25万年来西太平洋暖池核心区古海洋学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了获得西太暖池核心区的上部水体结构变化记录,考察影响海洋生产力变化的因素,评价西太暖池生产力对大气CO_2含量变化的贡献,选择了西太暖池核心区Ontong Java海台西南部WP7站位柱状样沉积物为材料,进行了对浮游有孔虫G. ruber与N. dutertrei壳体δ~(18)O、δ~(13)C,、Mg/Ca分析和沉积物元素地球化学分析。
     基于有孔虫G. ruber、N. dutertrei壳体δ~(18)O、δ~(13)C和Mg/Ca,得到了WP7站位一致的上部水体结构变化结果,且与赤道太平洋风尘通量和中赤道太平洋ΔpCO_2密切相关。风尘通量增加时,ΔpCO_2升高,WP7站位的上部水体混合程度增强,初级生产力升高;风尘通量减少时,ΔpCO_2降低,WP7站位的上部水体混合程度减弱,初级生产力降低。推测西太暖池核心区的上部水体结构变化是赤道太平洋海区风场变化的结果,并且控制了WP7站位初级生产力的变化。对G. ruber、N. dutertrei壳体δ~(18)O、δ~(13)C和Mg/Ca进行频谱分析,结果发现存在着强烈的半岁差周期,说明西太平洋暖池核心区的古海洋变化受到赤道和低纬太阳辐射控制。
     对沉积物元素地球化学组成进行了主成分分析,结果显示,WP7沉积物可分为生源组分、碎屑组分和火山物质。火山物质的输入不仅影响了沉积物的组成,也制约了沉积物内许多元素地球化学指标的应用。推测WP7沉积物内的火山物质主要来源于Ontong Java海台西部和西南部岛弧内的火山活动。沉积物中氧化还原敏感元素的变化特征表明,249.5 kyr B.P.(距今)以来,WP7站位的底层水总体为氧化环境或亚氧化环境,但有一定波动;沉积后埋藏阶段,除表层一段沉积物为氧化性环境外,总体为亚氧化环境,当沉积物中有机碳含量高时环境的还原性更明显。
     WP7站位沉积物中过剩Ba主要来自生物成因,且未受沉积后氧化还原作用影响,反映了生物泵中离开真光层的颗粒有机碳变化。将过剩Ba与反映了离开真光层的颗粒无机碳变化的CaCO_3作比值,可以得到离开真光层的有机碳与无机碳比例,即沉积雨比例。WP7站位的过剩Ba与CaCO_3比值表明,249.5 kyr B.P.以来,西太平洋暖池核心区的沉积雨比例在冰期时低,通过生物泵过程吸收CO_2的能力弱;而在间冰期时沉积雨比例高,吸收CO_2的能力强。
Core WP7, which was recovered from the south west Ontong Java Plateau and the heart area of the West Pacific Warm Pool, was chosen to reconstruct the variation of the upper water column structure, to find out the main reason of the productivity changes and its contribution to Atmosphere CO_2 oscillation. Theδ~(18)O,δ~(13)C, and Mg/Ca of the planktonic foraminifer G. ruber and N. dutertrei were analyzed, with sediments’chemistry analysis also performed.
     Upper water structure variation based on differences between surface dwelling G. ruber and subsurface dwelling N. dutertrei’s Mg/Ca temperature, seawaterδ~(18)O and shellδ~(13)C show great coherence, which also coincide with equatorial pacific eolian flux and central equatorial pacificΔpCO_2 records. High eolian flux, highΔpCO_2, and WP7 strong mixing of the upper water, high primary productivity appeared at the same time; while low eolian flux, lowΔpCO_2, and WP7 weak upper water mixing, low primary productivity emerged coincidently. It is quite possible that the upper water structure variation in West Pacific Warm Pool results from changes of the equatorial Pacific wind field and determines local primary productivity. By spectrum analysis of G. ruber and N. dutertrei’s shell Mg/Ca,δ~(18)O andδ~(13)C, strong half-precessional cycles exist, demonstrating that solar radiation of equatorial and low latitudes determines the local climate and environment changes.
     With primary components analysis of the sediments’element composition, layers containing significant amount of tephra were recognized, with detritus and biogenic always exist. The appearance of the tephra indicates that the volcanoes in the west and southwest island arcs off Ontong Java Plateau were once quite active. These tephra dilute the biogenic CaCO_3 and constrain the application of some geochemistry proxies. Behaviours of redox sensitive elements showed that the very up top of the sediment is in oxic environment, most sediments appear in suboxic environments, except some layers containing high amounts of organic carbon shows weak anoxic characteristics.
     The excess Ba was primarily from biogenic and has suffered no redox effects, indicating that it could be used as a proxy of organic carbon leaving from euphotic zone in biological pump process. With CaCO_3 as the inorganic carbon leaving the euphotic zone, the ratio of excess Ba to CaCO_3 could be used as the rain ratio index, which was high during inter-glacials but low in glacials.
引文
[1]向荣,阎军. 240ka以来西赤道太平洋碳酸钙沉积特征及其古海洋学意义[J].海洋与湖沼, 2000,31(5): 535-542.
    [2]孙荣涛.黑潮流溪与暖池区晚更新世以来的古环境研究[D].青岛:中国科学院研究生院(中国科学院海洋研究所), 2006.
    [3]赵京涛.热带西太平洋边缘海第四纪以来的古环境研究[D].青岛:中国科学院研究生院(中国科学院海洋研究所), 2007.
    [4] Jasper JP, Hayes JM, Mix AC, et al. PHOTOSYNTHETIC FRACTIONATION OF C-13 AND CONCENTRATIONS OF DISSOLVED CO2 IN THE CENTRAL EQUATORIAL PACIFIC DURING THE LAST 255,000 YEARS[J]. Paleoceanography, 1994,9(6): 781-798.
    [5] Winckler G, Anderson RF, Fleisher MQ, et al. Covariant Glacial-Interglacial Dust Fluxes in the Equatorial Pacific and Antarctica[J]. Science, 2008,320(5872): 93-96.
    [6] Yan X-H, Ho C-R, Zheng Q, et al. Temperature and Size Variabilities of the Western Pacific Warm Pool[J]. Science, 1992,258(5088): 1643-1645.
    [7] Fine RA, Lukas R, Bingham FM, et al. The Western Equatorial Pacific - A Water Mass Crossroads[J]. Journal of Geophysical Research-Oceans, 1994,99(C12): 25063-25080.
    [8] Webster PJ. The Role of Hydrological Processes in Ocean-Atmosphere Interactions[J]. Reviews of Geophysics, 1994,32(4): 427-476.
    [9] Cane M, Clement AC. A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millennial timescales. Part II: Global impacts[J]. Mechanisms of Global Climate Change at Millennial Time Scales, 1999,112: 373-383.
    [10] Clement AC, Cane M. A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millennial timescales. Part I: A modeling study of tropical Pacific variability[J]. Mechanisms of Global Climate Change at Millennial Time Scales, 1999,112: 363-371.
    [11] Petit JR, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999,399(6735): 429-436.
    [12] Bassinot FC, Labeyrie LD, Vincent E, et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal[J]. Earth and Planetary Science Letters, 1994,126(1-3): 91-108.
    [13] Sigman DM, Boyle EA. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000,407(6806): 859-869.
    [14] Francois R, Altabet MA, Yu EF, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997,389(6654): 929-935.
    [15] Martinez-Garcia A, Rosell-Mele A, Geibert W, et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma[J]. Paleoceanography, 2009,24.
    [16] Abelmann A, Gersonde R, Cortese G, et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean[J]. Paleoceanography, 2006,21(1).
    [17] Kohfeld KE, Le Quere C, Harrison SP, et al. Role of marine biology in glacial-interglacial CO2 cycles[J]. Science, 2005,308(5718): 74-78.
    [18] Sigman DM, Jaccard SL, Haug GH. Polar ocean stratification in a cold climate[J]. Nature, 2004,428(6978): 59-63.
    [19] Stephens BB, Keeling RF. The influence of Antarctic sea ice on glacial-interglacial CO2 variations[J]. Nature, 2000,404(6774): 171-174.
    [20] Toggweiler JR, Russell JL, Carson SR. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography, 2006,21(2).
    [21] Sarnthein M, Winn K, Duplessy J, et al. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years[J]. Paleoceanography, 1988,3(3): 361-399.
    [22] Maher BA, Prospero JM, Mackie D, et al. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 2010,99(1-2): 61-97.
    [23]沈国英,黄凌风,郭丰等.海洋生态学[M].北京:科学出版社, 2010.
    [24] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO(2) cycles?[J]. Reviews of Geophysics, 2000,38(2): 159-189.
    [25] Garrison T. Oceanography: an invitation to marine science[M]. Brooks/Cole Pub Co, 2007.
    [26] SeaWiFS [M]. http://oceancolorgsfcnasagov/cgi/biosphere_globespl.
    [27] Tomczak M, Godfrey J. Regional oceanography: an introduction [M]. 2001: 142-143.
    [28] Martin JH, Gordon RM, Fitzwater SE. The Case for Iron[J]. Limnology and Oceanography, 1991,36(8): 1793-1802.
    [29] Urey HC. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society [London], 1947: 562-581.
    [30] Emiliani C. Pleistocene Temperatures[J]. Journal of Geology, 1955,63: 538-578.
    [31] CLIMAP. Seasonal reconstructions of the earth’s surface at the Last Glacial Maximum[M]. Geological Society of America Map Chart Series, MC-36. 1981.
    [32] Barrows TT, Juggins S. Sea-surface temperatures around the Australian margin and Indian ocean during the last glacial maximum[J]. Quaternary Science Reviews, 2005,24(7-9): 1017-1047.
    [33] Kucera M, Weinelt M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005,24(7-9): 951-998.
    [34] Ohkouchi N, Kawamura K, Nakamura T, et al. SMALL CHANGES IN THE SEA-SURFACE TEMPERATURE DURING THE LAST 20,000 YEARS - MOLECULAR EVIDENCE FROM THE WESTERN TROPICAL PACIFIC[J]. Geophysical Research Letters, 1994,21(20): 2207-2210.
    [35] Lea DW, Pak DK, Spero HJ. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000,289(5485): 1719-1724.
    [36] Palmer MR, Pearson PN. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean[J]. Science, 2003,300(5618): 480-482.
    [37] de Garidel-Thoron T, Rosenthal Y, Beaufort L, et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr[J]. Paleoceanography, 2007,22(3).
    [38]金海燕,翦知湣,刘东升.西太平洋翁通—爪哇海台晚第四纪浮游有孔虫群与古温度变化[J].海洋地质与第四纪地质, 2003,23(4): 65-71.
    [39] de Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years[J]. Nature, 2005,433(7023): 294-298.
    [40]金海燕,翦知湣,成鑫荣.赤道西太平洋暖池中更新世过渡期的古海洋变化[J].海洋地质与第四纪地质, 2006,26(6): 71-80.
    [41] Schwarz B, Mangini A, Segl M. Geochemistry of a piston core from Ontong Java plateau (western equatorial Pacific): Evidence for sediment redistribution and changes in paleoproductivity[J]. Geologische Rundschau, 1996,85(3): 536-545.
    [42] Pichat S, Sims KWW, Francois R, et al. Lower export production during glacial periods in the equatorial Pacific derived from (Pa-231/Th-230)(xs,0) measurements in deep-sea sediments[J]. Paleoceanography, 2004,19(4): 21.
    [43]赵京涛,李铁刚,常凤鸣等.西太平洋暖池核心区MIS 7期以来的古生产力变化:类ENSO式过程的响应[J].海洋学报(中文版), 2008,30(4): 87-94.
    [44]张江勇,汪品先,成鑫荣等.赤道西太平洋晚第四纪古生产力变化:ODP 807A孔的记录[J].地球科学(中国地质大学学报), 2007,32(3): 303-312.
    [45] Zhang JY, Wang PX, Li QY, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007,64: 121-140.
    [46]刘传联,张拭颖,金海燕等.暖池区1.53Ma以来上层海水变化的颗石藻证据[J].同济大学学报(自然科学版), 2005,33(9): 1172-1176.
    [47] Murray RW, Leinen M, Murray DW, et al. TERRIGENOUS FE INPUT AND BIOGENIC SEDIMENTATION IN THE GLACIAL AND INTERGLACIAL EQUATORIAL PACIFIC-OCEAN[J]. Global Biogeochemical Cycles, 1995,9(4): 667-684.
    [48] Wang R, Xiao W. Biogenic sediments and their paleoceanographic implication in West Pacific Warm Pool during the Pleistocene[J]. Journal of Earth Science, 2010,21(1): 42-54.
    [49] Prospero JM, Uematsu M, Savoie DL. Mineral aerosol transport to the Pacific Ocean[M]//RILEY J P. Chemical Oceanography. New York; Academic Press. 1989: 187-218.
    [50] Krissek LA, Janecek TR, Eolian deposition on the Ontong Java Plateau since the Oligocene: unmixing a record of multiple dust sources, 1993.
    [51] Nakai Si, Halliday AN, Rea DK. Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993,119(1-2): 143-157.
    [52] Andreasen DJ, Ravelo AC. Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum[J]. Paleoceanography, 1997,12(3): 395-413.
    [53] Rosman K, Taylor P. Isotopic Compositions of Elements 1997[J]. Journal of Physical and Chemical Reference Data, 1998,27: 1275-1288.
    [54] Hoefs J. Stable isotope geochemistry[M]. Springer, 2008.
    [55] McCrea JM. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale[J]. The Journal of Chemical Physics, 1950,18(6): 849-857.
    [56] Rohling EJ, Cooke S. Stable oxygen and carbon isotopes in foraminiferal carbonate shells, in: B.K. Sen Gupta (Ed.), Modern Foraminifera[J]. Kluwer Academic, 1999: 239-258.
    [57] Epstein S, Mayeda T. Variation of O18 content of waters from natural sources[J]. Geochimica Et Cosmochimica Acta, 1953,4(5): 213-224.
    [58] O'Neil JR, Clayton RN, Mayeda TK. Oxygen Isotope Fractionation in Divalent Metal Carbonates[J]. The Journal of Chemical Physics, 1969,51(12): 5547-5558.
    [59] Kim ST, Oneil JR. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica Et Cosmochimica Acta, 1997,61(16): 3461-3475.
    [60] Epstein S, Buchsbaum R, Lowenstam HA, et al. Revised carbonate-water isiotopic temperature scale[J]. Geological Society of America Bulletin, 1953,64: 1315-1325.
    [61] Epstein S, Buchsbaum R, Lowenstam H, et al. CARBONATE-WATER ISOTOPIC TEMPERATURE SCALE[J]. Geological Society of America Bulletin, 1951,62(4): 417-426.
    [62] Horibe Y, Oba T. Temperature scale aragonite-water and calcite-water systems Fossils[J]. Fossils, 1972,23-24: 69-79.
    [63] Emiliani C. The Generalized Temperature Curve for the past 425,000 Years: A Reply[J]. The Journal of Geology, 1967,75(4): 504-510.
    [64] Mulitza S, Boltovskoy D, Donner B, et al. Temperature: delta O-18 relationships of planktonic foraminifera collected from surface waters[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2003,202(1-2): 143-152.
    [65] Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera[J]. Geochimica Et Cosmochimica Acta, 1983,47(6): 1025-1031.
    [66] Shackleton NJ. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[J]. Les Meth Quant d’étude Var Clim au Cours du Pleist, Coll Int CNRS, 1974,219: 203-209.
    [67] Emiliani C. Paleotemperature Analysis of Caribbean Cores P6304-8 and P6304-9 and a Generalized Temperature Curve for the past 425,000 Years[J]. The Journal of Geology, 1966,74(2): 109-124.
    [68] Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records[J]. Paleoceanography, 2005,20(1).
    [69] Imbrie J, Hays J, Martinson D, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marineδ18O record[M]//BERGER A. Milankovitch and Climate Part 1. New York; Springer. 1984.
    [70] Martinson DG, Pisias NG, Hays JD, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy[J]. Quaternary Research, 1987,27(1): 1-29.
    [71] Craig H, Gordon LI. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere: proceedings of the Stables Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, Italy, 1965[C]. Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, Pisa.
    [72] ?stlund HG, Craig H, Broecker WS, et al. GEOSECS Atlantic, Pacific, and Indian Ocean Expeditions, vol. 7, Shorebased Data and Graphics[J]. National Science Foundation, Washington, DC, 1987.
    [73] Mashiotta TA, Lea DW, Spero HJ. Glacial-interglacial changes in Subantarctic sea surface temperature and delta O-18-water using foraminiferal Mg[J]. Earth and Planetary Science Letters, 1999,170(4): 417-432.
    [74] Elderfield H, Ganssen G. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000,405(6785): 442-445.
    [75] Clarke FW, Wheeler WC. The inorganic constituents of marine invertebrates (second edition, revised and enlarged)[J]. US Geological Survey Professional Paper, 1922,62.
    [76] Chave KE. Aspects of the biogeochemistry of magnesiumⅠ. Calcareous marine organisms[J]. Journal of Geology, 1954,62: 266 - 283.
    [77] Chave KE. Aspects of the biogeochemistry of magnesiumⅡ. Calcareous sediments and rocks[J]. Journal of Geology, 1954,62: 587 - 599.
    [78] Blackmon PD, Todd R. Mineralogy of some foraminifera as related to their classification and ecology[J]. Journal of Paleontology, 1959,33: 1 - 15.
    [79] Cronblad HG, Malmgren BA. Climatically controlled variation of Sr and Mg in Quaternary planktonic foraminifera[J]. Nature, 1981,291: 61 - 64.
    [80] Mucci A. Influence of temperature on the composition of magnesium calcite overgrowths precipitated from seawater[J]. Geochimica et Cosmochimica Acta, 1987,51: 1977 - 1984.
    [81] Kinsman DJJ, Holland HD. The co-precipitation of cations with CaCO3--IV. The co-precipitation of Sr2+ with aragonite between 16[degree sign] and 96[degree sign]C[J]. Geochimica et Cosmochimica Acta, 1969,33(1): 1-17.
    [82] Katz A. The interaction of magnesium with calcite during crystal growth at 25–90degC and one atmosphere[J]. Geochimica et Cosmochimica Acta, 1973,37: 1563 - 1586.
    [83] Oomori T, Kaneshima H, Maezato Y, et al. Distribution coefficient of Mg2+ ions between calcite and solution at 10-50[degree sign]C[J]. Marine Chemistry, 1987,20(4): 327-336.
    [84] Broecker WS, Peng TH. Tracers in the sea[M]. Lamont-Doherty Geological Observatory, Columbia University New York, N. Y, 1982.
    [85] Rosenthal Y, Boyle EA, Slowey N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography[J]. Geochimica Et Cosmochimica Acta, 1997,61(17): 3633-3643.
    [86] Lea DW, Mashiotta TA, Spero HJ. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999,63(16): 2369-2379.
    [87] Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996,60(5): 803-814.
    [88] Nürnberg D, Bijma J, Hemleben C. Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature[J]. Geochimica et Cosmochimica Acta, 1996,60: 2483-2484.
    [89] Mashiotta TA, Lea DW, Spero HJ. Glacial-interglacial changes in subantarctic sea surface temperature andδ18O-water using foraminiferal Mg[J]. Earth and Planetary Science Letters, 1999,170: 417 - 432.
    [90] Dekens PS, Lea DW, Pak DK, et al. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002,3.
    [91] Rosenthal Y, Lohmann GP. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002,17(3): 6.
    [92] Hastings DW, Kienast M, Steinke S, et al. A Comparison of Three Independent Paleotemperature Estimates From a High Resolution Record of Deglacial SST Records in the Tropical South China Sea[J]. AGU Fall Meeting Abstracts, 2001,12: 10.
    [93] Whitko AN, Hastings DW, Flower BP. Past sea surface temperatures in the tropical South China Sea based on a new foraminiferal Mg calibration [J/OL] 2002, MarSci.2002.01.020101(
    [94] Regenberg M, Steph S, Nürnberg D, et al. Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species withδ18O-calcification temperatures: Paleothermometry for the upper water column [J]. Earth and Planetary Science Letters, 2009,278(3-4): 324-336.
    [95] Cleroux C, Cortijo E, Anand P, et al. Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction[J]. Paleoceanography, 2008,23(3).
    [96] Mohtadi M, Steinke S, Groeneveld J, et al. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: A sediment trap study[J]. Paleoceanography, 2009,24.
    [97] Anand P, Elderfield H, Conte MH. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003,18(2).
    [98] McConnell MC, Thunell RC. Calibration of the planktonic foraminiferal Mg/Ca paleothermometer: sediment trap results from the Guaymas Basin, Gulf of California[J]. Paleoceanography, 2005,20(2).
    [99] Huang KF, You CF, Lin HL, et al. In situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time series sediment trap: A case study of intense dissolution artifact in the South China Sea[J]. Geochemistry Geophysics Geosystems, 2008,9.
    [100] Pak DK, Lea DW, Kennett JP. Seasonal and interannual variation in Santa Barbara Basin water temperatures observed in sediment trap foraminiferal Mg/Ca[J]. Geochemistry Geophysics Geosystems, 2004,5: 18.
    [101] Ravelo AC, Hillaire-Marcel C, Claude Hillaire-Marcel and Anne De V. Chapter Eighteen The Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography[M]. Developments in Marine Geology; Elsevier. 2007: 735-764.
    [102] Anderson TF, Arthur MA. STABLE ISOTOPES OF OXYGEN AND CARBON AND THEIR APPLICATION TO SEDIMENTOLOGIC AND PALEOENVIRONMENTAL PROBLEMS[M]. Stable Isotopes in Sedimentary Geology; SEPM (Society for Sedimentary Geology). 1983: 1-1-1-151.
    [103] Kroopnick PM. The distribution of 13C of [Sigma]CO2 in the world oceans[J]. Deep Sea Research Part A Oceanographic Research Papers, 1985,32(1): 57-84.
    [104] Lynch-Stieglitz J, Fairbanks RG. A conservative tracer for glacial ocean circulation from carbon isotope and palaeo-nutrient measurements in benthic foraminifera[J]. Nature, 1994,369(6478): 308-310.
    [105] Steinke S, Chiu HY, Yu PS, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/ subtropical surface water conditions[J]. Geochemistry Geophysics Geosystems, 2005,6.
    [106] Kuroyanagi A, Kawahata H. Vertical distribution of living planktonic foraminifera in the seas around Japan[J]. Marine Micropaleontology, 2004,53(1-2): 173-196.
    [107] Ravelo AC, Fairbanks RG. Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient[J]. Paleoceanography, 1992,7: 815-831.
    [108] Wang LJ. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000,161(3-4): 381-394.
    [109] IRI/LDEO Climate Data Library [M]. http://iridlldeocolumbiaedu/.
    [110] Coffin MF, Eldholm O. LARGE IGNEOUS PROVINCES - CRUSTAL STRUCTURE, DIMENSIONS, AND EXTERNAL CONSEQUENCES[J]. Reviews of Geophysics, 1994,32(1): 1-36.
    [111] Fitton JG, Godard M. Origin and evolution of magmas on the Ontong Java Plateau[M]. Origin and Evolution of the Ontong Java Plateau. Bath; Geological Soc Publishing House. 2004: 151-178.
    [112] Johnson R. Geotectonics and volcanism in Papua New Guinea: a review of the late Cainozoic[J]. BMR Journal of Australian Geology and Geophysics, 1979,4: 181-207.
    [113] Kamenov GD, Perfit MR, Mueller PA, et al. Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar-Lihir-Tanga-Feni island chain, Papua New Guinea[J]. Contributions to Mineralogy and Petrology, 2008,155(5): 635-656.
    [114] Davies HL, Price RC. BASALTS FROM THE SOLOMON AND BISMARCK SEAS[J]. Geo-Marine Letters, 1987,6(4): 193-202.
    [115] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002,20(4): 353-431.
    [116] Coleman P, Kroenke L. Subduction without volcanism in the Solomon Islands arc[J]. Geo-Marine Letters, 1981,1(2): 129-134.
    [117] Petterson MG, Neal CR, Mahoney JJ, et al. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau Solomon arc collision, and for the fate of oceanic plateaus[J]. Tectonophysics, 1997,283(1-4): 1-33.
    [118] Perfit M, Langmuir C, Baekisapa M, et al. Geochemistry and petrology of volcanic rocks from the Woodlark Basin: addressing questions of ridge subduction[J]. Marine Geology, Geophysics, and Geochemistry of the Woodlark Basin-Solomon Islands, 1987,7: 113-154.
    [119] Petterson MG, Babbs T, Neal CR, et al. Geological-tectonic framework of Solomon Islands, SW Pacific: crustal accretion and growth within an intra-oceanic setting[J]. Tectonophysics, 1999,301(1-2): 35-60.
    [120] Kroenke LW, Wessel P, Sterling A. Motion of the Ontong Java Plateau in the hot-spot frame of reference: 122 Ma-present[J]. Geological Society, London, Special Publications, 2004,229(1): 9-20.
    [121] Petterson MG. The geology of north and central Malaita, Solomon Islands: the thickest and most accessible part of the world's largest (Ontong Java) ocean plateau[J]. Origin and Evolution of the Ontong Java Plateau, 2004,229: 63-81.
    [122] Taylor B. Bismarck Sea: Evolution of a back-arc basin[J]. Geology, 1979,7(4): 171-174.
    [123] Sinton JM, Ford LL, Chappell B, et al. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea[J]. Journal of Petrology, 2003,44(1): 159-195.
    [124] GEBCO [M]. http://wwwgebconet/.
    [125] Rytuba J, McKee E, Cox D. Geochronology and geochemistry of the Ladolam gold deposit, Lihir Island, and gold deposits and volcanoes of Tabar and Tatau, Papua New Guinea[J]. US Geological Survey Bulletin, 1993,2039: 119-126.
    [126] Licence PS, Terril JE, Fergusson LJ. Epthermal gold mineralisation, Ambitle Island, Papua New Guinea: proceedings of the Proceedings of the Pacific Eim Congress, Melbourne, [C]. The Australasian Institute of Mining and Metallurgy, 1987.
    [127] Horz KH, Worthington TJ, Winn K, et al. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea[J]. Journal of Volcanology and Geothermal Research, 2004,132(1): 73-95.
    [128] Weinelt M. Online Map Creation [M]. http://wwwaquariusifm-geomarde.
    [129] Lukas R, Yamagata T, McCreary JP. Pacific low-latitude western boundary currents and the Indonesian throughflow[J]. Journal of Geophysical Research-Oceans, 1996,101(C5): 12209-12216.
    [130] Johnson GC, Sloyan BM, Kessler WS, et al. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s[J]. Progress in Oceanography, 2002,52(1): 31-61.
    [131] Cannon GA. Tropical waters in the western Pacific Ocean, August-September 1957[J]. Deep Sea Research and Oceanographic Abstracts, 1966,13(6): 1139-1148.
    [132] Gu DF, Philander SGH. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 1997,275(5301): 805-807.
    [133] Reid J. Intermediate waters of the Pacific Ocean[M]. Johns Hopkins Oceanographic Studies No 2. Baltimore, Maryland; Johns Hopkins University Press. 1965: 85.
    [134] Reid JL. The shallow salinity minima of the Pacific Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1973,20(1): 51-68.
    [135] Reid JL. On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports[J]. Progress in Oceanography, 1997,39(4): 263-352.
    [136] Zenk W, Siedler G, Ishida A, et al. Pathways and variability of the antarctic intermediate water in the western equatorial pacific ocean[J]. Progress in Oceanography, 2005,67(1-2): 245-281.
    [137] Kawabe M, Fujio S, Yanagimoto D. Deep-water circulation at low latitudes in the western North Pacific[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2003,50(5): 631-656.
    [138] Kawabe M, Yanagimoto D, Kitagawa S. Variations of deep western boundary currents in the Melanesian Basin in the western North Pacific[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2006,53(6): 942-959.
    [139] Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2009,56(10): 1675-1687.
    [140] Butt J, Lindstrom E. CURRENTS OFF THE EAST-COAST OF NEW-IRELAND, PAPUA-NEW-GUINEA, AND THEIR RELEVANCE TO REGIONAL UNDERCURRENTS IN THE WESTERN EQUATORIAL PACIFIC-OCEAN[J]. Journal of Geophysical Research-Oceans, 1994,99(C6): 12503-12514.
    [141] Tsuchiya M, Lukas R, Fine RA, et al. Source waters of the Pacific Equatorial Undercurrent[J]. Progress in Oceanography, 1989,23(2): 101-147.
    [142] Delcroix T, Henin C. Observations of the Equatorial Intermediate Current in the Western Pacific Ocean (165°E)[J]. Journal of Physical Oceanography, 1988,18(2): 363-366.
    [143] Lea DW, Pak DK, Paradis G. Influence of volcanic shards on foraminiferal Mg/Ca in a core from the Galapagos region[J]. Geochemistry Geophysics Geosystems, 2005,6: 13.
    [144] Yu JM, Elderfield H, Greaves M, et al. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning[J]. Geochemistry Geophysics Geosystems, 2007,8: 17.
    [145] Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry Geophysics Geosystems, 2003,4: 20.
    [146] Brown SJ, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996,11(5): 543-551.
    [147] Martin PA, Lea DW. A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca[J]. Geochemistry Geophysics Geosystems, 2002,3: 8.
    [148] Weldeab S, Schneider RR, Kolling M. Comparison of foraminiferal cleaning procedures for Mg/Ca paleothermometry on core material deposited under varying terrigenous-input and bottom water conditions[J]. Geochemistry Geophysics Geosystems, 2006,7.
    [149] Pena LD, Calvo E, Cacho I, et al. Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: Implications for Mg/Ca past temperature reconstructions[J]. Geochemistry Geophysics Geosystems, 2005,6(9).
    [150] Rosenthal Y, Perron-Cashman S, Lear CH, et al. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research[J]. Geochemistry Geophysics Geosystems, 2004,5.
    [151] Schrag DP. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates[J]. Paleoceanography, 1999,14(2): 97-102.
    [152] de Villiers S, Greaves M, Elderfield H. An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES[J]. Geochemistry Geophysics Geosystems, 2002,3.
    [153] Schulz M, Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002,28(3): 421-426.
    [154] Schulz M, Stattegger K. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 1997,23(9): 929-945.
    [155] Kawahata H, Suzuki A, Ahagon N. Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330,000 years[J]. Marine Geology, 1998,149(1-4): 155-176.
    [156]李铁刚,赵京涛,孙荣涛等. 250kaB.P.以来西太平洋暖池中心区——Ontong Java海台古生产力演化[J].第四纪研究, 2008,28(3): 447-457.
    [157] Herguera JC, Berger WH. PALEOPRODUCTIVITY FROM BENTHIC FORAMINIFERA ABUNDANCE - GLACIAL TO POSTGLACIAL CHANGE IN THE WEST-EQUATORIAL PACIFIC[J]. Geology, 1991,19(12): 1173-1176.
    [158] Kawahata H. Fluctuations in the ocean environment within the western Pacific warm pool during late Pleistocene[J]. Paleoceanography, 1999,14(5): 639-652.
    [159] Kawahata H, Eguchi N. Biogenic sediments on the Eauripik Rise of the western equatorial Pacific during the late Pleistocene[J]. Geochemical Journal, 1996,30(4): 201-215.
    [160] Andersson C. Pliocene calcium carbonate sedimentation patterns of the Ontong Java Plateau: ODP Sites 804 and 806[J]. Marine Geology, 1998,150(1-4): 51-71.
    [161] Hut G. Consultants’group meeting on stable isotope reference samples for geochemical and hydrological investigations[J]. International Atomic Energy Agency, Vienna, 1987.
    [162] Molfino B, McIntyre A. Precessional Forcing of Nutricline Dynamics in the Equatorial Atlantic[J]. Science, 1990,249(4970): 766-769.
    [163] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production[J]. Science, 1997,278(5342): 1451-1454.
    [164] Berger A, Loutre, MF, et al. Intertropical Latitudes and Precessional and Half-Precessional Cycles[J]. Science, 1997,278(5342): 1476-1478.
    [165] Turekian KK, Wedepohl KH. Distribution of the Elements in Some Major Units of the Earth's Crust[J]. Geological Society of America Bulletin, 1961,72(2): 175-192.
    [166] Taylor SR, McLennan SM. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985: 328.
    [167] Bohn H, McNeal B, O'Connor G. Soil chemistry[M]. John Wiley & Sons Inc, 2001.
    [168] Calvert SE, Pedersen TF. Chapter 14 Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application[M]//HILLAIRE-MARCEL C, DE VERNAL A. Proxies in Late Cenozoic Paleoceanography 1. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo; Elsevier. 2007: 567-644.
    [169] Gromet LP, Haskin LA, Korotev RL, et al. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica Et Cosmochimica Acta, 1984,48(12): 2469-2482.
    [170] Murray RW, Leinen M. Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135°W: Tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the Intertropical Convergence Zone[J]. Geochimica Et Cosmochimica Acta, 1993,57(17): 4141-4163.
    [171] Murray RW, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica Et Cosmochimica Acta, 1996,60(20): 3869-3878.
    [172] Kryc KA, Murray RW, Murray DW. Al-to-oxide and Ti-to-organic linkages in biogenic sediment: relationships to paleo-export production and bulk Al/Ti[J]. Earth and Planetary Science Letters, 2003,211(1-2): 125-141.
    [173] Pattan JN, Shane P. Excess aluminum in deep sea sediments of the Central Indian Basin[J]. Marine Geology, 1999,161(2-4): 247-255.
    [174] Murray RW, Leinen M, Isern AR. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial period[J]. Paleoceanography, 1993,8(5): 651-670.
    [175] Shotyk W, Weiss D, Kramers JD, et al. Geochemistry of the peat bog at Etang de la Gruere, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 C-14 yr BP[J]. Geochimica Et Cosmochimica Acta, 2001,65(14): 2337-2360.
    [176] Nance WB, Taylor SR. Rare earth element patterns and crustal evolution--I. Australian post-Archean sedimentary rocks[J]. Geochimica Et Cosmochimica Acta, 1976,40(12): 1539-1551.
    [177] Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica Et Cosmochimica Acta, 1996,60(23): 4631-4644.
    [178]瞿成利.海水中微量元素-碳酸钙共沉淀现象模拟:古海洋环境指标的实验研究[D].青岛:中国科学院研究生院(中国科学院海洋研究所), 2007.
    [179]刘刚.海相碳酸盐—稀土元素共沉淀过程中的分异作用研究[D].青岛:中国科学院研究生院(中国科学院海洋研究所), 2008.
    [180] Zhang J, Amakawa H, Nozaki Y. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific[J]. Geophysical Research Letters, 1994,21(24): 2677-2680.
    [181] Tribovillard N, Algeo TJ, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006,232(1-2): 12-32.
    [182] Paytan A, Griffith EM. Marine barite: Recorder of variations in ocean export productivity[J]. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 2007,54(5-7): 687-705.
    [183] Rankama K, Sahama T. Geochemistry.[M]. Chicago: University of Chicago Press, 1950: 912.
    [184] Goldschmidt VM. Geochemistry, [M]. Oxford: The Clarendon Press, 1954.
    [185] Goldich S. A study in rock-weathering[J]. The Journal of Geology, 1938,46(1): 17-58.
    [186] Jackson M, Sherman G. Chemical weathering of minerals in soils[J]. Advances in Agronomy, 1953,5: 219-318.
    [187] Fitzpatrick RW, Chittleborough DJ. Titanium and zirconium minerals[M]//DIXON J B, SCHULZE D G. Soil mineralogy with environmental applications; Soil Science Society of America. 2002: 667-690.
    [188] Wayne Nesbitt H, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica Et Cosmochimica Acta, 1997,61(8): 1653-1670.
    [189]韩吟文,马振东,张宏飞等.地球化学[M].北京:地质出版社, 2003.
    [190] Olivarez AM, Owen RM, Rea DK. GEOCHEMISTRY OF EOLIAN DUST IN PACIFIC PELAGIC SEDIMENTS - IMPLICATIONS FOR PALEOCLIMATIC INTERPRETATIONS[J]. Geochimica Et Cosmochimica Acta, 1991,55(8): 2147-2158.
    [191] Coulter SE, Turney CSM, Kershaw P, et al. The characterization and significance of a MIS 5a distal tephra on mainland Australia[J]. Quaternary Science Reviews, 2009,28(19-20): 1825-1830.
    [192] Paytan A, Kastner M, Chavez FP. Glacial to Interglacial Fluctuations in Productivity in the Equatorial Pacific as Indicated by Marine Barite[J]. Science, 1996,274(5291): 1355-1357.
    [193] Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. Chemical Reviews, 2007,107(2): 563-576.
    [194] Mucci A, Morse JW. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition[J]. Geochimica Et Cosmochimica Acta, 1983,47(2): 217-233.
    [195] Kisakurek B, Eisenhauer A, Bohm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters, 2008,273(3-4): 260-269.
    [196] Bernstein RE, Byrne RH, Betzer PR, et al. Morphologies and transformations of celestite in seawater: The role of acantharians in strontium and barium geochemistry[J]. Geochimica Et Cosmochimica Acta, 1992,56(8): 3273-3279.
    [197] Tyson RV, Pearson TH. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991,58(1): 1-24.
    [198] Calvert SE, Pedersen TF. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993,113(1-2): 67-88.
    [199] Calvert SE, Pedersen TF. Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales[J]. Economic Geology, 1996,91(1): 36-47.
    [200] Brumsack HJ. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California[J]. Geological Society, London, Special Publications, 1986,21(1): 447-462.
    [201] Brumsack H. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea[J]. Geologische Rundschau, 1989,78(3): 851-882.
    [202] Middelburg JJ, De Lange GJ, van Der Weijden CH. Manganese solubility control in marine pore waters[J]. Geochimica Et Cosmochimica Acta, 1987,51(3): 759-763.
    [203] Rajendran A, Kumar MD, Bakker JF. Control of manganese and iron in Skagerrak sediments (northeastern North Sea)[J]. Chemical Geology, 1992,98(1-2): 111-129.
    [204] Pedersen TF, Price NB. The geochemistry of manganese carbonate in Panama Basin sediments[J]. Geochimica Et Cosmochimica Acta, 1982,46(1): 59-68.
    [205] Morford JL, Russell AD, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001,174(1-4): 355-369.
    [206] Caplan ML, Bustin RM. Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999,148(4): 187-207.
    [207] Cruse AM, Lyons TW. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales[J]. Chemical Geology, 2004,206(3-4): 319-345.
    [208] Hild E, Brumsack HJ. Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40)[J]. Cretaceous Research, 1998,19(5): 615-633.
    [209] Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica Et Cosmochimica Acta, 1993,57(16): 3867-3883.
    [210] Saito MA, Moffett JW, Chisholm SW, et al. Cobalt limitation and uptake in Prochlorococcus[J]. Limnology and Oceanography, 2002,47(6): 1629-1636.
    [211] Whitfield M. Interactions between phytoplankton and trace metals in the ocean[J]. Advances in Marine Biology, Vol 41, 2001,41: 1-128.
    [212] Achterberg EP, van den Berg CMG, Colombo C. High resolution monitoring of dissolved Cu and Co in coastal surface waters of the Western North Sea[J]. Continental Shelf Research, 2003,23(6): 611-623.
    [213] Huerta-Diaz MA, Morse JW. Pyritization of trace metals in anoxic marine sediments[J]. Geochimica Et Cosmochimica Acta, 1992,56(7): 2681-2702.
    [214] Algeo TJ, Maynard JB. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004,206(3-4): 289-318.
    [215] Piper DZ, Perkins RB. A modern vs. Permian black shale--the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004,206(3-4): 177-197.
    [216] Nameroff TJ, Balistrieri LS, Murray JW. Suboxic trace metal geochemistry in the Eastern Tropical North Pacific[J]. Geochimica Et Cosmochimica Acta, 2002,66(7): 1139-1158.
    [217] Naimo D, Adamo P, Imperato M, et al. Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy[J]. Quaternary International, 2005,140-141: 53-63.
    [218] Morse JW, Luther GW. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica Et Cosmochimica Acta, 1999,63(19-20): 3373-3378.
    [219] Huerta-Diaz MA, Morse JW. A quantitative method for determination of trace metal concentrations in sedimentary pyrite[J]. Marine Chemistry, 1990,29: 119-144.
    [220] Lewan MD, Maynard JB. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochimica Et Cosmochimica Acta, 1982,46(12): 2547-2560.
    [221] Grosjean E, Adam P, Connan J, et al. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin[J]. Geochimica Et Cosmochimica Acta, 2004,68(4): 789-804.
    [222] Collier RW. MOLYBDENUM IN THE NORTHEAST PACIFIC-OCEAN[J]. Limnology and Oceanography, 1985,30(6): 1351-1354.
    [223] Goldberg S, Forster H, Godfrey C. Molybdenum adsorption on oxides, clay minerals, and soils[J]. Soil Science Society of America Journal, 1996,60(2): 425-432.
    [224] Bertine KK, Turekian KK. Molybdenum in marine deposits[J]. Geochimica Et Cosmochimica Acta, 1973,37(6): 1415-1434.
    [225] Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996,145(1-4): 65-78.
    [226] Erickson BE, Helz GR. Molybdenum(VI) speciation in sulfidic waters:: Stability and lability of thiomolybdates[J]. Geochimica Et Cosmochimica Acta, 2000,64(7): 1149-1158.
    [227] Zheng Y, Anderson RF, van Geen A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica Et Cosmochimica Acta, 2000,64(24): 4165-4178.
    [228] Premovic PI, Dordevic DM, Pavlovic MS. Vanadium of petroleum asphaltenes and source kerogens (La Luna Formation, Venezuela): isotopic study and origin[J]. Fuel, 2002,81(15): 2009-2016.
    [229] Anbar AD, Knoll AH. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?[J]. Science, 2002,297(5584): 1137-1142.
    [230] Anbar AD. Molybdenum stable isotopes: Observations, interpretations and directions[J]. Geochemistry of Non-Traditional Stable Isotopes, 2004,55: 429-454.
    [231] Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales[J]. Chemical Geology, 2004,213(4): 385-401.
    [232] Helz GR, Miller CV, Charnock JM, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica Et Cosmochimica Acta, 1996,60(19): 3631-3642.
    [233] Vorlicek TP, Kahn MD, Kasuya Y, et al. Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides[J]. Geochimica Et Cosmochimica Acta, 2004,68(3): 547-556.
    [234] Calvert SE, Piper DZ. Geochemistry of ferromanganese nodules from DOMES site a, Northern Equatorial Pacific: Multiple diagenetic metal sources in the deep sea[J]. Geochimica Et Cosmochimica Acta, 1984,48(10): 1913-1928.
    [235] Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation[J]. Geochimica Et Cosmochimica Acta, 1989,53(1): 69-77.
    [236] Breit GN, Wanty RB. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991,91(2): 83-97.
    [237] Hastings DW, Emerson SR, Mix AC. Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments[J]. Paleoceanography, 1996,11(6): 665-678.
    [238] Emerson SR, Huested SS. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry, 1991,34(3-4): 177-196.
    [239] Morford JL, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica Et Cosmochimica Acta, 1999,63(11-12): 1735-1750.
    [240] Wanty RB, Goldhaber MB. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks[J]. Geochimica Et Cosmochimica Acta, 1992,56(4): 1471-1483.
    [241] Gobeil C, Macdonald RW, Sundby B. Diagenetic separation of cadmium and manganese in suboxic continental margin sediments[J]. Geochimica Et Cosmochimica Acta, 1997,61(21): 4647-4654.
    [242] Middelburg JJ, Comans RNJ. Sorption of cadmium on hydroxyapatite[J]. Chemical Geology, 1991,90(1-2): 45-53.
    [243] Jarvis I, Burnett W, Nathan Y, et al. Phosphorite geochemistry: state-of-the-art and environmental concerns[J]. Eclogae Geologicae Helvetiae, 1994,87(3): 643-700.
    [244] Anderson RF, Fleisher MQ, LeHuray AP. Concentration, oxidation state, and particulate flux of uranium in the Black Sea[J]. Geochimica Et Cosmochimica Acta, 1989,53(9): 2215-2224.
    [245] Klinkhammer GP, Palmer MR. Uranium in the oceans: Where it goes and why[J]. Geochimica Et Cosmochimica Acta, 1991,55(7): 1799-1806.
    [246] Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002,80(1): 41-59.
    [247] McManus J, Berelson WM, Klinkhammer GP, et al. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica Et Cosmochimica Acta, 2005,69(1): 95-108.
    [248] Zheng Y, Anderson RF, Van Geen A, et al. Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica Et Cosmochimica Acta, 2002,66(17): 3085-3092.
    [249] Zheng Y, Anderson RF, Van Geen A, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J]. Geochimica Et Cosmochimica Acta, 2002,66(10): 1759-1772.
    [250] Kochenov A, Korolev K, Dubinchuk V, et al. Experimental data on the conditions of precipitation of uranium from aqueous solutions[J]. geochemistry international, 1978,14: 82-87.
    [251] Sundby B, Martinez P, Gobeil C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments[J]. Geochimica Et Cosmochimica Acta, 2004,68(11): 2485-2493.
    [252] Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica Et Cosmochimica Acta, 2000,64(13): 2233-2242.
    [253] Rosenthal Y, Lam P, Boyle EA, et al. AUTHIGENIC CADMIUM ENRICHMENTS IN SUBOXIC SEDIMENTS - PRECIPITATION AND POSTDEPOSITIONAL MOBILITY[J]. Earth and Planetary Science Letters, 1995,132(1-4): 99-111.
    [254] Rosenthal Y, Boyle EA, Labeyrie L, et al. GLACIAL ENRICHMENTS OF AUTHIGENIC CD AND U IN SUB-ANTARCTIC SEDIMENTS - A CLIMATIC CONTROL ON THE ELEMENTS OCEANIC BUDGET[J]. Paleoceanography, 1995,10(3): 395-413.
    [255] Kato F, Kawabe M. Volume transport and distribution of deep circulation at 165 degrees W in the North Pacific[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2009,56(12): 2077-2087.
    [256] Goldberg ED, G.O.S A. Chemistry of Pacific pelagic sediments[J]. Geochimica Et Cosmochimica Acta, 1958,13(2-3): 153-198, IN151, 199-212.
    [257] Schmitz B. Barium, equatorial high productivity, and the northward wandering of the Indian continent[J]. Paleoceanography, 1987,2(1): 63-77.
    [258] Balakrishnan Nair TM, Ittekkot V, Shankar R, et al. Settling barium fluxes in the Arabian Sea: Critical evaluation of relationship with export production[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005,52(14-15): 1930-1946.
    [259] Bishop JKB. The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988,332(6162): 341-343.
    [260] Ganeshram RS, Fran?ois R, Commeau J, et al. An experimental investigation of barite formation in seawater[J]. Geochimica Et Cosmochimica Acta, 2003,67(14): 2599-2605.
    [261] Dymond J, Suess E, Lyle M. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity[J]. Paleoceanography, 1992,7(2): 163-181.
    [262] Cardinal D, Savoye N, Trull TW, et al. Variations of carbon remineralisation in the Southern Ocean illustrated by the Baxs proxy[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005,52(2): 355-370.
    [263] Eagle M, Paytan A, Arrigo KR, et al. A comparison between excess barium and barite as indicators of carbon export[J]. Paleoceanography, 2003,18(1): 1021.
    [264] Eagle M, Paytan A, Arrigo KR, et al. Correction to "A comparison between excess barium and barite as indicators of carbon export"[J]. Paleoceanography, 2003,18(3): 1060.
    [265] Murray RW, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J]. Paleoceanography, 2000,15(6): 570-592.
    [266] Sternberg E, Tang D, Ho T-Y, et al. Barium uptake and adsorption in diatoms[J]. Geochimica Et Cosmochimica Acta, 2005,69(11): 2745-2752.
    [267] Feely R, Geiselman T, Baker E, et al. Distribution and Composition of Hydrothermal Plume Particles From the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge[J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1990,95(B8): 12855-12873.
    [268] Feely RA, Lewison M, Massoth GJ, et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge[J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1987,92(B11): 11.
    [269] Kusakabe M, Mayeda S, Nakamura E. S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18°N[J]. Earth and Planetary Science Letters, 1990,100(1-3): 275-282.
    [270] Moore WS, Stakes D. Ages of barite-sulfide chimneys from the Mariana Trough[J]. Earth and Planetary Science Letters, 1990,100(1-3): 265-274.
    [271] Church TM, Wolgemuth K. Marine barite saturation[J]. Earth and Planetary Science Letters, 1972,15(1): 35-44.
    [272] Monnin C, Jeandel C, Cattaldo T, et al. The marine barite saturation state of the world's oceans[J]. Marine Chemistry, 1999,65(3-4): 253-261.
    [273] Paytan A, Kastner M. Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle[J]. Earth and Planetary Science Letters, 1996,142(3-4): 439-450.
    [274] Paytan A, Mearon S, Cobb K, et al. Origin of marine barite deposits: Sr and S isotope characterization[J]. Geology, 2002,30(8): 747-750.
    [275] Torres ME, Brumsack HJ, Bohrmann G, et al. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts[J]. Chemical Geology, 1996,127(1-3): 125-139.
    [276] Bréhéret J-G, Brumsack H-J. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France)[J]. Sedimentary Geology, 2000,130(3-4): 205-228.
    [277] Bolze CE, Malone PG, Smith MJ. Microbial mobilization of barite[J]. Chemical Geology, 1974,13(2): 141-143.
    [278] McManus J, Berelson WM, Klinkhammer GP, et al. Remobilization of barium in continental margin sediments[J]. Geochimica Et Cosmochimica Acta, 1994,58(22): 4899-4907.
    [279] McManus J, Berelson WM, Klinkhammer GP, et al. Geochemistry of barium in marine sediments: implications for its use as a paleoproxy[J]. Geochimica Et Cosmochimica Acta, 1998,62(21-22): 3453-3473.
    [280] van Os BJH, Middelburg JJ, de Lange GJ. Possible diagenetic mobilization of barium in sapropelic sediment from the eastern Mediterranean[J]. Marine Geology, 1991,100(1-4): 125-136.
    [281] Francois R, Frank M, Rutgers van der Loeff MM, et al. 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary[J]. Paleoceanography, 2004,19(1): PA1018.
    [282] Klump J, Hebbeln D, Wefer G. The impact of sediment provenance on barium-based productivity estimates[J]. Marine Geology, 2000,169(3-4): 259-271.
    [283] Honisch B, Hemming NG. Surface ocean pH response to variations in pCO(2) through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005,236(1-2): 305-314.
    [284] Yu JM, Elderfield H, Honisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007,22(2): 17.
    [285] Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000,407(6802): 364-367.
    [286] Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J]. Marine Geology, 2003,201(1-3): 53-65.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.