导电聚合物的制备及其电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物具有独特的电化学和化学性能,广泛应用于电池、传感器、腐蚀防护和电催化材料等领域。聚苯胺(PAN)和聚吡咯(PPy)等导电聚合物具有价格低廉、易合成等优点,电催化性能是导电聚合物的重要性能之一。本论文主要研究导电聚合物对有机小分子及氨基酸的电催化性能,研究内容包括以下五个方面。
     采用循环伏安法制备了一种新型的导电聚合物—苯胺和环氧丙烷导电高分子共聚物(PAN-PPO),并对其可能的共聚机理进行了探讨。采用扫描电子显微镜(SEM)和差热分析等方法对聚合物的形貌和热稳定性进行了表征,同时探讨了该共聚物对甲醇和甲酸的电催化氧化作用。结果表明,在相同的条件下,PAN-PPO的电聚合速率和电导率均高于PAN;PAN-PPO具有均匀的纳米纤维网状结构,纤维直径小于70nm;PAN-PPO的热分解温度略低于PAN;PAN-PPO对甲酸和甲醇具有较好的电催化活性。
     在1-乙基咪唑三氟乙酸(HEImTfa)、1-丁基-3-甲基咪唑硫酸氢盐(BMImHSO_4)和1-丁基-3-甲基咪唑磷酸二氢盐(BMImH_2PO_4)等离子液体中合成了PAN和PAN-PPO,并采用红外光谱和SEM技术对其进行表征,同时研究了它们对有机小分子的电催化活性。结果表明,在HEImTfa离子液体中合成的PAN(PAN-HEImTfa),由均匀规则的纳米结构组成,与在硫酸水溶液中合成的PAN相比,PAN-HEImTfa对甲酸、甲醛和草酸具有较好且稳定的电催化活性;在BMIHSO_4中,采用循环伏安法合成PAN-PPO(PAN-PPO-BMIHSO_4),PAN-PPO-BMIHSO_4由直径小于80nm的纳米纤维组成,对草酸具有较好的电催化性能;在BMIH_2PO_4中,采用循环伏安法合成了PAN-PPO(PAN-PPO-BMIH_2PO_4),其结构致密,由直径约为100nm的纳米纤维组成,对草酸具有一定的电催化活性。同时,研究发现离子液体的粘度对导电聚合物的合成及其电催化活性的影响较大。上述三种离子液体的粘度大小顺序为BMImH_2PO_4>BMIHSO_4>HEImTfa,PAN和PAN-PPO在离子液体中的电聚合容易程度顺序为HEImTfa>BMIHSO_4>BMImH_2PO_4,而所得到的导电聚合物的纳米结构尺寸大小顺序为PAN-PPO-BMIH_2PO_4>PAN-PPO-BMIHSO_4>PAN-HEImTfa,电催化活性顺序为PAN-HEImTfa>PAN-PPO-BMIHSO_4≈PAN-PPO-BMIH_2PO_4。
     在导电聚合物上修饰铂微粒,通过铂颗粒和导电聚合物的协同作用,有利于改善其电催化活性,减少铂颗粒的用量。本论文采用循环伏安法在预先合成的PAN-PPO上负载铂颗粒(Pt/PAN-PPO),Pt颗粒大小约为60nm。研究发现Pt/PAN-PPO对赖氨酸和甘氨酸具有较高的电催化活性,铂的沉积周数不宜超过9周。
     在离子液体HEImTfa中合成PPy(PPy-HEImTfa),研究了不同电聚合方法和基底电极对PPy的电聚合速度、形貌特征和电催化性能的影响。采用循环伏安法制备PPy-HEImTfa,以铂电极为基底电极时得到的PPy-HEImTfa颗粒较不锈钢基底时的小,而且其电聚合速度和电催化活性均大于在不锈钢基底电极上合成的PPy-HEImTfa。当在同一铂电极上制备PPy-HEImTfa,采用恒电流方法制备的聚合物颗粒直径比循环伏安法小得多。
     由于纳米碳管具有良好的导电性,高稳定性和良好的机械性能,本文采用循环伏安法制备了PPy和纳米碳管复合电极(PPy/CNT),并研究了PPy/CNT复合电极的电催化性能。结果表明:以铂为基底电极时PPy/CNT复合电极对草酸的电催化性能较好;而当以不锈钢为基底时,PPy/CNT复合电极对草酸也表现出一定的电催化活性,但其活性较铂电极上的PPy/CNT差。
Conducting polymers, which exhibit a wide range of novel electrochemical and chemical properities, have been employed in a variety of applications, such as batteries, sensors, antistatic coatings, electrocatalysts and so on. Conducing polymers, such as polyaniline (PAN) and polypyrrole (PPy), are cheap and can be easily prepared. One of the most important properties of the conducting polymers is their ability to catalyze some electrochemical reactions. In this paper, electrocatalytic activity of conducting polymers on electrooxidation of small organic molecules and amino-acids has been studied, including the following five parts.A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) film is prepared by cyclic voltammetry in this paper. The electrochemical copolymerization mechanism of PAN-PPO has been discussed. PAN-PPO is characterized with SEM and thermogravimetric analysis. In addition, the electrocatalytic activity of PAN-PPO for electrooxidation of methanol and formic acid has been investigated. Results show that under the samilar conditions, polymerization rate and conductivities of PAN-PPO are higher than those of PAN. The structure of PAN-PPO is a cross-linked network, composed of many uniform and regular nano-fibers with diameter less than 70 nm. The degradation temperature of PAN-PPO is a little lower than that of PAN. In comparison with PAN, PAN-PPO shows a high electrocatalytic activity for electrooxidation of methanol and formic acid.The paper has demonstrated the preparation and electrocatalytic activity of PAN and PAN-PPO prepared in ionic liquids, such as HEImTfa, BMImHSO_4 and BMImH_2PO_4. PAN and PAN-PPO are characterized with SEM. In comparison to PAN prepared in H2SO4 solution, PAN prepared in HEImTfa (PAN-HEImTfa) is composed of significantly regular nano-particles and shows a high electrocatalytic activity on electrooxidation of formic acid, formaldehyde and oxalic acid. PAN-PPO can be prepared in BMImHSO_4 by cyclic voltammetry (PAN-PPO-BMImHSO_4). It is composed of nanofibers with diameter less than 80 nm and can electrolyze the electrooxidation of oxalic acid. PAN-PPO can also been synthesized in ionic liquid BMImH_2PO_4 (PAN-PPO-BMImH_2PO_4). It is dense and composed of the nano-fibers about 100 nm. The electrocatalytic activity of PAN-PPO-BMImH_2PO_4 on oxidation of oxalic acid is also high and stable. Electropolymerization of conducting polymers in ionic liquids is related to the viscosity of ionic liquids. The viscosity order of ionic liquids is BMImH_2PO_4>BMIHSO_4>HEImTfa, and the easiness order of electropolymerization in ionic liquid is HEImTfa>BMIHSO_4>BMImH_2PO_4. The diameter order of conducting polymers prepared in the ionic liquids is PAN-PPO-BMIH_2PO_4>PAN-PPO-BMIHSO_4>PAN-HEImTfa, and the electrocatalytic activity order is PAN-HEImTfa>PAN-PPO-BMIHSO_4 PAN-PPO-BMIH_2PO_4.
     Conducting polymers can be used as supports for platinum catalyst panicles deposition. With the synergistic effect of conducting polymers and platinum panicles, the electrocatalytic activity can be greatly improved and use of platinum can be decreased. In this paper, Pt/PAN-PPO is prepared by Pt deposition onto a pre-synthesized PAN-PPO film (Pt/PAN-PPO). The diameter of Pt panicles on PAN-PPO is about 60 nm. The electrocatalytic activity of Pt/PAN-PPO has been studied on the electrooxidation performance of lysine and glycine in sulfuric acid solution. Pt/PAN-PPO shows high electrocatalytic activity on electro-oxidation of lysine and glycine, and the cycling number of Pt on PAN-PPO should be less than 9.
     PPy has been prepared in ionic liquid HEImTfa (PPy-HEImTfa). The influences of polymerization method and support electrode on polymerization rate, morphological structure and electrocatalytic activity of PPy-HEImTfa are investigated. Polymerization rate and the electrocatalytic activity of PPy-HEImTfa by cyclic voitammetry on Pt are higher than those on stainless steel, and the particle diameter of PPy-HEImTfa on Pt is less than that on stainless steel. In addition, on the same Pt support electrode, the panicle diameter of PPy-HEImTfa prepared galvanostatically is much less than that by cyclic voltammetry,
     Carbon nanotube (CNT) owns excellent conductivity, high stability and good mechanical properties. Electropolymerization of PPy/CNT composite is carded out using cyclic voltammetry. The electrocatalytic activity of PPy/CNT composite has been studied in this paper. Results show: PPy/CNT prepared on Pt exhibited excellent electrocatalytic activity for electro-oxidation of oxalic acid. In addition, electrocatalytic activity of PPy/CNT on Pt is better than that on stainless steel.
引文
[1] Diaz A. E, Kanazawa K. K., Gardini G. P., Electrochemical polymerization of pyrrole, Chem. Commun., 1979, 14: 635-6.
    [2] Li Z. E, Ruckenstein E. J., Two liquid adsorptive entrapment of a pluronic polymer into the surface of polyaniline films, Colloid Interface Sci., 2003, 264: 370-7.
    [3] 陆梅,李晓红,郭新勇,力虎林,电化学聚合吡咯/噻吩导电共聚物纳米纤维阵列及其表征,高等学校化学学报,2003,24(5):903-5.
    [4] Mirmohseni A., Wallace G. G., Preparation and characterization of processable electroactive polyaniline-polyvinyl alcohol composite, Polymer, 2003, 44: 3523-8.
    [5] Borole D. D., Kapadi U. R., Mahulikar P. P., Hundiwale D. G., Studies on electrochemical, optical and electrical conductivity characteristics of copolymer of polyaniline-co-poly(o-toluidine) using various organic salts, Mater. Lett., 2003, 57: 3629-35.
    [6] 石家华,杨春和,高青雨,李永舫,聚噻吩在离子液体中的电化学合成研究,化学物理学报,2004,17(4):503-7.
    [7] Jin S., Xue G, Interaction between thiophene and solvated Lewis acids and the low-potential electrochemical deposition of a highly anisotropic conducting polythiophene film, Macromolecules, 1997, 30: 5753-7.
    [8] 戴李宗,许一婷,Gal J.Y,吴辉煌,环取代基对金属化聚苯胺衍生物膜修饰电极性能的影响,高等学校化学学报,2002,23(7):1404-8.
    [9] Profeti D., Olivi P., Methanol electrooxidation on platinum microparticles electrodeposited on poly(o-methoxyaniline) films, Electrochim. Acta, 2004, 49: 4979-85.
    [10] Heeger A. J., MacDiarmid A. G, Shirakawa H. http://www.nobel.se/chemistry/laureates/2000
    [11] 马建标,功能高分子材料,化学工业出版社,2004.7,p202-4.
    [12] 吴辉煌,电化学,化学工业出版社,2004,p149.
    [13] Chandrasekhar P., Conducting polymers, fundamentals and applications, a practical approach, Boston: Kluwer, 1999.
    [14] Heinze J., Electrochemistry Ⅳ, Vol. 52, Topic in current chemistry. Berlin: Springer-Vedag, 1990.
    [15] Otero T. F., Rodriguez J., Parallel kinetic-studies of the electrogeneration of conducting polymers-mixed materials, composition and properties control, Electrochim. Acta, 1994, 39(2): 245-53.
    [16] Hand R. L., Nelson R. E, Anodic oxidation pathways of N-alkylanilines, J. Am. Chem. Soc., 1974, 96: 850-60.
    [17] 许一婷,何云游,戴李宗等,功能化聚(2,5-二甲氧基苯胺)膜的电化学和电催化性质研究,高等学校化学学报,2003,24(10):1915-19.
    [18] Tawde S., Mukesh D., Yakhmi J. V., Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modeling, Synth. Met., 2002, 125: 401-13.
    [19] Genies E. M., Lapkowski M., Penneau J. E, Cyclic voltammetry of polyaniline: interpretation of the middle peak, J. Electroanal. Chem., 1988, 249: 97-107.
    [20] Baker C. K., Reynolds J. R., A quartz microbalance study of the electrosynthesis of polypyrrole, J. Electroanal. Chem., 1988, 251: 307-22.
    [21] 韩高义,陈凤恩,袁金颖,石高全,手性环境下的手性N-取代吡咯电化学聚合及其微结构,高分子学报,2004,(2):165-70.
    [22] Andrieux C. P., Savent J. M., Heterogeneous(chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions, J. Electroanal. Chem., 1978, 93: 163-8.
    [23] Andrieux C. P., Dumas-Bouchiat J. M., Saveant J. M., Catalysis of electrochemical reactions at redox polymer electrodes: Kinetic model for stationary voltammetric techniques, J. Electroanal. Chem., 1982, 131: 1-35.
    [24] Anson F. C., Kinetic behavior to be expected from outer-sphere redox catalysts confined within polymeric films on electrode surfaces, J. Phys. Chem., 1980, 84: 3336-8.
    [25] Chung T. D., Anson E C., Catalysis of the electroreduction of O-2 by cobalt 5,10,15,20-tetraphenylporphyrin dissolved in thin layers of benzonitrile on graphite electrodes, J. Electroanal. Chem., 2001, 508(1-2): 115-22.
    [26] Albery W. J., Hillman A. R., Transport and kinetics in modified electrodes, J. Electroanal. Chem., 1984. 170: 27-49.
    [27] Albery W. J., Mount A. B., A further development of the use of transmission-lines to describe the movement of charge in conducting polymers, J. Electroanal. Chem., 1995, 388(1-2): 1-9.
    [28] Leddy J., Bard A. J., Maloy J. T., Seveant J. M., Kinetics of film-coated electrodes: effect of a finite mass transfer rate of substrate across the film-solution interface at steady state, J. electroanal. Chem., 1985, 187: 205-27.
    [29] Costentin C., Robert M.., Saveant J. M., Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B_(12) and corrinoid-based dehalogenases follow an electron transfer mechanism? J. Am. Chem. Soc., 2005, 127(35): 12154-5.
    [30] 吕紫玲,董绍俊,化学修饰电极的研究,Ⅷ聚乙炔二茂铁薄膜电极对抗坏血酸的电催化氧化,化学学报,1986,44(1):32-8.
    [31] Ikeda T., Leidner C. R., Murray R. W., Kinetics of outer-sphere electron transfers between metal complexes in solutions and polymeric films on modified electrodes, J. Am. Chem. Soc., 1981, 103(25): 7422-5.
    [32] Inzelt G., Electroanalytical Chemistry. A Series of Advances, Vol 18, Marcel Dekker, New York, 1994, p89.
    [33] Machida M., Sato K., Ishibashi I., Abul Hasnat M., Ikeue K., Electrocatalytic nitrate hydrogenation over an H+-conducting solid polymer electrolyte membrane-modified cathode assembly, Chem. Commun., 2006, (7): 732-4.
    [34] 傅谊,马建标,何炳林,聚苯胺膜修饰电极对儿茶酚及对苯二酚的催化氧化,分析 测试学报,1998,17(5):43-6.
    [35] Zhang X. L., Wang J. X., Wamg Z., Wamg S. C., Electrocatalytic reduction of nitrate at polypyrrole modified electrode, Synth. Met., 2005, 155: 95-9.
    [36] Gomez-Romero P., Cuentas-Gallegos K., Lira-Cantu M., Casan-Pastor N., Hybrid nanocomposite materials for energy storage and conversion applications, J. Mater. Sci., 2005, 40(6): 1423-8.
    [37] Bertoncello P., Notargiacomo A., Erokhin V., Nicolini C., Functionalization and photoelectrochemical characterization of poly[3-3'(vinylcarbazole)] multi-walled carbon nanotube(PVK-MWNT) Langmuir-Schaefer films, Nanotechnology, 2006, 17(3): 699-705.
    [38] Tsekouras G, Too G. O., Wallace G G., Effect of growth conditions on the photovoltaic efficiency of poly(terthiophene) based photoelectrochemical cells, Electrochim. Acta, 2005, 50(16-17): 3224-30.
    [39] Rahman M. A., Kwon N. H., Won M. S., Choe E. S., Shim Y. S., Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements, Anal. Chem., 2005, 77(15): 4854-60.
    [40] Hamilton S., Hepher M. J., Sommerville J., Detection of Serpula lacrymans infestation with a polypyrrole sensor array, Sens. Actuators B, 2006, 113(2): 989-97.
    [41] Rosa R. M., Szulc R. L., Li R. W. C., Gruber J., Conducting polymer-based chemiresistive sensor for organic vapours, Macromol. Sym., 2005, 229: 138-42.
    [42] Bereket G., Hur E., Sahin Y., Electrochemical synthesis and anti-corrosive properties of polyaniline, poly(2-anisidine), and poly(aniline-co-2-anisidine) films on stainless steel, Prog. Org. Coat., 2005, 54(1): 63-72.
    [43] Shinde V., Sainkar S. R., Patil P. P., Corrosion protective poly(o-toluldine) coatings on copper, Corr. Sci., 2005, 47(6): 1352-69.
    [44] Patil S., Sainkar S. R., Patil P. P., Poly(o-anisidine) coatings on copper: synthesis, characterization and evaluation of corrosion protection performance, Appl. Surf. Sci., 2004, 225(1-4): 204-16.
    [45] Oyama N., Ohnuki Y., Chiba K., Ohsaka T., Selectivity of poly(aniline) film-coated electrode for redox reactions of species in solution, Chem. Lett., 1983,(11): 1759-62.
    [46] Yano J., Ogura A., Kitani A., Sasaki K., The kinetic difference between hydroquinone and Fe~(2+) in the electrochemical response of a polyaniline-film-coated electrode, Synth. Met., 1992, 52: 21-31.
    [47] Cooper J. C., Hall E. A. H., Catalytic reduction of benzoquinone at polyaniline and polyaniline/enzyme films, Electroanalysis, 1993, 5: 385-97.
    [48] Mandic Z., Duic L., Polyaniline as an electrocatalytic material, J. Electroanal. Chem., 1996, 403: 133-41.
    [49] Duic L., Grigic S., The effect of polyaniline morphology on hydroquinone/quinine redox reaction, Electrochim. Acta, 2001, 46: 2795-803.
    [50] Pekmez N., Yildiz A., Electroreduction of 1,4-benzoquinone and cobaltocenium perchlorate on the oxidized electroinactive polyaniline films in acetonitrile, Bunsen-Ges B. Phy. Chem., 1998, 102: 843-849.
    [51] Yano J., Kokura M., Ogura K., Electrocatalytic behavior of a poly(n-methylaniline) filmed electrode to hydroquinone, J. Appl. Electrochem., 1994, 24: 1164-9.
    [52] Levi M. D., Pisarevskaya E. Y., Electrochemical characterisation of the polymer/solution interlace for electronically conducting and conventional redox-polymers, Synth. Met., 1993, 55: 1377-81.
    [53] 董绍俊,宋发益,聚苯胺薄膜电极对抗坏血酸的电催化氧化,物埋化学学报,1992,8(1):82-6.
    [54] Casella I. G., Guascito M. R., Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline film, Electroanalysis, 1997, 9: 1381-6.
    [55] Bagheri A., Emami E, Nateghi M. R., Direct measurement of traces of vitamin C in urine using a modified glassy carbon electrode, Anal. Lett., 1997, 30: 2023-8.
    [56] Jureviciute I., Brazdziuviene K., Bernotaite L., Salkus B., Malinauskas A., Polyaniline-modified electrode as an amperometric ascorbate sensor, Sens. Actuators B-Chem., 2005, 107(2): 716-21.
    [57] Sun J. J., Zhou D. M., Fang H. Q., Chen H. Y., The electrochemical copolymerization of 3, 4-dihydroxybenzoic acid and aniline at microdisk gold electrode and its amperometric determination for ascorbic acid, Talanta, 1998, 45: 851-6.
    [58] Vasantha V. S., Chen S. M. E., Electrochemical preparation and electrocatalytic properties of PEDOT/ferricyanide film-modified electrodes, Electrochim. Acta, 2005, 51: 347-55.
    [59] Mazeikiene R., Niaura G, Malinauskas A., In situ Raman spectroelectrochemical study of electrocatalytic processes at polyaniline modified electrodes: redox vs. metal-like catalysis, Electrochem. Commun., 2005, 7(10): 1021-6.
    [60] Chi H. E, Lin S. W., Huang H. J., The mediation effect of a polyaniline-coated electrode on the reduction of iron(ⅲ) ions, J. Chin. Chem. Soc., 1992, 39: 213-6.
    [61] Malinauskas A., Holze R., An in situ spectroelectrochemical study of redox reactions at polyaniline-modified ITO electrodes, Electrochim. Acta, 1998, 43: 2563-75.
    [62] Wei C., German S., Basak S., Rajeshwar k., Reduction of hexavalent chromium in aqueous-solutions by polypyrrole, J. Electrochem. Soc., 1993, 140: L60-2.
    [63] Amemiya T., Hashimoto K., Fujishima A., Dynamics of faradaic processes in polypyrrole polystyrenesulfonate composite films in the presence and absence of a redox species in aqueous-solutions, J. Phys. Chem., 1993, 97: 4192-5.
    [64] Yano J., Ogura A., Kitani A., Sasaki K., Unique electrochemical response of a polyaniline-film coated electrode to several dissolved organic-species, Can. J. Chem., 1992, 70: 1009-10.
    [65] 彭程,程璇,张颖,陈羚范钦柏,碳载Pt和PtRu催化剂的甲醇电氧化比较,物理化学学报,2004,20(4):436-9.
    [66] Dubau L., Hahn E, Coutanceau C., Leger J. M., Lamy C., On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation, J. Electroanal. Chem., 2003, 554: 407-15.
    [67] Wang Y., Fachini E. R., Cruz G., Zhu Y., Ishikawa Y., Colucci J. A., Cabrera C. R., Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation, J. Electrochem. Soc., 2001, 148(3): C222-6.
    [68] He Z. B., Chen J. H., Liu D. Y., Zhou H. H., Kuang Y. E, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater., 2004, 13: 1764-70.
    [69] Wu G., Li L., Li J. H., Xu B. Q., Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation, Carbon, 2005, 43: 2579-87.
    [70] Prasad K. R., Munichandraiah N., Electrooxidation of methanol on polyaniline without dispersed catalyst particles, J Power Sources, 2002, 103: 300-4.
    [71] Leger J. M., Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts, J. Appl. Electrochem., 2001, 31: 767-71.
    [72] Parsons R., Vander N. T., The oxidation of small organic molecules: A survey of recent fuel cell related research, J. Electroanal. Chem., 1988, 257: 9-45.
    [73] Ken-Ichiro O., Nakagawa Y., Takahashi M., Reaction products of anodic oxidation of methanol in sulfuric acid solution, J. Electroanal. Chem., 1984, 179: 179-86.
    [74] Sivakumar P., Tricoli V., Novel Pt-Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation-Part Ⅱ. Electrocatalytic activity, Electrochim Acta, 2006, 51(7): 1235-43.
    [75] Chandrasekaran K., Wass J. C., Bockris J. O., The potential dependence of intermediates in methanol oxidation observed in the steady-state by ftir spectroscopy, J. Electrochem. Soc., 1990, 137(2): 518-24.
    [76] 邓景发,催化作用原理导论,吉林科学技术出版社,1984.
    [77] Planes G. A., Rodriguez J. L., Pastor E., Barbero C., Evidence of a free Pt surface under electrodeposited polyaniline(PANI) films: CO adsorption and methanol oxidation at PANI/Pt without metal particles, Langmuir, 2003, 19: 8137-40.
    [78] 万本强,吴婉群,铂微粒修饰聚2,5-二甲氧基苯胺电极对甲醇的电催化作用,高等学校化学学报,1995,16(4):622-5.
    [79] Aramata A., Ohnishi R., Methanol electrooxidation on platinum directly bonded to a solid polymer electrolyte membrane, J. Electroanal. Chem., 1984, 162: 153-62.
    [80] Kitani A., Akashi T., Sugimoto K., Sotaro I., Electrocatalytic oxidation of methanol on platinum modified polyaniline electrodes, Synth. Met., 2001, 121: 1301-2.
    [81] Niu L., Li Q. H., Wei E H., Chen X., Wang H., Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol, Synth. Met., 2003, 139: 271-6.
    [82] Niu L., Li Q. H., Wei E H., Wu S. X., Liu P. P., Cao X. L., Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: effect of Pt deposition modes, J. Electroanal. Chem., 2005, 579: 331-7.
    [83] Ficicioglu F., Kadirgan E, Electrooxidation of methanol on platinum doped polyaniline electrodes: deposition potential and temperature effect, J. Electroanal. Chem., 1997, 430: 179-82.
    [84] Rajesh B., Thampi K. R., Bonard J. -M., Mathieu H. J., Xanthopoulos N., Viswanthan B., Conducting polymeric nanotubules as high performance methanol oxidation catalyst support, Chem. Commun., 2003, 2022-3.
    
    [85] Holzhauser P., Bouzek K., Bastl Z., Electrocatalytic properties of polypyrrole films prepared with platinate(II) counter-ions, Synth. Met., 2005,155(3): 501-8.
    
    [86] Bouzek K., Mangold K. M, Juttner K., Electrocatalytic activity of platinum modified polypyrrole films for the methanol oxidation reaction, J. Appl. Electrochem., 2001, 31(5):501-7.
    
    [87] Becerik I., Kadirgan F., Electrooxidation of methanol and formic acid on platinum dispersed polypyrrole electrodes, Turk. J. Chem., 2001,25(3): 373-80.
    
    [88] Jovanovic V. M., Terzic S., Dekanski A., Characterization and electrocatalytic application of silver modified polypyrrole electrodes, J. Serb. Chem. Soc, 2005, 70(1): 41-9.
    
    [89] Venancio E. C, Napporn W. T., Motheo A. J., Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices, Electrochim. Acta, 2002, 47: 1495-501.
    
    [90] Zhou H. H., Chen H., Luo S. L., Chen J.H., Wei W. Z., Kuang Y. F., Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline, Biosens.Bioelectron., 2005, 20: 1305-11.
    
    [91] Croissant M. J., Napporn T., Leger J. M., Lamy C, Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes, Electrochim. Acta, 1998, 43: 2447-57.
    
    [92] Cai L. T., Chen H. Y., Preparation and electroactivity of polyaniline/poly(acrylic acid) film electrodes modified by platinum microparticles, J. Appl. Electrochem., 1998,28:161-6.
    
    [93] Li W. S., Lu J, Du J. H., Lu D. S., Chen H. Y, Li H., Wu Y. M., Electrocatalytic oxidation of methanol on polyaniline-stabilized Pt-HxMoO_3 in sulfuric acid solution, Electrochem.Commun., 2005, 7: 406-10.
    [94] Wu Y. M., Li W. S., Lu J., Du J. H., Lu D. S., Fu J. M., Electrocatalytic oxidation of small organic molecules on polyaniline-Pt-H_xMoO_3, J. Power Sources, 2005,145: 286-91.
    [95] Rajesh B., Thampi K. R., Bonard J. M., Mathieu H. J., Xanthopoulos N., Viswanathan B.,Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application, J. Power Sources, 2005,141: 35-8.
    [96] Hirao T., Higuchi M., Hatano B., Ikeda I., A novel redox system for the palladium(ii)-catalyzed oxidation based on redox of polyanilines, Tetrahedron Lett., 1995,36(33): 5925-8.
    [97] Mourato A., Viana A. S., Correia J. P., Siegenthaler H., Abrantes L. M., Polyaniline films containing electrolessly precipitated palladium, Electrochim. Acta, 2004, 218: 231-44.
    
    [98] Hasik M., Drelinkiewicz A., Wenda E., Paluszkiewicz C, Quillard S., FTIR spectroscopic investigations of polyaniline derivatives-palladium systems, J. Mol. Struct., 2001, 596:89-99.
    [991 Park J.-E., Park S.-G, Koukitu A., Hatozaki O., Oyama N., Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery, Synth.Met., 2004,140: 121-6.
    [100] Mazurkiewicz J. H., Innis P. C, Wallace G G, MacFarlane D. R., Forsyth M., Conducting polymer electrochemistry in ionic liquids. Synth. Met., 2003,135-136: 31 -2.
    [101] Mascaro L. H., Goncalves D., Bulhoes L. O. S., Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium, Thin Solid Films, 2004,461: 243-9.
    [102] Malinauskas A., Electrocatalysis at conducting polymers, Synth. Met., 1999,107: 75-83.
    
    [103] Dong S. J., Liu M. J., Preparation and properties of polypyrrole film doped with a dawson-type heteropolyanion, Electrochim. Acta, 1994, 39: 947-51.
    
    [104] Wang P., Li Y. F., Electrochemical and electrocatalytic properties of polypyrrole film doped with heteropolyanions, J. Electroanal. Chem., 1996,408: 77-81.
    
    [105] Dong S. J., Jin W., Study of a 1/12 phosphomolybdic anion doped polypyrrole film electrode and its catalysis, Electrochim. Acta, 1993,354: 87-97.
    [106] Fabre B., Bidan G, Electrosynthesis of different electronic conducting polymer films doped with an iron-substituted heteropolytungstate: choice of the immobilization matrix the most suitable for the electrocatalytic reduction of nitrite ions, Electrochim. Acta, 1997,42: 2587-90.
    [107] Hasik M., Pozniczek J., Piwowarska Z., Dziembaj R., Bielanski A., Pron A., Catalytic conversion of ethyl-alcohol on polyaniline protonated with 12-tungstosilicic acid, J. Mol.Catal, 1994,89:329-44.
    [108] Pielichowski K., Hasik M., Thermal properties of new catalysts based on heteropolyanion-doped polyaniline, Synth. Met., 1997, 89: 199-202.
    
    [109] Stochmal-Pomarzanska E., Quillard S., Hasik M., Turek W., Pron A., Lapkowski M., Lefrant S., Spectroscopic and catalytic studies of selected polyimines protonated with heteropolyacids, Synth. Met., 1997, 84: 427-8.
    
    [110] Kulesza P. J., Skunik M., Baranowska B., Miecznikowski k., Chojak M., Karnicka K.,Frackowiak E., Beguin F., Kuhn A., Delville M. H., Starobrzynska B., Ernst A.,Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures, Electrochim. Acta, 2006, 51(11): 2373-9.
    
    [111] Kulesza P. J., Karnicka K., Miecznikowski K., Chojak M., Kolary A., Barczuk P. J.,Tsirlina G, Czerwinski W., Electrochim. Acta, 2005, 50: 5155-62.
    [112] Castro E. G, Zarbin A. J. G, Oliveira H. P., Galembeck A., Novel flexible, freestanding and transparent organic/inorganic hybrid materials formed between polyaniline and polyphosphate gel, Synth. Met., 2004,146: 57-62.
    
    [113] Ballav N., Biswas M., Conductive composites of polyaniline and polypyrrole with MoO_3,Mater. Lett., 2006, 60: 514-7.
    
    [114] Sanchez R. D., Costa M. B. G, Anunziata O. A., Preparation and characterization of polyaniline-containing Na-A1MCM-41 as composite material with semiconductor behavior, J. Coll. Inter. Sci., 2005, 292: 509-16.
    
    [115] Gemeay A. H., Mansour I. A., E1-Sharkawy R. G, Zaki A. B., Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization: Effect of acids, Europ. Polym. J., 2005,41: 2575-83.
    
    [116] Bissessur R., White W., Dahn D. C, Electrical characterization of conductive polymers and their intercalated nanocomposites with molybdenum disulfide, Mater. Lett., 2006,60:248-51.
    
    [117] Coutanceau C, Elhourch A., Crouigneau P., Leger J. M., Lamy C, Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines - preparation and electrocatalytic behavior towards dioxygen reduction in acid-medium, Electrochim. Acta,1995,40:2739-48.
    
    [118] Retamal B. A., Vaschetto M. E., Zagal J. H., Catalytic electro-oxidation of 2-mercaptoethanol using cobalt phthalocyanine plus poly(2-chloroaniline) modified electrodes,J. Electroanal. Chem., 1997,431: 1-5.
    
    [119] Galal A., Electrocatalytic oxidation of some biologically important compounds at conducting polymer electrodes modified by metal complexes, J. Solid State Electrochem.,1998,2:7-15.
    
    [120] Gerard ML, Malhotra B. D., Application of polyaniline as enzyme based biosensor, Curr.Appl. Phys., 2005, 5: 174-7.
    
    [121] Morrin A., Wilbeer E, Ngamma O., Moulton S. E., Killard A. J., Wallace G G, Smyth M. R., Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles, Electrochem. Commun., 2005, 7: 317-22.
    [122] Shi L. X., Xiao Y., Willner I., Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces, Electrochem. Commun., 2004, 6: 1057-60.
    
    [123] Tahir Z. M., Alocilja E. C, Grooms D. L., Polyaniline synthesis and its biosensor application, Biosens. Bioelectron., 2005, 20: 1690-5.
    
    [124] Shao Y., Jin Y. D., Dong S. J., DNA-templated assembly and electropolymerization of aniline on gold surface, Electrochem. Commun., 2002, 4: 773-9.
    [125] Suman S., Singhal R., Sharma A. L., Malthotra B. D., Pundir C. S., Development of a lactate biosensor based on conducting copolymer bound lactate oxidase, Sens. Actuator B,2005, 107: 768-72.
    
    [126] Fernandes K. E, Lima C. S., Lopes F. M, Collins C. H., Hydrogen peroxide detection system consisting of chemically immobilised peroxidase and spectrometer, Proc.Biochem., 2005, 40(11): 3441-5.
    
    [127] Mathebe N. G R., Morrin A., Iwuoba E. I., Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor, Talanta, 2004,64(1): 115-20.
    
    [128] Fernandes K. F., Lima C. S., Lopes F. M., Collins C. H., Properties of horseradish peroxidase immobilised onto polyaniline, Proc. Biochem., 2004, 39(8): 957-62.
    
    [129] Iwuoha E. I., deVillaverde D. S., Garcia N. P., Smyth M. R., Pingarron J. M., Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film,Biosens. Bioelectron., 1997,12: 749-61.
    
    [130] Duic L., Kraljic M., Grigic S., Influence of phenylenediamine additions on the morphology and on the catalytic effect of polyaniline, J. Polym. Sci., A. Polym. Chem.,2004,42: 1599-608.
    
    [131] Chi Q. J., Dong S. J., Electrocatalytic oxidation and flow-injection determination of reduced nicotinamide coenzyme at a glassy-carbon electrode modified by a polymer thin-film, Analyst, 1994,119(5): 1063-6.
    
    [132] Ochmanska J., Pickup P. G, Synthesis, electrochemistry, and ligand substitution-reactions of conducting copolymer films of ruthenium polypridine complexes and aromatic heterocycle, Can. J. Chem., 1991, 69(4): 653-60.
    [133] Oh S. Y., Koh H. C., Choi J. W., Rhee H. W., Kim H. S., Preparation and properties of electrically conductive polyaniline-polystyrene composites by in-situ polymerization and blending, Polym J., 1997, 29(5): 404-9.
    [134] Vincent B., Waterson J., Colloidal dispersions of electrically-conducting, spherical polyaniline particles, J. Chem. Soc.-Chem. Commun., 1990: 683-4.
    [135] Rehahn M., Schluter A. D., Wegner G., Feast W. J., Soluble poly(para-phenylene)s. 1. Extension of the Yamamoto synthesis to dibromobenzenes substituted with flexible side chains, Polymer, 1989, 30(6): 1054-9.
    [136] Yano J., Ota Y., Kitani A., Electrochemical preparation of conductive poly(N-alkylaniline)s with long N-alkyl chains using appropriate dopant anions and organic solvents, Mater. Lett., 2004, 58: 1934-7.
    [137] Udum Y. A., Pekmez K., Yildiz A, Electrochemical preparation of a soluble conducting aniline-thiophene copolymer, Eur. Polym. J., 2005, 41(5): 1136-42.
    [138] Anthony R. D., Troy D. W., Synthesis and characterization of low molecular weight oligomers of soluble polyaniline by electrospray ionization mass spectromet, Synth. Met., 2004, 143: 243-50.
    [139] Mu S. L., Ye J. H., Wang Y. H., A rechargeable Zn/ZnCl_2, NH_4Cl/polyaniline/carbon dry battery, J. Power Sources, 1993, 45: 153-9.
    [140] Mu S. L., Rechargeable batteries based on poly(aniline-co-o-aminophenol) and the protonation of the copolymer, Synth. Met., 2004, 143(3): 269-75.
    [141] Iijima S., Helical microtubules ofgraphitic carbon, Nature, 1991, 354: 56-8.
    [142] Poncharal P., Wang Z. L., Ugarte D., de Heer W. A., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 1999, 283: 1513-6.
    [143] Ajayan P. M., Nanotubes from carbon, Chem. Rev., 1999, 99: 1787-99.
    [144] Tans S. J., Devoret M. H., Dai H. J., Thess A., Smalley R. E., Geerligs L. J., Dekker C., Individual single-wall carbon nanotubes as quantum wires, Nature, 1997, 386(6624): 474-7.
    [145] Dai H. J., Hafner J. H., Rinzler A. G., Colbert D. T., Smalley R. E.,. Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384: 147-50.
    [146] Ajayan P. M., Stephan O., Colliex C., Trauth D., Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science, 1994, 265: 1212-4.
    [147] Ramamurthy P. C., Harrell W. R., Gregory R. V., Sadanadan B., Rao A. M., Electronic properties of polyaniline/carbon nanotube composites, Synth. Met., 2003, 137: 1497-8.
    [148] Tchmutin I. A., Ponomarenko A. T., Krinichnaya E. P., Kozub G. I., Efimov O. N., Electrical properties of composites based on conjugated polymers and conductive fillers, Carbon, 2003, 41: 1391-5.
    [149] Huang J. E., Li X. H., Xu J. C., Li H. L., Well-dispersed single-walled carbon nanotube/polyaniline composite films, Carbon, 2003, 41: 2731-6.
    [150] Feng W., Bai X. D., Lian Y. Q., Liang J., Wang X. G., Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization, Carbon, 2003, 41: 1551-7.
    [151] Hassanien A., Gao M., Tokumoto M., Dai L., Scanning tunneling microscopy of aligned coaxial nanowires of polyaniline passivated carbon nanotubes, Chem. Phys. Lett., 2001, 342: 479-84.
    
    [152] Ham H. T., Choi Y. S., Jeong N., Chung I. J., Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization, Polymer, 2005,46: 6308-15.
    [153] Chen G. Z., Shaffer S. P., Coleby D., Dixon G., Zhou W. Z., Fray D. I., Windle A. H.,Carbon nanotube and polypyrrole composites: coating and doping, Adv. Mater, 2000, 12(7):522-6.
    [154] Fan J.H., Wan M. X., Zhu D. B., Chang B. H., Pan Z. W., Xie S. S., Synthesis and properties of carbon nanotube-polypyrrole composites, Synth. Met., 1999,102: 1266-7.
    [155] An K. H., Jeong S. Y., Hwang H. R., Lee Y. H., Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Adv. Mater,2004,16(17): 1005-9.
    
    [156] Zhang X. T., Zhang J., Wang R. M, Zhu T., Liu Z. F., Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties, Chem. Phys. Chem., 2004, 5: 998-1002.
    
    [157] Sekiguchi K., Atobe M., Fuchigami T., Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid, J. Electroanal. Chem., 2003, 557: 1~7.
    [158] Zhang J., Bond A. M., Practical considerations associated with voltammetric studies in room temperature ionic liquids, Analyst, 2005,130: 1132-47.
    
    [159] Seki S., Susan A. B. H., Kaneko T., Tokuda H., Noda A., Watenabe M., Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts, J. Phys. Chem., B, 2005,109: 3886-92.
    
    [160] Zhang J. L., Zhang X. G, Xiao F., Hu F. P., Effect of polar solvent acetonitrile on the electrochemical behavior of polyaniline in ionic liquid electrolytes, J. Coll. Interface Sci.,2005,287:67-71.
    
    |161] Bard A. J., Faulkner L. R., Electrochemical Methods, Wiley, New York, 2nd Edn., 2001.
    [162] Innis P. C, Mazurkiewicz J., Nguyen T., Wallace G G, MacFarlane D., Enhanced electrochemical stability of polyaniline in ionic liquids, Curr. Appl. Phys., 2004,4: 389-93.
    [163] Lu W., Fadeev A. G, Qi B. H., Smela E., Mattes B., Ding J., Spinks G M., Mazurkiewicz J.,Zhou D. Z., Wallace G G, MacFarlane D. R., Forsyth S. A., Forsyth M., Use of ionic liquids for π-conjugated polymer electrochemical devices, Science, 2002,297 (9): 983~7.
    [164] Pringle J. M., Efthimiadis J.,Howlett P. C, Efthimiadis J., MacFarlane R., Chaplin A. B.,Hall S. B., Pfficer D. L., Wallace G G, Forsyth M., Electrochemical synthesis of polypyrrole in ionic liquids, Polymer, 2004,45: 1447~53.
    [165] Yang C. H., Sun Q. J., Qiao J., Li Y. F., Ionic liquid doped polymer light-emitting electrochemical cells, J. Phys. Chem. B, 2003,107: 12981~8.
    
    [166] Pringle J. M., Forsyth M., MacFarlane D. R., Wagner K., Hall S. B., Officer D. L., The influence of the monomer and the ionic liquid on the electrochemical, Polymer, 2005, 46:2047-58.
    [1] 孙世刚,贡辉,固体催化剂的研究方法,第十一章 电化学催化中的原位红外反射光谱法,石油化工,2001,30(10):806-14.
    [1] Mazeikiene R., Niaura G, Malinauskas A., In situ Raman spectroelectrochemical study of electrocatalytic processes at polyaniline modified electrodes: Redox vs. metal-like catalysis, Electrochem. Commun., 2005, 7: 1021-6.
    [2] Gomez-Romero P., Cuentas-Gallegos K, Lira-Cantu M, Casan-Pastor N, Hybrid nanocomposite materials for energy storage and conversion applications, J. Mater. Sci., 2005, 40(6): 1423-8.
    [3] Bertoncello P., Notargiacomo A., Erokhin V., Nicolini C., Functionalization and photoelectrochemical characterization of poly[3-3 '(vinylcarbazole)] multi-walled carbon nanotube(PVK-MWNT) Langmuir-Schaefer films, Nanotechnology, 2006, 17(3): 699-705.
    [4] Tsekouras G., Too G. O., Wallace G. G., Effect of growth conditions on the photovoltaic efficiency of poly(terthiophene) based photoelectrochemical cells, Electrochim. Acta, 2005, 50(16-17): 3224-30.
    [5] Rosa R. M., Szulc R. L., Li R. W. C., Gruber J., Conducting polymer-based chemiresistive sensor for organic vapours, Macromol. Sym., 2005, 229: 138-42.
    [6] Bereket G, Hur E., Sahin Y., Electrochemical synthesis and anti-corrosive properties of polyaniline, poly(2-anisidine), and poly(aniline-co-2-anisidine) films on stainless steel, Prog. Org. Coat., 2005, 54(1): 63-72.
    [7] Mazeikiene R., Malinauskas A., Electrocatalysis of the hydroquinone/benzoquinone redox couple at electrode covered by a film of polyaniline-like copolymers, Reactive & Functional Polymers, 2000, 45: 45-54.
    [8] Malinauskas A., Garjonyte R., Mazeikiene R., Jureviciute I., Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrode for electroanalytical applications: a review, Talanta, 2004, 64: 121-9
    [9] 傅谊,马建标,何炳林,聚苯胺膜修饰电极对儿茶酚及对苯二酚的催化氧化,分析测试学报,1998,17(5):43-6.
    [10] Prasad K. R., Munichandraiah N., Electrooxidation of methanol on polyaniline without dispersed catalyst particles, J. Power Sources, 2002, 103: 300-4.
    [11] Shi C. J., Xue H. H., Shen Z. Q., Li Y. F., Yang C. H., Electrochemical copolymerization of pyrrole and propylene oxide, J. App. Polym. Sci., 2003, 89(10): 2624-7.
    [12] Pekmez N., Yildiz A., Electroreduction of 1,4-benzoquinone and cobaltocenium perchlorate on the oxidized electroinactive polyaniline films in acetonitrile, Bunsen-Ges B. Phy. Chem., 1998, 102: 843-849.
    [13] Mu S. L., Rechargeable batteries based on poly(aniline-co-o-aminophenol) and the protonation of the copolymer, Synth. Met., 2004, 143(3): 269-75.
    [14] Genies E. M., Lapkowski M., Penneau J. F., Cyclic voltammetry of polyaniline: interpretation of the middle peak, J. Electroanal. Chem., 1988, 249: 97-107.
    [15] Cases F., Huerta E, Garces P., Morallon R., Vazquez J. L., Voltammetric and in situ FTIRS study of the electrochemical oxidation of aniline from aqueous solutions buffered at pH 5, J. Electroanal. Chem., 2001, 501: 186-92.
    [16] Huang W. S., Humphrey B. D., MacDiarmid A. G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc. Farad. Trans., 1986, 82: 2385-400.
    [17] Li G. C., Zhang Z. K., Synthesis of dendritic polyaniline nanofibers in a surfactant gel, Macromolecules, 2004, 37: 2683-5.
    [18] Benyoucef A., Huerta E, Vazquez J. L., Morallon E., Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes, Europ. Polym. J., 2005, 41: 843-52.
    [19] Hasik M., Drelinkiewicz A., Wenda E., Paluszkiewicz C., Quillard S., FTIR spectroscopic investigation of polyaniline derivatives-palladium systems, J. Mol. Struc., 2001, 596: 89-99.
    [20] Borole D. D., Kapadi Uo R., Mahulikar P. P., Hundiwale D. G., Studies on electrochemical, optical and electrical conductivity characteristics of copolymer of polyaniline-co-poly(o-toluidine) using various organic salts, Mater. Lett., 2003, 57: 3629-35.
    [21] Zhu Y. M, Ha S. Y., Masel R. I., High power density direct formic acid fuel cells, J. Power Sources, 2004, 130: 8~14.
    [22] Dubau L., Hahn E, Coutanceau C., Leger J. M., Lamy C., On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation, J. Electroanal. Chem., 2003, 554: 407-15.
    [23] Wang Y., Fachini E. R., Cruz G., Zhu Y., Ishikawa Y., Colucci J. A., Cabrera C. R., Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation, J. Electrochem. Soc., 2001, 148(3): C222-6.
    [24] Jager E. W. H., Smela E., Inganas O., Microfabricating conjugated polymer actuators, Science, 2000, 290 (5496): 1540-5.
    [25] Park D. P., Sung J. H., Lim S. T., Synthesis and characterization of soluble polypyrrole and polypyrrole/organoclay nanocomposites, J. Mater. Sci. Lett., 2003, 22(18): 1299-302.
    [26] Shi L. X., Xiao Y., Willner I., Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces, Electrochem. Commun., 2004, 6: 1057-60.
    [27] Niu L., Li Q. H., Wei E H., Chen X., Wang H., Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol, Synth. Met., 2003, 139: 271-6.
    [28] 钟起玲,熊丽华,钟志京,李五湖甲酸在钯微粒修饰聚苯胺电极上氧化的协同效应研究,物理化学学报,1996,12(4):346-52.
    [29] Rice C., Ha R. I., Masel R. I., Waszczuk E, Wieckowski A., Barnard T., Direct formic acid fuel cells, J. Power Source, 2002, 111(1): 83-9
    [30] Xiang J., Wu B. L., Chen S. L., An EQCM investigation of the mechanism of surface electro-oxidation of formic acid on Pt-electrode, Acta Physico-Chimica Sinica, 2000, 16(10): 906-11.
    [31] Sun S. G., Yang Y. Y., Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111), Pt(510) and Pt(911) single crystal electrodes, J. Electroanal. Chem., 1999, 467(1-2): 121-31.
    [32] Rice C., Ha S., Masel R. I., Wieckowski A., Catalysts for direct formic acid fuel cells, J. Power Source, 2003, 115(2): 229-35.
    [33] Prasad K. R., Electrooxidation of methanol on polyaniline without dispersed catalyst particles, J. Power Sources, 2002, 103(2): 300-4.
    [34] Bard A. J., Faulkner L. R., Electrochemical Methods, Fundamentals and Applications, New York: Chemical J Industry Publishing Company, John Wiley & Sons, Inc. 1980, 294.
    [35] Ma Y. R., Yang Q. X., He W., Wang X. L, Electrochemistry of nickel(H) tryptophan film electrode and electrocatalytic oxidation of methanol, J. Natural Gas Chem., 2001, 10(2): 147-57.
    [36] Wang Y, Li L., Hu L., Zhuang L., Lu J. T., Xu B. Q., A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages, Electrochem. Commun., 2003, 5: 662-6.
    [37] Borkowska Z., Tymosiak-Zielinska A., Nowakowski R., High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol, Electrochim. Acta, 2004, 49: 2613-21.
    [1] Zhang J., Bond A. M., Practical considerations associated with voltammetric studies in room temperature ionic liquids, Analyst, 2005, 130: 1132-47.
    [2] Seki S., Susan A. B. H., Kaneko T., Tokuda H., Noda A., Watenabe M., Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts, J. Phys. Chem. B, 2005, 109: 3886-92.
    [3] Zhang J. L., Zhang X. G, Xiao F., Hu F. P., Effect of polar solvent acetonitrile on the electrochemical behavior of polyaniline in ionic liquid electrolytes, J. Coll. Interface Sci., 2005, 287: 67-71.
    [4] Zhao G. Y., Jiang T., Gao H. X., Han B. X., Huang J., Sun D. H., Mannich reaction using ionic liquids as catalysts and solvents, Green Chem., 2004, 6: 75-7.
    [5] Gordon C. M., New developments in catalysis using ionic liquids, Appl. Catal. A: General, 2001, 222: 101-17.
    [6] W. Lu, A. G. Fadeev, Qi B. H., Smela E., Mattes B., Ding J., Spinks G. M., Mazurkiewicz J., Zhou D. Z., Wallace G. G., MacFarlane D. R., Forsyth S. A., Forsyth M., Use of ionic liquids for π-conjugated polymer electrochemical devices, Science, 2002, 297(9): 983~87.
    [7] Innis P. C., Mazurkiewicz J., Nguyen T., Wallace G. g., MacFarlane D., Enhanced electrochemical stability of polyaniline in ionic liquids, Curr. Appl. Phys., 2004, 4: 389-93.
    [8] Sekiguchi K., Atobe M., Fuchigami T., Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid, J. Electroanal. Chem., 2003, 557: 1~7.
    [9] Pringle J. M., Efthimiadis J., Howlett P. C., Efthimiadis J., MacFarlane R., Chaplin A. B., Hall S. B., Pfficer D. L., Wallace G. G., Forsyth M., Electrochemical synthesis of polypyrrole in ionic liquids, Polymer, 2004, 45: 1447~53.
    [10] Yang C. H., Sun Q. J., Qiao J., Li Y. E, Ionic liquid doped polymer light-emitting electrochemical cells, J. Phys. Chem. B, 2003, 107: 12981-8.
    [11] Pringle J. M., Forsyth M., MacFarlane D. R., Wagner K., Hall S. B., Officer D. L., The influence of the monomer and the ionic liquid on the electrochemical, Polymer, 2005, 46: 2047-58.
    [12] Shim Y. B., Park S. M., Electrochemistry of conductive polymers, Ⅶ. Autocatalytic rate constant for polyaniline growth, Synth. Met., 1989, 29: 169-74.
    [13] Genies E. M., Penneau J. E, Lapkowski M., Boylen A., Electropolymerisation reaction mechanism of para-aminodiphenylamine, J. Electroanal. Chem., 1989, 269: 63-75.
    [14] Li G. C., Zhang Z. K., Synthesis of dendritic polyaniline nanofibers in a surfactant gel, Macromolecules, 2004, 37: 2683-5.
    [15] Pron'kin S. N., Petrii O. A., Tsirlina G. A., Schiffrin D.J., Size effects on the electrochemical of oxalic acid on nanocrystalline platinum, J. Electroanal. Chem., 2000, 480: 112-9.
    [16] Kunimatsu K., Seki H., Golden W. G., Gordon J. G., Philpott M. R., Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FFIR reflection-absorption spectroscopy: Ⅱ. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids, Langmuir, 1986, 2: 464-8.
    [17] Chollier-Brym M. J., Epron E, Lamy-Pitara E., Barbier J., Catalytic and electrocatalytic oxidation of oxalic acid in aqueous solutions of different compositions, J. Electroanal. Chem., 1999, 474: 147-54.
    [1] 谷艳娟,周志有,陈声培,甄春花,孙世刚,酸性和碱性介质中甘氨酸解离吸附和氧化的EQCM研究,高等学校化学学报,2003,24(3):501-3.
    [2] Huerta E, Morallon E., Cases E, Rodes A., Vazquez J. L., Aldaz A., Electrochemical behaviour of amino acids on Pt(h, k, l): A voltammetric and in situ FTIR study, Part 1. glycine on Pt(111), J. Electroanal. Chem., 1997, 421: 179-85.
    [3] Ogura K., Kobayashi M., Nakayama M., Miho Y., In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine, J. Electroanal. Chem., 1999, 463: 218-23.
    [4] Kitani A., Akashi T., Sugimoto K., Sotaro I., Electrocatalytic oxidation of methanol on platinum modified polyaniline electrodes, Synth. Met., 2001, 121: 1301-2.
    [5] Niu L., Li Q. H., Wei E H., Chen X., Wang H., Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol, Synth. Met., 2003, 139: 271-6.
    [6] Niu L., Li Q. H., Wei F. H., Wu S. X., Liu P. P., Cao X. L., Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: Effect of Pt deposition modes, J. Electroanal. Chem., 2005, 579: 331-7.
    [7] Ficicioglu E, Kadirgan F., Electrooxidation of methanol on platinum doped polyaniline electrodes: Deposition potential and temperature effect, J. Electroanal. Chem., 1997, 430: 179-82.
    [8] Rajesh B., Thampi K. R., Bonard J.-M., Mathieu H. J., Xanthopoulos N., Viswanthan B., Conducting polymeric nanotubules as high performance methanol oxidation catalyst support, Chem. Commun., 2003, 2022-3.
    [9] Croissant M. J., Napporn T., Leger J. M., Lamy C., Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes, Electrochim. Acta, 1998, 43: 2447-57.
    [10] Zhou H. H., Chen H., Luo S. L., Lu G. W., Wei W. Z., Kuang Y. F., The effect of the polyaniline morphology on the performance of polyaniline supercapacitors, Biosens. Bioelectron., 2005, 20: 1305-11.
    [1] Hamilton S., Hepher M. J., Sommerville J., Detection of Serpula lacrymans infestation with a polypyrrole sensor array, Sens. Actuators B, 2006, 113(2): 989-97.
    [2] Rajesh B., Thampi K. R., Bonard J.-M., Mathieu H. J., Xanthopoulos N., Viswanthan B., Conducting polymeric nanotubules as high performance methanol oxidation catalyst support, Chem. Commun., 2003, 2022-3.
    [3] Sekiguchi K., Atobe M., Fuchigami T., Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid, J. Electroanal. Chem., 2003, 557: 1~7.
    [4] Innis E C., Mazurkiewicz J., Nguyen T., Wallace G. G., MacFarlane D., Enhanced electrochemical stability of polyaniline in ionic liquids, Curr. Appl. Phys., 2004, 4: 389-93.
    [5] Lu W., Fadeev A. G., Qi B. H., Smela E., Mattes B., Ding J., Spinks G. M., Mazurkiewicz J., Zhou D. Z., Wallace G. G., MacFarlane D. R., Forsyth S. A., Forsyth M., Use of ionic liquids for π-conjugated polymer electrochemical devices, Science, 2002, 297(9): 983~7.
    [6] Beck E, Michaelis R., Schloten E, Zinger B., Filmforming electropolymerization of pyrrole on iron in aqueous oxalic-acid, Electrochim. Acta, 1994, 39: 229-34.
    [7] Makhloufi L., Hammache H., Saidani B., Electrocatalytic reduction of proton on polypyrrole coatings onto aluminium modified by the electrochemical cementation process, Electrochem. Commun., 2000, 2: 552-556.
    [8] Smit M. A., Ocampo A. L., Espinosa-Medina M. A., Sebastian P. J., A modified Nation membrane with in situ polymerized polypyrrole for the direct methanol fuel cell, J. Power Sources, 2003, 124: 59-64.
    [9] Kunimatsu K., Seki H., Golden W. G., Gordon J. G., Philpott M. R., Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FTIR reflection-absorption spectroscopy: Ⅱ. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids, Langmuir, 1986, 2: 464-8.
    [1] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-8.
    [2] Poncharal P., Wang Z. L., Ugarte D., de Heer W. A., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 1999, 283: 1513-6.
    [3] Ajayan P. M., Nanotubes from carbon, Chem. Rev., 1999, 99: 1787-99.
    [4] Tans S. J., Devoret M. H., Dai H. J., Thess A., Smalley R. E., Geerligs L. J., Dekker C., Individual single-wall carbon nanotubes as quantum wires, Nature, 1997, 386(6624): 474-7.
    [5] Dai H. J., Hafner J. H., Rinzler A. G., Colbert D. T., Smalley R. E., Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384: 147-50.
    [6] Ajayan P. M., Stephan O., Colliex C., Trauth D., Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science, 1994, 265: 1212-4.
    [7] Ramamurthy P. C., Harrell W. R., Gregory R. V., Sadanadan B., Rao A. M., Electronic properties of polyaniline/carbon nanotube composites, Synth. Met., 2003, 137: 1497-8.
    [8] Tchmutin I. A., Ponomarenko A. T., Kfinichnaya E. P., Kozub G. I., Efimov O. N., Electrical properties of composites based on conjugated polymers and conductive fillers, Carbon, 2003, 41: 1391-5.
    [9] Huang J. E., Li X. H., Xu J. C., Li H. L., Well-dispersed single-walled carbon nanotube/polyaniline composite films, Carbon, 2003, 41: 2731-6.
    [10] Feng W., Bai X. D., Lian Y. Q., Liang J., Wang X. G., Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization, Carbon, 2003, 41: 1551-7.
    [11] Hassanien A., Gao M., Tokumoto M., Dai L., Scanning tunneling microscopy of aligned coaxial nanowires of polyaniline passivated carbon nanotubes, Chem. Phys. Lett., 2001, 342: 479-84.
    [12] Ham H. T., Choi Y. S., Jeong N., Chung I. J., Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization, Polymer, 2005, 46: 6308-15.
    [13] Chen G. Z., Shaffer M. S. P., Coleby D., Dixon G., ZhouW. Fray D. J., Windle A. H., Carbon nanotube and polypyrrole composites: coating and doping, Adv. Mater., 2000, 12(7): 522-6.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.