冲孔钢带电解加工和镍电沉积工艺及基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集流材料是组成电池的重要部件。本文选取冲孔钢带为研究对象,通过减薄、表面粗糙化、镍沉积和热处理工艺改善冲孔镀镍钢带的性能。
     首次应用电解加工方法同步实现了冲孔钢带的减薄和表面粗糙化。减小冲孔钢带(钢带)的厚度,能更好地解决极板的卷绕性能,提高单位体积内活性物质的载量,增大电池的容量;加大冲孔钢带表面粗糙度,从而增大其比表面积,能改善沉积层与冲孔钢带结合强度,增强与活性材料的粘结性,减小接触电阻和电化学极化,提高电池的电化学性能。对于0.045mm冲孔钢带在最优电解加工条件下,厚度减小了16.56μm;电解加工后表面粗糙度由0.23μm增加到0.491μm,表面残余应力由102.5Mpa降至24.87Mpa。
     利用氧化还原反应原理和E-pH图,通过加入抗坏血酸,增强了电解加工溶液的稳定性,详细分析了抗坏血酸还原Fe3+离子的反应机理,推导出动力学方程,计算出二级反应速率常数是5.5688(mol/L)-1.min-1。抗坏血酸可重复使用,无毒、对环境友好。
     利用柠檬酸钠较高的缓冲容量和配位性质,结合镍-柠檬酸钠体系电位-pH图,成功地实现了用柠檬酸钠取代硼酸用作镍沉积溶液的缓冲剂,消除了硼酸对人类和环境造成极大的危害。在pH=3-5范围内,硼酸和柠檬酸钠镀镍溶液的缓冲容量分别是0.01lmol/L和0.025mol/L,实验结果表明:柠檬酸钠是一种优良、实用和对环境友好的硼酸替代品,柠檬酸钠镀液是具有电流效率高、缓冲容量大、分散能力好、电导率高和极化度大的性能良好的电解液。
     首次用电化学阻抗技术研究了柠檬酸钠镀镍溶液中镍的电沉积行为,沉积过程分两步得到两个电子,其中第一个得电子转移步骤是速度控制步骤,反应中生成了一价镍离子的吸附态的电活性中间产物Ni(OH)ads,而且吸附态的中间产物是以电感的形式影响电极反应的阻抗。从理论上推导了电极反应速度的动力学方程,通过实验验证,得出了动力学参数为:阴极过程Tafel斜率为0.142V,表观传递系数α=0.49,交换电流密度是7.56×10-6A/cm2,反应级数为ZNi2+=1,在pH=2-5的缓冲溶液中,OH-浓度对电极反应速度影响不大,Ni(OH)ads覆盖率0不能忽略,表观活化能平均值为50.3kJ/mol.
     首次采用循环伏安法和计时电流法研究了柠檬酸钠镀镍溶液中镍电结晶规律。在低过电位下(-0.9~-1.0V),Ni初期电结晶成核/生长过程遵循三维连续成核机制;高过电位下(-1.1~-1.5V),镍的初期电结晶成核/生长方式遵循瞬时成核机制。在两种模式下分别计算出镍离子的扩散系数D为(1.63±0.48)×10-7cm2·s-1和(1.074±0.093)×10-6cm2.s-1.柠檬酸钠对镍垂直于基体表面方向的生长速率有妨碍作用,而硫酸镍有一定的促进作用。
     检测了冲孔镀镍钢带的性能,硬度、结合强度、孔隙率和腐蚀试样评级都符合《可充电电池用冲孔镀镍钢带》标准要求。在优化条件下得到的表面粗糙度是0.41μm。
     用浸泡法、动电位扫描极化曲线和电化学阻抗谱对冲孔镀镍钢带的抗腐蚀性能进行研究,结果表明:冲孔镀镍钢带极化电阻大,腐蚀电流小,电荷转移阻抗高,腐蚀速度小,抗腐蚀性强,从镍-柠檬酸钠溶液中得到的冲孔镀镍钢带改善了抗腐蚀性能。粗糙腐蚀是引起腐蚀速度加快的原因之一。用动电位极化曲线和XPS证实冲孔镀镍钢带在5%NaCl溶液腐蚀介质中有钝化膜形成,认为冲孔镀镍钢带具有较好的耐蚀性能原因是:镍沉积层的包覆隔离作用,阻止了冲孔钢带基体与腐蚀介质的直接接触;而钝化膜形成,在试样表面产生较致密的钝化保护,降低了腐蚀反应的电流密度。
     采用EDS分析方法,测量了镀镍钢带热处理后的Fe和Ni浓度分布曲线,通过应用玻尔磁曼-俣野法计算出不同温度和浓度下的铁镍互扩散系数,计算出不同铁浓度时的频率因子、扩散活化能。
     应用动电位扫描极化曲线和电化学阻抗谱方法测试了镀镍钢带不同热处理工艺后的防腐性能,热处理工艺改善了镀镍钢带的耐腐蚀性和抗溶液渗透性,当表面露铁率超过30%,抗腐蚀性显著下降。图179幅,表68个,参考文献295篇。
The collecting materials is an important component of cell. In this thesis, the hole-punched steel strip has been studied and its mechanical and electrochemical performance are improved by reducing the thickness, roughening the surface, Ni electrodeposition and heat treatment.
     For the first time, the reduction of thickness and surface-roughing of hole-punched steel strip are accomplished by electrochemical machining method. By reducing the thicknesses of hole-punched steel strip, and thus the volume occupied by such non-reactive elements are reduced, the winding performance of batteries electrode plate can be improved. The fraction of the battery devoted to holding electrochemically active material therein is increased, with corresponding increase in the capacity of the battery. By roughing of surface, the hole-punched steel strip has a high surface roughness, which result in the increase of the specific surface area, provides the desired improvement in adhesive bonding of the nickel plated layer to the base steel strip, enhances the amount of physical and electrical contact and the better adhesion between the active material and Nickel plated punched steel strip so as to reduce the contact resistance and the electrochemical polarization to increase the battery electrical performance. Under the optimal conditions of electrochemical machining, the thickness of hole-punched steel strip can be reduced to28.44μm(theoretical value:25.63μm), the surface roughness increases from0.23μm to0.49μm. The original deformation layer is partially or completely removed and the metallographic structure of the hole-punched steel strip is not changed. The residual stress decreases from102.5Mpa to24.87Mpa.
     According to the redox reaction principle and E-pH diagram, ascorbic acid is added to the Fe-riched chloride electrolyte to slow down the oxidation of Fe2+in the baths. In the presence of ascorbic acid, there is a tendency to decrease pH of solution and to reduce ferric to ferrous. The mechanism of the reduction of Fe3+ion by ascorbic acid is analyzed in details and the kinetic equation is derived. The second order reaction rate constant is5.5688(mol/L)-1.min-1. Ascorbic acid is a non-toxic and environmental friendly ingredient, it can be used repeatedly.
     Using higher buffering capacity and coordination properties of sodium citrate, combined with Ni-citrate system E-pH diagram, a new electrolytes for nickel electrodeposition, which contains sodium citrate instead of boric acid as the butter has been developed. Owing to high toxicity of boron compound, it causes serious pollution to the environment if the direct discharge of wastewaters without treatment. The citrate bath exhibits excellent buttering capacity (0.025mol/L) for bath pH3-5, which are comparable with those of the watts bath (0.011mol/L). The results show that a citrate bath offers an excellent, practical, and more environmentally friendly substitute for boric acid in a Watts bath. The electrolytes provide good electrochemical performance, such as high current efficiency, good butter properties, high values of the throwing power, the electrical conductivity and cathodic polarization.
     For the first time, the electrodeposition mechanism of Nickel from citrate bath is investigated by means of electrochemical impendence spectroscopy (EIS) method. The influence of the deposition potential, electrolyte composition and technological conditions on the charge transfer resistance and capacitance are systematically investigated during the Nickel electrodeposition. By analyzing the EIS spectroscopy, it can be concluded that the mechanism of Ni electrodeposition as follows:in the acidic citrate bath, it involves two consecutive one-electron charge transfers, the first involving the participation of an anion(assumed to be OH") with formation of an adsorbed complex Ni(OH)ads followed by subsequent reduction to Ni. The rate-determining step is the first electron transfer reaction. The low frequency inductive loop is ascribed to the relaxation of the electrode coverage by an adsorbed intermediate NiOHads, the kinetic equation of electrode reaction can be derivated from the theoretical views and verified by experiment. The results indicate as follows:the Tafel slope of the cathodic process is0.142V decade-1, the apparent transfer coefficient a is0.49, the exchange current density is 7.56×10-6A/cm2, the order of the reaction is1with respect to Ni2+. When the electrolyte pH varies between2-5, no dependence of cathodic rate constants on pH can be found. The coverage of intermediate Ni(OH)ads can not be ignored, the average value of the apparent activation energy of electrochemical reaction is50.3kJ/mol.
     For the first time, the mechanism of electrocrystalline of nickel on vitreous carbon from citrate bath is investigated by cyclic voltammetry and chronoamperometry methods. Electrochemical tests show that nickel electrodeposition may begin at applied potential-0.9V or so. Under lower overpotential (applied potential:-0.9~-1.0V), the electrocrystalline process of Ni from citrate bath in the initial stage follows the mechanism of Scharitker-Hill three dimensional progressive nucleation and growth manner. Under higher overpotential (applied potential:-1.1~-1.5V), the deposition nucleation of Ni in the initial stage follows the instantaneous nucleation and growth of Scharitker-Hill mechanism with three-dimensional. The nucleation time of Ni-citrate solution system may gradually be shortened with the increase of overpotential. By analyzing of the potentiostatic transients, the diffusion coefficient D of the depositing nickel ions is (1.63±0.48)×10-7cm2·s-1under the progressive nucleation and growth mechanism, and (1.074±0.093)×10-6cm2·s-1under the instantaneous nucleation and growth mechanism respectively. Sodium citrate may causes an inhibition of outward growth rate of Ni deposits, and nickel sulfate may accelerate both nucleation and crystal growth.
     The performances of nickel plated punched steel strip are tested, such as microhardness, adhesion, porosity, surface roughness and rating of test specimens subjected to corrosion tests, and so on. The results show that products meet the requirements of "nickel plated punched steel strip for rechargeable battery" standard. Under the optimal electrodeposition conditions, the surface roughness of the as-deposited Ni is0.41μm when the thickness of the deposit layer is about6μm, smaller than that of base steel strip processed by electrochemical machining.
     The influence of electrolyte compositions and technological conditions on electrochemical corrosion behavior of the nickel plated punched steel strips in5%NaCl corrosion media is characterized by immersion corrosion tests, potentiodynamic polarization tests and electrochemical impedance spectroscopy methods. The results reveal that the Ni deposited from citrate bath has higher polarization resistance, smaller corrosion current, higher charge transfer resistance and smaller corrosion rate, compared with that from Watts bath. It exhibits superior corrosion resistance, and the results calculated from potentiodynamic polarization tests are in good agreement with those obtained from impedance measurements. The magnitude of corrosion rate of the Ni deposits decreases with increasing of sodium citrate concentration. The Ni deposits with rough surfaces may accelerate the corrosion reaction rate in5%NaCl solution. All the nickel samples exhibits active-passive potentiodynamic polarization behavior. The results shows that passive film formed on the Ni deposits, and confirmed by X-ray photoelectron spectroscopy (XPS) surface analysis. The XPS analysis indicates that the passive film is composed of stable, continuous Ni hydroxide and NiO. The improved corrosion resistance of Ni in NaCl solution can be explained as follows:Ni prevent the punching steel strip from direct imposing in the corrosion media and passive film formation seems to be another dominant factor, because Ni is a metal that can be passivated easily. The insoluble Ni(OH)2and NiO cover the surface of the corroded samples and create the passivation region so as to reduce the corrosion rate.
     The concentration distribution profiles in the neighborhood of interface after heat-treatment are measured by EDS. The interdiffusion coefficients at different temperature and concentration of Fe are calculated by Boltzmann-Matano analysis. Within the range of about600℃to750℃for a soaking time of2hours, the diffusion frequency factor, and activation energy of diffusion are estimated.
     The anti-corrosion properties of nickel plated punched steel strip in5%NaCl solution are measured by potentiodynamic polarization tests and electrochemical impedance spectroscopy methods after various heat-treatment process. The results show that the corrosion resistance and resistance to penetration of aqueous medium are far better than those of as-deposited Ni. However, in this heat-treatment, the thickness of a Fe-Ni diffusion layer should be controlled so that the Fe/Ni ratio is within the range of30%or less on the surface of the nickel plated punched steel strip. When the Fe/Ni ratio exceeds30%, the corrosion resistance substantially decreases as the exposure rate of iron increases.
引文
[1]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000.
    [2]机械工业北京电工技术经济研究所.储能及动力电池标准体系研究报告[R].机械工业北京电工技术经济研究所,2012-4.
    [3]工业和信息化部.新材料产业“十二五”发展规划[R].2012-1-4.
    [4]工业和信息化部.新材料产业“十二五”重点产品目录[R],2012.1.4
    [5]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006—2020年)[R].国发[2005]第044号,2006-2-9
    [6]梁鹏翔.电池材料[M].北京:电子工业出版社,1995.
    [7]金成昌,胡志波,蒋中彬.钢壳对无汞碱性锌锰电池电性能的影响[J].电池工业,2005,10(4):195-198.
    [8]周益春,潘勇.覆镍深冲钢带及其生产方法[P].中国:CN1600904A[P]. 2005-03-30.
    [9]潘勇.用于高性能电池外壳微/纳米晶覆镍深冲钢带的研制[D].湘潭:湘潭大学,2007。
    [10]GB/T5235-2007,加工镍及镍合金化学成分和产品形状[S].北京:中国标准出版社,2007
    [11]GB/T2072-2007,镍及镍合金带材[S].北京:中国标准出版社,2007
    [12]DAVIES G J, SHU Zhen. Development of nickel foam [J]. Material Science, 1983,18 (2):1899-1911.
    [13]PATE P. Foam collector for electrochemical cells. US:6214490 [P],2001-04-10.
    [14]BRANNAN J R, VACCARO A J, Healy J P. High density, high capacity battery electrode. US:5374491 [P],1994-12-20.
    [15]戴长松,王殿龙,胡信国,等.连续泡沫镍制造技术[J].中国有色金属学报,2003,23(1):1-14.
    [16]原鲜霞,邓晓燕,王荫东,等.纤维镍电极与泡沫镍电极的比较[J].电池,2000,30(4):166-167.
    [17]BUGNET B, DONIAT D. Porous metal structure and method of manufacturing of said structure. US:4882232 [P],1989-11-21.
    [18]LIU P S, CHEN H, LIANG K M, et al. Relationship between apparent electrical-conductivity and preparation conditions for nickel foam [J]. J Appl Electrochem,2000,30(10):1183-1186.
    [19]奚正平,张健,(毋录建,等.MH-Ni电池用新型镍纤维阳极材料的制备及性能[J].稀有金属材料与工程,1999,28(6):371-374.
    [20]奚正平,张健,毋录建,等.高容量MH-Ni电池用镍纤维毡阳极材料研究[J].电源技术.2000,24(5):274-276.
    [21]朱文化,张登君,张冠东,等.高比容量中空纤维镍电极的研究[J].电源技术.1996,20(1):5-8.
    [22]许卫星,刘卫民,丁江.中空纤维镉镍电池内阻及高倍率放电性能的研究[J].电源技术.1999,23(4):205-206
    [23]李钒,王习东,张登君,等.网络化的ANN-GA系统优化中空纤维镍基板制备工艺参数[J].金属学报.2005,41(12):1293—1297.
    [24]SAKAI T, MIYAMURA H, Kuriyama, et al. Metal hydride anodes for nickel-hydrogen secondary battery [J]. J. Electrochem. Soc,1990,137(3): 795-799.
    [25]GB/T 20253-2006,可充电电池用冲孔镀镍钢带[S].北京:中国标准出版社,2006.
    [26]GB/T699-1999,优质碳素结构钢[S].北京:中国标准出版社,1999
    [27]JIS Z 3141-2009.冷轧钢板及钢带[S].东京:日本工业标准.2009.
    [28]金成昌,胡志波,蒋中彬.钢壳对无汞碱性锌锰电池电性能的影响[J].电池工业,2005,10(4):195-198
    [29]余国华,金成昌,郭世忠.提高碱锰电池大电流放电性能的途径[J].电池,2001,31(2):80-81.
    [30]Junkers Dieter, Schmidt Ferdinand, Ferenczy Nikolaus. Cold-rolled steel strip with electrodeposited nickel coating exhibiting a great diffusion depth. US: 4910096[P],1990-03-20
    [31]Golodnitsky D, Rosenberg Y, Ulus A. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte [J]. Electrochimica Acta.2002,47(17):2707-2714.
    [32]Schlesinger M. Modern Electroplating, Fourth Edition [M]. New York:John Wiley and Sons Publication,2000.
    [33]Gomez E, Pan S, Valls E. Electrodeposition of Co-Ni and Co-Ni-Cu systems in sulphate-citrate medium[J]. Electrochimica Acta.2005,51(1):146-153.
    [34]李玮.用于锂离子电池钢壳的镀镍钴钢带制备工艺及耐蚀性研究[D].湘潭:湘潭大学,2011.
    [35]Wang L, Gao Y, Xue Q, et al. Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits [J]. Applied Surface Science.2005, 242(3-4):326-332.
    [36]Ohmura Hitoshi, Tomomori Tatsuo, Ohmura Hideo. Battery case having surface-treated steel sheet. US:6087040[P],2000-07-11.
    [37]Ohmura Hitoshi, Tomomori Tatsuo, Ohmura Hideo. Surface-treated steel plate for battery case, battery case and battery using the case. UnSt:6270922[P], 2001-08-07
    [38]Ohmura Hitoshi, Koyakumaru Yasuhiro, Iketaka Satoshi. Method for manufacturing a corrosion resistant nickel plating steel sheet or strip. US: 5679181[P],1997-10-21.
    [39]大村,友森龙夫,大村英雄.电池外壳和用于电池外壳的表面处理钢板.中国:CN97194368.0[P],1997-05-09.
    [40]Schneider Gerhard, Laig-Horstebrock Helmut. Current conductor for a metal oxide electrode in an alkaline electrolyte system. US:4760002[P],1988-07-26.
    [41]Woodnorth Douglas J, Brys Barbara. Alkaline cell with improved casing. US: 6555266[P],2003-04-29。
    [42]大村,友森龙夫,大村英雄.电池外壳用的表面处理钢板和电池外壳.中国:CN1449588[P],2003-10-15.
    [43]Ohmura Hitoshi, Moriyama Hirokazu, Tomomori Tatsuo, Iketaka Satoshi. Surface treated steel sheet for battery containers, a battery container, and a battery produced thereof. US:6136107[P],2000-10-24.
    [44]Ohmura Hitoshi, Tomomori Tatsuo, Ohmura Hideo, Ohshima Tatsuya. Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery. US:6551721 [P],2003-04-22.
    [45]李伟生.低碳钢表面电沉积镍涂层材料设计及其性能研究[D].厦门:厦门大学,2008.
    [46]田均波,徐路民,刘公志.一种用于镍氢电池极板的穿孔钢带的生产方法.中国:CN1485162A[P],2004-03-31.
    [47]张允城,胡如南,向荣.电镀手册[M].北京:国防工业出版社,1997.
    [48]刘勇,罗义辉,魏子栋.脉冲电镀的研究现状[J].电镀与精饰,2005,27(5):25-29.
    [49]向国朴.脉冲电镀的原理与应用[M].天津:天津科学技术出版社,1989.
    [50]肖刘.覆镍深冲钢带表面结构和相关性能[D],湘潭:湘潭大学,2002.
    [51]周中斌.电池极板用穿孔钢带及其生产工艺和专用设备.中国: CN1088265C[P],200207-24.
    [52]董世元.穿孔钢带电镀镍[J].电镀与精饰,1994,16(4):30-32.
    [53]许开华,薛庆忠.一种动力电池极板用穿孔钢带.中国:CN1121074C[P],2003-09-10.
    [54]郑利峰.氨络合物体系电积镍的阴阳极机理研究[D].杭州:浙江工业大学,2004
    [55]高志峰.镍氨络合物电积金属镍[D].杭州:浙江工业大学,2003
    [56]魏杰,王郁萍,邱冬.在甲酸盐溶液中得到的镍镀层性能的研究[J].哈尔滨建筑大学学报,1997,30(6):118-122.
    [57]Stetten D.JR.Acidic behavior of concentrated boric acid solutions [J]. Anal.Chem.1951,23(8):1177-1179.
    [58]吴万伟,田宏建.镀镍溶液中硼酸作用机理[J],北京师范大学学报:自然科学版,1989(2):50-53.
    [59]王宏英.缓冲剂在电镀工业中的应用[J].表面技术,1994,23(4):176-179.
    [60]Kamel-Eddine Bouhidel, Michel Rumeau. Ion-exchange membrane fouling by boric acid in the electrodialysis of nickel electroplating rinsing waters generalization of our results. Desalination,2004.167:301-310.
    [61]Chadi Y, Wolfram K, Roger C, et al. Health impact evaluation of boron in drinking water:a geographical risk assessment in Northern France [J]. Environmental Geochemistry and Health,2005,27:419-427.
    [62]National Academy of Sciences (NAS). Mineral Tolerance of Domestic Animals [M]. Washington, D C, National Academy Press,1980:71-83.
    [63]Seal B S, Weeth H J. Effect of boron in drinking water on the male laboratory rat [J]. Bull. Environ. Contain. Toxicol,1980,25:782-789
    [64]Weinthal E, Parag Y, Vengosh A, et al. The EU drinking water directive:the boron standard and scientific uncertainty [J]. Eur.Environ.,2005,15:1-12
    [65]GB3838-2002,地表水环境质量标准[S].北京:中国标准出版社,2002
    [66]Chadi Y, Wolfram K, Roger C, Josiane S, Ginette D and Guy H. Health impact evaluation of boron in drinking water:a geographical risk assessment in Northern France [J]. Environmental Geochemistry and Health,2005, 27:419-427.
    [67]Yunus C, Gulsin A, Ali T, et al. Removal of boron from water by using reverse osmosis [J]. Separation and Purification Technology,2008,4:141-146.
    [68]ABD EL MEGUID E A, ABD EL REHIM S S, MOUSTAFAE M. The electroplating of nickel from aqueous gluconate baths [J]. Trans. IMF,1999,77 (5):188-191
    [69]魏杰,苏荣军,周定等.电镀镍新工艺的研究[J].哈尔滨工业大学学报,1998,30(4):97-101.
    [70]Abd El Wahaab S M, Abd El-Halim A M, Abd El Rehim S S, et al. Effect of bath constituents and superimposed sinusoidal AC on nickel electroplating from acidic acetate solutions[J]. Surface and Coatings Technology,1986,29(4): 313-324
    [71]Gamburg Y D, Grosheva M Y, Biallozor S, et al. The electrochemical deposition of nickel from electrolytes containing malonic acid[J]. Surface and Coatings Technology,2002,150(1):95-100.
    [72]Ibrahim M A M, El Rehim S S A, El Wahaab S M A, et al. Nickel electroplating on steel from acidic citrate baths[J]. Plating and surface finishing,1999,86(4): 69-75.
    [73]张清顺,常海涛,黄益福.浅谈碱性锌锰电池的技术革新[J].电池工业,2002,7(3,4):106-108.
    [74]Oltman J E, Dopp B, Burns D. Metal-air cell having thin-walled anode and cathode cans. US:5567538[P],1996-10-22.
    [75]Hirofumi, Sugikawa, Sachio, et al. Battery can, sheet for forming battery can, and method for manufacturing sheet. US:5576113[P],1996-11-19.
    [76]石琢清和,山田辉昭,浓野通博.用于碱性锰电池正极罐的镀镍钢板及碱性锰电池正极罐.中国:CN1484714A[P],2004-03-24..
    [77]Nomura Giichiro, Yubuta Osamu. Inner-shield material to be attached inside a color cathode ray tube and manufacturing method thereof. US:5618401 [P], 1997-04-08.
    [78]Sugikawa Hirofumi, Michibata Sachio, Hayashi Keiichi. Battery can, sheet for forming battery can, and method for manufacturing sheet. US:5603782 [P], 1997-02-18.
    [79]Dopp R B, Oltman J E, Passaniti J L. Metal-air cathode and cell having a hardened current collecting substrate:U.S. Patent 5,650,246[P].1997-7-22.
    [80]Ohmura Hitoshi, Koyakumaru Yasuhiro, Iketaka Satoshi. Corrosion resistant nickel plating steel sheet or strip and manufacturing method thereof. US: 5587248 [P],1996-12-24.
    [81]Ohmura Hitoshi, Moriyama Hirokazu, Tomomori Tatsuo, et al. Surface treated steel sheet for battery containers, a battery container, and a battery produced thereof. US:5993994[P],1999-11-30.
    [82]Park S K, Springstead J C, Armour D M. Duplex-coated cathode cans, and electrochemical cells made therewith:U.S. Patent 6,372,381[P].2002-4-16.
    [83]周中斌.电池极板用穿孔钢带.中国:CN2328101Y[P],1999-07-07
    [84]李维,王传福.电池极板用穿孔钢带.中国:CN2541954Y[P],2003-03-26.
    [85]汤义武,贺跃辉,肖腾彬等.一种电池极板用穿孔钢带.中国:2715354Y[P],2005-08-03.
    [86]许开华,薛庆忠.一种动力电池极板用穿孔钢带.中国,2458739Y[P].2001-09-10.
    [87]许开华,聂祚仁,郭学益.一种镍电池的极板及其制备方法:中国,1185735C[P].2005-01-19.
    [88]许开华,聂祚仁,郭学益.一种镍电池的极板:中国,2523029Y[P].2002-01-21.
    [89]《电解加工》编译组编译.电解加工[M].北京:国防工业出版社,1977
    [90]范植坚,王天诚.电解加工技术及其研究方法[M].北京:国防工业出版社2004
    [91]赵秦生,张皑.铁的电解和电镀[M].北京:人民交通出版社,1986
    [92]GB/T 3505-2009, 产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数[S].北京:中国标准出版社,2009.
    [93]GB10610-89,触针式仪器测量表面粗糙度的规则和方法[S].北京:中国标准出版社,1989.
    [94]JJF 1105-2003,触针式表面粗糙度测量仪校准规范[S].北京:中国标准出版社,2003
    [95]Noyan I C, Cohen J B. Residual Stress Measurement by Diffraction and Interpretation [M]. New York:Springer Verlag,1987
    [96]GB/T 7704-2008,无损检测X射线应力测定方法[S].北京:中国标准出版社,2008.
    [97]D Landolt.电抛光和电解加工的进展[J].国外金属加工,1990(2):38-43.
    [98]徐惠宇.微细电解加工系统及其相关工艺的研究[D].南京:南京航空航天大学,2004
    [99]吉华,董宗玉,陈匡民.电化学抛光用于光刻工艺的研究.新技术新工艺,2001(1):14-15
    [100]哈尔滨工业大学机械制造工艺教研室编.电解加工技术[M]].北京:国防工业出版社,1979
    [101]WILSON J F. PRACTICE AND THEORY OF ELECTROCHEMICAL MACHINING [M]. NEW YORK:WILE-INTERSCIENCE,1971:252
    [102]DeBarr A E, Oliver D A. Electrochemical Machining[M], Macdonald & Co. Ltd., Surrey, UK,1968.
    [103]闫喜春.金属材料组织对电解加工质量的影响[J].河北能源职业技术学院学报,2002(3):52-53
    [104]吕景楼,陈斌.热处理对化学镀镍层微观结构和电性能的影响[J].电子元件与材料,1985(4):2-5
    [105]冯端.金属物理学[M].北京:科学出版杜,1987
    [106]许顺生.金属X射线学[M].北京:科学出版社,1962
    [107]张定铨,何家文.材料中残余应力的X射线衍射分析和作用[M].西安交通大学出版社,1999:147.
    [108]Kelsall G I, Robbins D J. Thermodynamics of Ti-H2O-F (-Fe) systems at 298 K [J]. J Electroanal Chem,1990,283:135-157
    [109]张索林,魏雨,刘晓地.化学热力学平衡中的几个问题[M].河北:河北教育出版社,1992.
    [110]耿秋菊,冯立明,夏祥华.低温氯化物电镀铁溶液的稳定剂研究[J].电镀与涂饰,2007,26(8):14-16
    [111]郑华均,毛信表,吕忠良.稀土添加剂在不对称交直流镀铁中的作用[J].电镀与环保,1998,18(1):8-10.
    [112]陈立佳,康煜平,冯浩然,等.低温直流镀铁液中的添加剂[J].材料保护,1997,30(3):25--27.
    [113]陈立佳,康煜平,洪鹤.稀土添加剂在镀铁中的应用[J].电镀与涂饰,1997,16(1):41-43.
    [114]广西壮族自治区农业机械管理局主编.低温镀铁[M].南宁:广西人民出版社,1981:49-51
    [115]杨文庆.镀铁电解液的质量控制研究(下)[J].河南科技,1982(3):24-32
    [116]Walker R, Irvine S D. The Use and Production of Electrodeposited Iron[J]. Metal Finishing,1976,74(6):39-44.
    [117]Brenner A. Modern Electroplating[J]. ed. FA Lowenheim,2nd Ed., Wiley & Sons, New York,1963:230.
    [118]尹进,王美岭,徐贝力.不同pH值和抗坏血酸量对铁离子化合价状态的影响[J].卫生研究.1989,18(6):35-37
    [119]杨果.Fe-H2O体系中几种物质的稳定性探讨[J].昆明理工大学学报,1999, 24(1):211-214
    [120]马恩忠.溶液的pH值对抗坏血酸氧化的影响[J].天津化工,2003,17(6):20-21
    [121]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987:128-139
    [122]张远声,龚敏.用动电位法测量极化电阻时电位扫描速度的影响[J].四川轻化工学院学报,1995(4):59-65
    [123]PLONSKI.I.H. Kinetics of active iron dissolution inhibited by adsorbed hydrogen [J]. Int.J.Hydrogen Energy,1997,22(10/11):1005-1020.
    [124]ATKINSON.A, MARSHALL.A. Anodic dissolution of iron in acidic chloride solutions [J]. Corrosion Science,1978,18:427-439.
    [125]王德英,李长九,关晓辉,等.复合异抗坏血酸钠溶液的缓蚀行为[J].腐蚀科学与防护技术,1994,6(4):348-351
    [126]Mohan S, Raj V. The effect of additives on the pulsed electrodeposition of copper [J]. Transactions of the Institute of Metal Finishing,2005,83:194-198.
    [127]Das C M, Sudersanan M. Electrochemical studies of magnetic coating on carbon steel in ascorbic and picolinic acid [J]. Journal of Applied Electrochemistry,2003,33:333-338.
    [128]吴冰清.抗坏血酸在电镀工业中的应用[J].电镀和精饰,1995,17:21-25.
    [129]Izaki M, Enomoto E, Omi t. Structure and hardness of Fe-C alloy film electrodeposited from an iron sulfate electrolyte [J]. Journal of the Japan Institute of Metals,1992,56(6):636-640.
    [130]Panayotova M. Deposition of Fe-C alloy on structural steel and cast iron for repair of worn machine parts [J]. Surface and Coatings Technology,2000,124: 266-271
    [131]Al-Meshal I A, Hassan M M A. Ascorbic Acid. In:Florey K, red. Analytical Profiles of Drug Substances Volume 11, Washington:The American Pharmaceutical Association,1982:45-78
    [132]Zumreoglu-Karan B. A rationale on the role of intermediate Au (Ⅲ)-vitamin C complexation in the production of gold nanoparticles[J]. Journal of Nanoparticle Research,2009,11(5):1099-1105.
    [133]Creutz C. Complexities of ascorbate as a reducing agent[J]. Inorganic Chemistry,1981,20(12):4449-4452.
    [134]Hsieh Y H P, Hsieh Y P. Kinetics of Fe (Ⅲ) reduction by ascorbic acid in aqueous solutions[J]. Journal of agricultural and food chemistry,2000,48(5): 1569-1573.
    [135]Khan M M T, Martell A E. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation[J]. Journal of the American Chemical Society,1967,89(16): 4176-4185.
    [136]Khan M M T, Martell A E. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation[J]. Journal of the American Chemical Society,1967,89(26): 7104-7111.
    [137]Juhasz J R, Pisterzi L F, Gasparro D M, et al. The effects of conformation on the acidity of ascorbic acid:a density functional study [J]. Journal of Molecular Structure:THEOCHEM,2003,666:401-407
    [138]Lee J H. Electrodeposition of Ni and Ni-Co alloy in low gravity [D]. Huntsville: University of Alabama in Huntsville,1994
    [139]Supicova M, Rozik R, Trnkova L, et al. Influence of boric acid on the electrochemical deposition of Ni[J]. Journal of Solid State Electrochemistry, 2006,10(2):61-68.
    [140]Bird G. Observations on the Electro-Chemical Influence of Long-Continued Electric Currents of Low Tension [J]. Phil. Trans.,1837,127:37-45.
    [141]Watts O P. Rapid nickel plating [J]. Transactions of American Electrochemical Society,1916,29,395-400.
    [142]Schlotter M. Formation of dense, highly lustrous and impervious deposits of nickel. US:1972693[P],1934-09-04
    [143]PEYTON H A, Green D. Boric Acid Poisoning:Case Report [J]. Southern Medical Journal,1941,34(12):1286-1287
    [144]Wong L C, Heimbach M D, Truscott D R, et al. Boric Acid Poisoning Report of 11 Cases[J]. Can Med Assoc J.1964,90(17):1018-1023.
    [145]张英,周长民.柠檬酸钠的特性与应用[J].辽宁化工,2007,36(5):350-352.
    [146]YING R Y. Electrodeposition of copper-nickel alloys from citrate solutions on a rotating disk electrode [J]. Journal of the Electrochemical Society,1988, 135(12):2957-2964.
    [147]Rode S, Henninot C, Matlosz M, et al. Complexation chemistry in nickel and copper-nickel alloy plating from citrate baths[J]. Journal of the Electrochemical Society,2005,152(4):C248-254
    [148]Afshar A, Dolati A G, Ghorbani M. Electrochemical characterization of the Ni-Fe alloy electrodeposition from chloride-citrate-glycolic acid solutions [J]. Materials Chemistry and physics,2003,77(2):352-358.
    [149]Pushpavanam M, Balakrishnan K. Zinc-nickel alloy deposition in the presence of citrate ions [J]. Journal of Applied Electrochemistry,1996,26(10): 1065-1069.
    [150]Gomez E, Pane S, Valles E. Electrodeposition of Co-Ni and Co-Ni-Cu systems in sulphate-citrate medium [J]. Electrochimica Acta,2005,51(1):146-153
    [151]Wang X C, Cai W B, Wang W J, et al. Effects of ligands on electroless Ni-P alloy plating from alkaline citrate-ammonia solution [J]. Surface and Coatings Technology.2003,168(2-3),2003:300-306
    [152]BARRET C S, M ASSALSKI T B. Structure of Metals [M]. Pergamon Press, Oxford,1980.
    [153]GB/T 17720-1999,金属覆盖层孔隙率试验评述[S].北京:中国标准出版社,1999.
    [154]GB/T 17721-1999,金属覆盖层孔隙率试验铁试剂试验[S].北京:中国标准出版社,1999.
    [155]GB/T 5270-2005,金属基体上的金属覆盖层电沉积和化学沉积层附着强度试验方法评述[S].北京:中国标准出版社,2005.
    [156]GB/T6461-2002,金属基体上金属和其他无机覆盖层经腐蚀试验后的试样和试件的评级[S].北京:中国标准出版社,2002.
    [157]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008.
    [158]张俊,裴和中,张国亮.光亮剂对镍—钴合金电铸层的影响[J].材料保护,2009,42(4):33-35.
    [159]方景礼.电镀添加剂理论与应用[M].北京:国防工业出版社,2006:16-52.
    [160]洪亮亮,王森林.柠檬酸钠对硫酸盐体系钴-镍合金电沉积的影响[J].材料保护,2007,40(5):4-6.
    [161]葛福云,许家园,姚士冰,等.糖精对电沉积镍的结构与电化学活性的影响[J].厦门大学学报:自然科学版,1994,32(2):182-186.
    [162]KISHIMOTO K, YOSHIOKA S, KOBAYAKAWA K, et al. Effects of various additives on the characteristic of electrodeposited nickel thin film [J]. Journal of the Surface Finishing Society of Japan 2003,54:710-713.
    [163]Darrort V, Troyon M, Ebotht J, et al. Quantitative study by atomic force microscopy and spectrophotometry of the roughness and brightness of electrodeposited nickel in the presence of additives [J]. Thin Solid Films,1995, 265:52-57.
    [164]Amblard J, Costavaras T H, Hugot-LeGoff A, et al. Advantages of Precise Determination of Texture in the Ni Electrolytic Deposits Prepared in the Presence of Organic Additives [J]. Oberflilche Surface.1977,18 (11):1-6.
    [165]石高亮,周亚国,董衍林.pH值对化学镀纳米铜膜工艺和晶粒尺寸的影响[J].科技与生活,2011(15):206.
    [166]周绍民.金属电沉积[M].上海:上海科学技术出版社,1982:207-221.
    [167]江山.纳米晶镍镀层的制备及其界面扩散与结构[D].湘潭:湘潭大学,2004.
    [168]Bakonyi I, Toth-Kadar E, Pogany L, et al. Preparation and characterization of dc-plated nanocrystalline nickel electrodeposits [J]. Surf. Coat. Tech.,1996,78 (1-3):124-136.
    [169]万珺,盛晓波,董寅生.电流密度和润湿剂对Ni镀层组织与形貌的影响.表面技术[J].2005,34(5):43-45.
    [170]Pangarov N A, Vitkova S D, Uzunova I. Electronographic investigation of the degree of preferred orientation of nickel electrodeposits [J]. Electrochimica Acta,1966,11(12):1747-1751.
    [171]孙成伟,刘志文,秦福文,等.生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响[J].物理学报2006(3):1390-1397
    [172]马小叶,姜雪宁,孟宪芹,等.沉积温度对Gd掺杂Ce02电解质薄膜生长及电学特性的影响[J].无机材料学报,2008,23(5):912-916
    [173]El Rehim S S A, Ibrahim MAM, Dankeria M M. Electrodeposition of cobalt from gluconate electrolyte[J]. Journal of applied electrochemistry,2002,32(9): 1019-1027.
    [174]朱元保,沈子琛,张传福等.电化学数据手册[M].长沙:湖南科学技术出版社,1985:354-356.
    [175]Barkey D P, Muller R H, Tobias C W. Roughness development in metal electrodeposition I. Experimental results[J]. Journal of the Electrochemical Society,1989,136(8):2199-2214
    [176]Liu T, Guo Z, Wang Z, et al. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field[J]. Applied Surface Science,2010,256 (22):6634-6640.
    [177]Ning Z H, He Y D. Rapid electroplating of Cu coatings by mechanical attrition method [J]. Transactions of Nonferrous Metals Society of China,2008,18 (5):1100-1106.
    [178]Safranek W H. THE PROPERTIES OF ELECTRODEPOSITED METALS AND ALLOYS:CHAPTER 14:NICKEL COMPOSITES [J]. American Elsevier Publishing Co., Inc.,1974:240.
    [179]Doi T, Mizumoto K, Tanaka S, et al. Effect of bath pH on Nickel Citrate electroplating bath[J]. Metal finishing,2004,102(6):104-111.
    [180]Doi T, Mizumoto K, Tanaka S, et al. Bright Nickel Plating from Nickel Citrate Electroplating Baths [J]. Metal finishing,2004,102(4):26-35.
    [181]Ibrahim M A M, El Rehim S S A, El Wahaab S M A, et al. Nickel electroplating on steel from acidic citrate baths[J]. Plating and surface finishing, 1999,86(4):69-75
    [182]王听,张春丽.溶液pH值对镀镍性能的影响[J].当代化工,2003,32(3):129-131.
    [183]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [184]秦丽元.电沉积纳米晶镍及镍钴合金的微观组织和性能研究[D].长春:吉林大学,2010
    [185]QIN Li-yuan, LIAN Jian-she, JIANG Qing. Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni [J]. Trans. Nonferrous Met. Soc. China,2010,20(1):82-89
    [186]WANG L P, ZHANG J Y, GAO Y, et al. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution [J]. Scripta Materialia 2006,55:657-660
    [187]MATIENZO J, YIN L I, GRIM S O, et al. X-ray photoelectron spectroscopy of nickel compounds [J]. Inorganic Chemistry 1973,12(12):2762-2769.
    [188]BADAWY W A, AL-KHARAFIF M, AL-AJMIJ R.Electrochemical Behaviour of Cobalt in Aqueous Solutions of Different pH [J]. Journal of Applied Electrochemistry,2000,30:693-704.
    [189]Aballe A, Bethencourt M, Botana F J,et al. Influence of the degree of polishing of alloy AA5O83 on its behaviour against localized alkaline corrosion [J]. Corros Sci,2004,46:1909-1920.
    [190]孟波,郭万林,姜燕.表面形貌对lCr11Ni2W2MoV不锈钢耐腐蚀性能的影响[J].机械工程材料,2008,32(8):8-11.
    [191]Walter R, Bobby M. Influence of surface roughness on the corrosion behaviour of magnesium alloy [J]. Materials and Design,2011,32:2350-2354.
    [192]王梅丰,李光东,杜楠.表面粗糙度对304不锈钢早期点蚀行为影响的电化学方法[J].失效分析与预防,2012,7(2):86-90.
    [193]彭立涛,王道明,郑子涛,陈伟军.表面粗糙度对锌涂层防腐性能的影响[J].全面腐蚀控制,2011,25(6):29-31.
    [194]Tomlinson W J, Carroll M W. Substrate roughness, deposit thickness and the corrosion of electroless nickel coatings[J]. Journal of materials science,1990, 25(12):4972-4976.
    [195]李振华,盛敏奇,钟庆东.等.基体表面粗糙度对H13钢板表面镀铬层的影响[J].材料研究学报,2010,24(5):455-463.
    [196]Liu S H Fractal model for the ac response of a rough interface [J]. Phys. Rev. Lett.1985,55:529-532.
    [197]Kaplan T, Gray L J. Effect of disorder on a fractal model for the ac response of a rough interface [J]. Phys. Rev.1985, B32:7360-7366.
    [198]史美伦,李通化,周国定.表面粗糙度的交流阻抗研究及其在铜电极上的应用[J].同济大学学报.1995,23(1):83-87.
    [199]薛永强,栾春晖,樊金串.粗糙表面对金属化学腐蚀的影响[J].材料导报,1998,12(2):23-24.
    [200]薛永强,樊金串,栾春晖.粗糙电化学腐蚀的热力学分析[J].五金科技.1998,26(2):21-23.
    [201]Van Slyke D D. The measurement of butter values and the relationship of butter value to the dissociation constant of the butter and the concentration and reaction of the butter solution [J]. J.Bio.Chem.1922, (52):525-570
    [202]方景礼.电镀配合物—理论与方法[M].北京:化学工业出版社,2008.
    [203]Rode S, Henninot C, Vallieres C. Complexation chemistry in copper plating from citrate baths. Journal of The Electrochemical Society,2004,151 (6): C405-C411
    [204]洪亮亮,王森林.柠檬酸钠对硫酸盐体系钴-镍合金电沉积的影响[J].材料保护,2007,40(5):4-6.
    [205]Green T A, Russell A E, Roy S. The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper-Nickel Alloys [J]. Journal of The Electrochemical Society,1998,145(3):875-881.
    [206]Daniele PG, Ostacoli G, Zerbinati O, et al. Mixed metal complexes in solution. Thermodynamic and spectrophotometric study of copper (Ⅱ)-citrate heterobinuclear complexes with nickel (II), zinc (II) or cadmium (II) in aqueous solution [J]. Transition Metal Chemistry,1988,13(2):87-91
    [207]Rajan K S, Martell AE. Equilibrium studies of uranyl complexes-Ⅳ Reactions with carboxylic acids [J]. Journal of Inorganic and Nuclear Chemistry,1967, 29(2):523-529
    [208]Kotrly S, Sucha L. Handbook of chemical equilibria in analytical chemistry [M]. John Wiley & Sons, New York,1985:162.
    [209]. Li N C, Lindenbaum A, White J M. Some metal complexes of citric and tricarballylic acids [J]. J Inorg Nucl Chem,1959,12,122-129.
    [210]. Campi E, Ostacoli G, MeironeM, et al. Stability of the complexes of tricarballylic and citric acids with bivalent metal ions in aqueous solution [J]. J Inorg Nucl Chem,1964,26 (4):553-564
    [211]Field T B, Coburn J, McCourt J L, et al. Composition and stability of some metal citrate and diglycolate complexes in aqueous solution[J]. Analytica Chimica Acta,1975,74(1):101-106.
    [212]Still E R, Wikberg P. Solution studies of systems with polynuclear complex formation.2. The nickel (II) citrate system[J]. Inorganica Chimica Acta,1980, 46:153-155.
    [213]Stetten Jr D W. Acidic behavior of concentrated boric acid solutions[J]. Analytical Chemistry,1951,23(8):1177-1179.
    [214]王宏英.缓冲剂在电镀工业中的应用[J].表面技术.1994,23(4):176-179.
    [215]张景双,石金声,石磊等.电镀溶液与镀层性能测试[J].北京:化学工业出版社,2003:95
    [216]覃奇贤,刘淑兰.电镀溶液的导电性[J].电镀与精饰,2008,30(2):24-26
    [217]潘秉锁.稀土对提高电镀金刚石钻头性能的研究[D].武汉:中国地质大学,2003
    [218]曲文生,张功,楼琅洪等.NiSO4和NaCl含量对电镀Ni溶液分散能力和Ni沉积层的影响[J].金属学报,2008,44(3):341-345.
    [219]魏杰,周定,IIyΠakT. E.甲酸盐镀液性能的研究[J].电镀与环保,1997,17(5):10-12
    [220]Jelinek R V, David H F. Throwing Index A New Graphical Method for Expressing Results of Throwing-Power Measurements[J]. Journal of The Electrochemical Society,1957,104(5):279-281
    [221]El Rehim A, Sayed S, Abd El Wahaab S M, et al. Electroplating of cobalt from aqueous citrate baths[J]. Journal of Chemical Technology and Biotechnology, 1998,73(4):369-376.
    [222]A J Bard, L R Faulkner.电化学方法原理和应用(第二版).邵元华,朱果逸,董献堆等译.北京:化学工业出版社,2005:7-20
    [223]Franceschetti D R, Macdonald J R. Diffusion of neutral and charged species under small-signal ac conditions [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101 (3):307-316.
    [224]Proud W.G., Muller C. The electrodeposition of nickel on vitreous carbon: Impedance studies [J]. Electrochimica Acta,1993,38 (2-3):405-413
    [225]张亚莉,孙典亭,郭国霖等.电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则(Ⅱ)—含有Warburg阻抗的等效电路的变换[J].高等学校化学学报,2000,21(7):109-86-1092.
    [226]Epelboin I, Wiart R. Mechanism of the electrocrystallization of nickel and cobalt in acidic solution [J]. J Electrochem Soc,1971,118(10):1577-1582.
    [227]谭澄宇,刘字,胡炜,崔航.Ni-SiC电结晶沉积层的阻抗谱及SiC颗粒对Ni沉积的影响[J].材料保护,2009,42(5):11-16.
    [228]Benea L, Bonora PL, Borello A, et al. Composite electrodeposition to obtain nanostructured coatings [J]. J Electrochem Soc,2001,148(7):461-465.
    [229]Martyak N M, Seefeldt R. Comparison of nickel methanesulfonate and nickel sulfamate electrolytes [J]. Plating and surface finishing,2004,91(12):32-37.
    [230]王云燕,彭文杰.锌一铁合金异常共沉积中锌沉积机理的研究(Ⅱ)—-Zn(OH)42-阴极放电的交流阻抗研究[J].材料保护,2004,37(12):1-4.
    [231]Kruglikov S S, Kudryavtsev N T, Sobolev R P. The effect of some primary and secondary brighteners on the double layer capacitance in nickel electrodeposition [J]. Electrochimica Acta,1967,12(9):1263-1271
    [232]JIN Ying, YU Hongying, YANG Dejun, et al. Effects of complexing agents on acidic electroless nickel deposition [J]. RARE METALS.2010,29(4):401-406
    [233]李俊华,邝代治, 冯泳兰等.酸性镀镍中有机添加剂对镍电沉积的作用机理[J].材料保护,2010,43(8):7-9
    [234]王永银, 司云森, 陈阵,余强.十二烷基硫酸钠对电沉积镍电化学行为的影响[J].金属制品.2010,36(6):22-24.
    [235]Chassaing E, Joussellin M, Wiart R. The kinetics of nickel electrodeposition: Inhibition by adsorbed hydrogen and anions [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1983,157 (1):75-88
    [236]Rogers G. T, Ware M J, Fellows R V. The Incorporation of Sulfur in Electrodeposited Nickel, Using Thiourea as a Brightener and Leveler [J]. J. Electrochem. Soc.1960,107 (8):677-682
    [237]. Rogers G T, K J Taylor. The Reduction of Coumarin in the electrodeposition of Nickel [J]. Trans Inst Met Finish,1965,43,75-83
    [238]Madore C, Agarwal P, Landolt D. Blocking Inhibitors in Cathodic Leveling: II.Electrochemical Impedance Spectroscopy Study [J]. J Electrochem Soc. 1998,145(5):1561-1565.
    [239]Epelboin I, JousseUin M, Wiart R. Impedance measurements for nickel deposition in sulfate and chloride electrolytes [J]. J Electroanal Chem,1981, 119:61-71
    [240 Holm M, O'keefe T J. Evaluation of nickel deposition by electrochemical impedance spectroscopy [J]. Journal of applied electrochemistry,2000,30 (10):1125-1132.
    [241]查全性编著.电极过程动力学导论[M].北京:科学出版社,2002:29
    [242]Epelboin I, Joussellin M, Wiart R. Impedance of nickel deposition from sulfate and chloride electrolytes [J]. J Electroanal Chem.,1979,101:281-284.
    [243]Wiart R. Elementary steps of electrodeposition analysed by means of impedance spectroscopy [J]. Electrochimica Acta,1990,35 (10):1587-1593
    [244]Saraby-Reintjes A, Fleischmann M. Kinetics of electrodeposition of nickel from watts baths [J]. Electrochim Acta,1984,29 (4):557-566
    [245]周仲柏,陈永言.电力过程动力学基础教程[M].武汉:武汉大学出版社,1989:300.
    [246]蒋汉赢.冶金电化学[M].北京:冶金工业出版社,1983
    [247]黄子卿.电解质溶液理论导论(修订版)[M].北京:科学出版社,2010.
    [248]谢勤.Zn-Ni、Zn-Ni-P电镀工艺及其基础理论研究[D].长沙:中南大学,2001.
    [249]周绍民金属电沉积—原理与研究方法[M].上海科学技术出版社.1987:197-253,373-383
    [250]王尊本.综合化学实验(第二版)[M].北京:科学出版社,2007:200-215..
    [251]Erdey-Gruz T, Volmer M. Zur frage der elektrolytischen metalluber spanning [J]. Z phys Chem.1931,157:165-170
    [252]Fleischmann M, Thirsk H R. Advances in pure and applied electrochemistry [M]. New York:Wiley Interscience,1963:1-15.
    [253]Armstrong R D, Harrison J A. Two-dimensional nucleation in electrocrystallization [J]. Journal of The Electrochemical Society,1969,116(3): 328-331.
    [254]Budevskii E, Bostanov V, Vitanov T. Electrocrystallization and the Electrolytic Deposition Mechanism for Silver [J]. Growth of Crystals,1976:231-250
    [255]Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta,1983,28(7):879-889.
    [256]Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation:Part I. General considerations [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,138(2):225-239.
    [257]Bewick A, Fleischmann M, Thirsk H R. Kinetics of the electrocrystallization of thin films of calomel [J]. Trans Faraday Soc,1962,58:2200-2216.
    [258]Fletcher S. Some new formulae applicable to electrochemical nucleation/ growth/collision [J]. Electrochimica Acta,1983,28(7):917-923.
    [259]Gomez E, Muller C, GProud W, et al. Electrodeposition of nickel on vitreous carbon:influence of potential on deposit morphology [J]. J Appl Electrochem. 1992,22:872-876.
    [260]Celis J P, Roos J R, Buelens C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix [J] J Eleetroehem.Soc,1987, 134(6):1402-1408..
    [261]谭澄宇.Ni、Cu基复合镀层制备及其电化学基础研究[D].长沙:中南大学,2008.
    [262]Ahmanierni S, Vuoristo P, Mantyla T. Mechanical and elastic properties of modified thick thermal barrier coatings [J]. Materials Science and Engineering A,2004,366(1):175-182.
    [263]Spaepen F. Interfaces and stresses in thin films [J]. Acta Materialia,2000, 48(1):31--42.
    [264]Mamalis A G, Manolakos D E, Baldoukas A K. Finite-element modelling of the stretch forming of coated steels[J]. Journal of materials processing technology, 1997,68(1):71-75.
    [265]Zhou L Q, Li Y C. Numerical analysis of electrodeposited nickel coating in multistage drawing process [J]. Journal of Engineering Materials and Technology,2005,127(4):233-243.
    [266]周里群,周益春.电沉积镍涂层的制备及其抗冲击性能[J].材料保护, 2004,(2):26-27.
    [267]Omura Hitoshi, Yamada Katsutada, Omura Hideo. Scratch and corrosion resistant, formable nickel plated steel sheet, and manufacturing method. US: 4908280[P],1990-03-13.
    [268]闻立时.固体材料界面研究的物理基础[M].北京:科学出版社,2011.
    [269]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998:441-448.
    [270]Matano C. On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel-copper system) [J]. Jpn J Phys,1933(8):109-115.
    [271]Mehrer. H Diffusion in intermetallics [J]. JIM, Materials Transactions,1996, 37(6):1259-1280.
    [278]唐仁政,田荣璋编.二元合金相图及中间相晶体结构[M].长沙:中南大学出版社,2009:538
    [279]Ganesan V, Seetharaman V, Raghunathan V S. Interdiffusion in the nickel-iron system[J]. Materials Letters,1984,2(4):257-262.
    [280]Million B, Ruzickova J, Velisek J, et al. Diffusion processes in the Fe Ni system[J]. Materials Science and Engineering,1981,50(1):43-52.
    [281]Kohn A, Levasseur J, Philibert J, et al. Experimental study of the theories of the Kirkendall effect in the iron-nickel and iron-cobalt systems [J]. Acta Metallurgica, 1970,18:163-173.
    [282]Zener C. Imperfections in nearly perfect crystals [J]. J. Wiley, New York,1952.
    [283]Wells C, Mehl R. Rate of diffusion of nickel in gamma iron in low-carbon and high-carbon nickel steels [J]. Trans AIME,1941,143:329-339.
    [284]BIRCHENALL C E, THOMAS D E. Concentration Dependence of Diffusion Coefficients in Metallic Solid Solution[J]. AIME TRANS,1952,194:867-873.
    [285]Borovskii I B, Marchukova I D, Ugaste Y E. THE SYSTEMS IRON-NICKEL, NICKEL-COBALT, NICKEL-PLATINUM, AND OBALT-PLATINUM [J]. Fiz Met Metalloved.,1967,24 (33):436-441.
    [286]Ustad T, Sorum H. Interdiffusion in the Fe/Ni, Ni/Co, and Fe/Co systems [J]. Phys Status Solidi A,1973,20:285-294.
    [287]Nakamura H, Nonaka K, Sprengel W, et al. Self-diffusion and interdiffusion in intermetallic compound [J]. Materials Science and Engineering,1997, A239-240:819-827.
    [288]Darken L S. Chemical diffusion in the binary alloy [J]. Trans Am Inst Min Metall Engrs.1948,175:184-202.
    [289]Manning J R. Diffusion in a chemical concentration gradient [J]. Phys Rev 1961,124 (2):470-482.
    [290]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270.
    [291]赵卫民,王勇,薛锦等.镍基合金涂层包覆钢腐蚀失效过程的电化学阻抗谱研究[J].金属学报,2005,41(2):178-184
    [292]赵卫民,王勇.电化学阻抗谱法研究热处理对低碳钢镍基合金涂层腐蚀行为的影响[J].金属学报,2008,44(9):1125-1130.
    [293]Gupta D K, Dardi L E, Freeman Jr W R. Method for producing elevated temperature corrosion resistant articles:U.S. Patent 4,198,442[P].1980-4-15
    [294]Ramqvist L H, Grinder N O, Sporrong M, et al. Process for improving the anti-corrosion properties of steel coated with nickel or cobalt. US:4013488[P], 1977-03-22
    [295]张敏捷,潘勇,李玮等.热处理温度对镀镍钴钢带耐腐蚀性能的影响[J].腐蚀与防护,2012,33(4):269-272.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.