita, P. Wang. Numerical simulation of the wake flow behind trapezoidal bluff-bodies[J]. Computers&Fluids, 2002, 31:99-112
    【184】Peng J, Fu X, Chen Y. Flow measurement by a new type vortex flowmeter of dual trian-gulate bluff body[J]. Sensors and Actuators A: Physical, 2004, 115(1): 53-59
    【185】张平,彭杰刚,傅新.双钝体涡街流量计流体振动特性研究[J].机电工程,2001,18(5):63-65.
    【186】徐国梁,杨军,宋开臣,傅新,双钝体涡街流量计的研究[J].仪表技术与传感器,2002, 7: 49-51.
    【187】龚振起,唐飞,龚海涛,智能式双涡体涡街流量计的研究[J].哈尔滨工业大学学报,1997, 29(1): 67-70.
    【188】吴文权,居江宁.圆柱绕流远场旋涡结构的数值研究[J].工程热物理学报, 2001,22 (22) :17 - 20.
    【189】蕉明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展,1992,7:614-622
    【190】姚熊亮,方媛媛,戴绍仕等,基于LES方法圆柱绕流三维数值模拟[J].水动力学研究与进展, 2007,22(5):564-572
    【191】昊望一编著,流体力学(下册)[M].北京:北京大学出版社,1983:360~365
    【192】P.I. Kattan. MATLAB Guide to Finite Element[M]. Spring Verlag Berlin Heidelberg,2003
    【193】陆君安,尚涛,谢进.偏微分方程的MATLAB解法[M].武汉:武汉大学出版社.2001
    【194】都志辉编著.高性能计算并行编程技术-MPI并行程序设计[M].北京:清华大学出版社,2001
    【195】Reynolds O, On the dynamical theory of incompressible viscous fluids and determination of the criterion, Phil. Trans. Roy. Soc, London 1894, 186: 13
    【196】G J Wagner. Turbulence simulation and multiple seale subgrid models. Computational Mechanics,2000,25(3):117-136
    【197】P J Colueei. Filtered density function for large eddy simulation of turbulent reaction flows. Physics of Fluids,1998,10(2):499-515
    【198】Blaekwelder, R. F. and Kaplan, R. E. On the wall strueture of the turbulent bound-ary[J].Fluid Meeh. 1976,76:89-112
    【199】White, F.M., Fluid Meehanies,2nd edition,MeGraw-Hill Book ComPany,NewYofk,1986
    【200】Fluent Inc.,FLUENT User's Guide.Fluent Inc.,2003
    【201】H.K.Versteeg, W.Malalasekera,An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley,New York,1995
    【202】都志辉,吴博,刘鹏等.LINPACK与机群系统的LINPACK测试[J].计算机科学,2002,29(5):8-10
    【203】张文力,陈明宇,樊建平.HPL测试性能仿真与预测[J].计算机研究与发展,2006,43(3):557-562
    【204】邵波,毛国勇,张武.基于Fluent的全机数值模拟及并行计算[M].计算机工程与设计,2006,27(17):3178-3180
    【205】李斌,陈坚祯,沈丹平等.多电极插入式电磁流量计传感器[P].中国(发明)专利, 200810200311.7
    【206】李斌,曹金亮,史骥.电磁流量计信号放大处理方法[P].中国(发明)专利,200510028474.8
    【207】李斌,反馈式信号放大处理方法[P],中国(发明)专利,99113868.6.
    【208】李斌,曹金亮,史骥.电磁流量计信号放大处理方法.发明专利,申请号200510028474.8
    【209】Sergio Franco. Design with Operational Amplifiers and Analog Integrated Circuits, 3rd Edition. America: McGraw-Hill Companies, Inc. 2002.
    【210】沈天飞,李斌,姚骏.工频交流电周期变化的捕捉方法[P].中国(发明)专利, 03116540.0
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.