基于导电聚合物的可见光催化剂的制备及其降解污染物的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是一种新型有效的环境污染控制技术,具有环境友好,污染物分解彻底等优点。同时,由于具有可利用太阳能的可能性而受到广泛的关注。但目前以TiO2为代表的光催化剂存在可见光利用效率低和量子效率低等缺点,这些因素限制了光催化技术的进一步发展。导电聚合物是一种具有半导体特性的高分子聚合物,具有较强的可见光吸收性能和电荷迁移能力。将导电聚合物与其他半导体进行复合形成异质结可以促进光生电荷的有效分离;同时通过引入光子晶体和核壳介孔微球等结构的反射效应、散射效应和慢光效应可以实现对可见光的有效富集,以上两方面协同作用可以实现可见光下对污染物的高效光催化降解。本论文围绕以上内容,主要开展了以下几个方面的工作:
     (1)结合模板法、液相沉积法、旋转涂覆法和浸渍法制备了反蛋白石TiO2光子晶体耦合的TiO2/聚3-己基噻吩(P3HT)复合光催化剂(Bilayer TiO2/P3HT)。Bilayer TiO2/P3HT由内层的反蛋白石TiO2和外层的纳米颗粒TiO2组成,其中反蛋白石TiO2具有规则的面心立方体结构,TiO2纳米颗粒层是由5-25 nm的纳米颗粒组成。经过P3HT修饰之后,Bilayer TiO2/P3HT仍然呈现出锐钛矿TiO2的晶型结构,由于光子晶体Ti02的禁带反射效应和禁带红边缘的慢光效应,Bilayer TiO2/P3HT对可见光的吸收要明显强于传统的NP-TiO2/P3HT。可见光下对亚甲基蓝(MB)的光催化降解实验结果表明,在6h内Bilayer TiO2/P3HT对MB的光催化降解反应动力学常数是传统的NP-TiO2/P3HT的2.08倍。这些结果说明光子晶体与P3HT/TiO2异质结的协同作用可以有效的提高可见光下的光催化能力。
     (2)结合水热法和化学吸附法制备了聚苯胺(PANI)修饰的核壳结构的介孔TiO2微球光催化剂(PANI/M-TiO2)。PANI/M-TiO2具有独特的介孔核壳结构,其比表面积达到125 m2/g。PANI的修饰没有改变M-TiO2的锐钛矿的晶型结构。由于多重散射、反射效应以及较大的比表面积,PANI/M-TiO2对可见光的吸收要明显强于传统的PANI/NP-TiO2。其中PANI与M-TiO2的初始质量比为6%的复合光催化剂显示了最好的光催化活性,可见光下对于罗丹明B (RhB)和4-氯酚(4-CP)的降解动力学常数分别是传统的PANI/NP-TiO2的5.04倍和2.03倍。
     (3)结合直接热聚合法和超声吸附法制备了石墨相氮化碳(g-C3N4)和石墨烯氧化物(GO)复合的可见光催化剂。其中g-C3N4是由单层石墨状的七嗪环片层沿着c轴方向的堆垛而形成。GO表现出薄纱状褶皱和卷曲的织构,表面含有丰富的羟基、羧基、环氧基等含氧基团。g-C3N4与GO通过超声吸附复合之后,所得到的g-C3N4/GO复合光催化剂对可见光的吸收有所增强,而且g-C3N4与GO之间光生电荷能够有效的迁移和分离。可见光下对RhB的光催化降解实验结果表明g-C3N4/GO复合光催化剂具有较好的光催化活性,其降解动力学常数是g-C3N4的3.80倍。
     以上结果表明,合理的设计导电聚合物异质结光催化剂的形貌和结构,能够实现对可见光的有效富集,从而增加对可见光的吸收效率;导电聚合物和其他半导体之间形成的异质结能够促使光生载流子的有效迁移和分离,两方面协同作用,实现了可见光下对污染物的高效光催化降解。本论文为高效可见光光催化剂的设计和制备提供了可行的方法,为光催化技术的进一步应用与发展提供了有价值的参考。
Photocatalysis is one of the attractive efficient environmental pollution control technique due to its environmental friendly property, excellent photocatalytic activity and potential in solar useless. However, there are two problems for the mostly studied photocatalyst TiO2, which were the vital factors to the further development of photocatalysis. One is the limitation of utilization of visible light; another one is low quantum efficiency. Conducting polymers (CPs) was a unique organic semiconductor, which possesses efficient visible light absorption and charge transfer ability. The separation of photogenerated charge could be facilitated when CPs combined with other semiconductors owing to the heterojunction built between them; on the other hand, the visible light harvest efficiency of photocatalyst could be enhanced by employing the multiple scattering effect, reflection effect and slow photons effect of photonic crystals and mesoporous core-shell microspheres structure. The synergy of the two factors as stated above would enhance the efficiency of photocatalysis under visible light irradiation. In this dissertation, the following work has been done:
     (1) Photonic crystal coupled TiO2/P3HT hybrid photocatalyst on FTO substrate (Bilayer TiO2/P3HT) were fabricated by the combination of template method, liquid phase deposition method, spin coating and dipping method. The Bilayer TiO2/P3HT was composed of inverse opal TiO2 layer and TiO2 nanoparticle layer. The inverse opal TiO2 was regular with FCC. The TiO2 nanoparticle layer was composed of TiO2 nanoparticle with diameter in the range 5-25 nm. After modification with P3HT, the Bilayer TiO2/P3HT composite photocatalyst was still in anatase. Moreover, the visible light absorption of Bilayer TiO2/P3HT was more intensive than the conventional NP-TiO2/P3HT in the range of 400-650 nm because of the reflection effect and slow photos effect of inverse opal TiO2. The result of photocatalytic degradation of MB under visible light irradiation illustrated that the pseudofirst-order kinetic constant using the Bilayer TiO2/P3HT was 2.08 times as great as that using NP-TiO2/P3HT. The photocatalytic mechanism of photodegradation of MB was discussed.
     (2) PANI modified core-shell mesoporous TiO2 microspheres (PANI/M-TiO2) were fabricated by the combination of hydrothermal method and chemisoroption method. The morphology of PANI/M-TiO2 was microspheres with unique core-shell structure..The specific surface area of PANI/M-TiO2 was 125 m2/g. The PANI/M-TiO2 composite photocatalyst with the mass proportion of 6% showed the best photocatalytic peformance. The visible light absorption of 6% PANI/M-TiO2 was more intensive that of conventional PANI/NP-TiO2 because of the multireflection effect and large surface area of PANI/M-TiO2. The result of photocatalytic degradation of RhB and 4-CP under visible light irradiation illustrated that the pseudofirst-order kinetic constant using the 6% PANI/M-TiO2 was 5.04 times and 2.03 times as great as that using conventional PANI/NP-TiO2, respectively. The photocatalytic mechanism of photodegradation of RhB and 4-CP was discussed.
     (3) The graphene oxide and graphitic carbon nitride (g-C3N4/GO) was prepared by directly heating melamine and ultrasonic adsorption method. The g-C3N4 was composed of graphite-like stacking of the tri-s-triazine units. The GO displayed flake-like shapes of with wrinkles and ripples. The surface of GO contained much functional groups, such as-COOH,-OH,-C-O-C-. After ultrasonic adsorption, g-C3N4 combined with GO via strong bonds. The absorption of g-C3N4/GO was more intensive than that of g-CsN4. Moreover, efficient photocharge separation process occured in the g-CsN4/GO composite photocatalyst. The result of photocatalytic degradation of RhB under visible light irradiation illustrated that the pseudofirst-order kinetic constant using the g-C3N4/GO was 3.80 times as great as that using conventional g-C3N4.
     The results of the experiments in this dissertation demonstrated that the visible light absorption of photocatalyst could be harvested efficiently via the construction of photocatalyst with suitable morphology and structure; the heterojunction built between CPs and other semiconductors benefited the separation of photogenerated charge. The synergy effect of the two aspects could enhance the efficiency of photocatalysis under visible light irradiation, which supplied feasible approaches for the design and fabrication of efficient visible light photocatalyst, and promoted the application and development of photocatalytical technology further.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238(5358):37-38.
    [2]Cary J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous [J]. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
    [3]Frank S N, Bard A J. Semiconductor electrodes.12. photoassisted oxidations and photoelectrosythesis at polycrystalline TiO2 electrodes [J]. Journal of American Chemical Society,1977,99(14):4667-4675.
    [4]丁建军.可见光响应型光催化剂的制备、结构和性能,研究[D].合肥:中国科学技术大学同步辐射及应用学院,2009.
    [5]Legrini O, oliveros E, Braum A M. Photochemical process for water treatment [J]. Chemical Review, 1993,93:671-698.
    [6]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95:735-758.
    [7]邹建.H2O2敏化纳米TiO2及其可见光催化活性研究[D].重庆:重庆大学材料科学与工程学院,2009.
    [8]Kenichi O. Photocatalytic destruction of organic dyes in Aqueous TiO2 suspensions using concentrated simulated and natural solar energy [J]. Bull Chem Soc Jpn,1985,58(7):2015-2022.
    [9]原田贤二,久永辉明.半导体光催化分解三氯乙烯[J].水处理技术,1988,29(8):23-27.
    [10]Sivalingam G, Nagaveni K, Hegde M S. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2 [J]. Appl.Catal.B:environmental,2003,45:23-38.
    [11]Zielinska B, Grzechulska J, Morawski A. Photocatalytic decomposition of textile dyes on TiO2-Tytanpol A11 and TiO2-Degussa P25 [J]. J.Photochem.Photobiol A:Chemistry,2003,157:65-70.
    [12]Miyake M, Yoneyama H, Tamura H. The correlation between photo-electrochemical cell reactions and photocatalytic reactions on illuminated rutile [J]. Bull Chem Soc Jpn,1977,50(6):1492-1496.
    [13]戴遐明.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究[J].环境科学,1996,17(6):34.
    [14]Khalil L B, Rophael M W, Mourad W E. The removal of the toxic Hg salts from water by photocatalysis [J]. Applied Catalysis B:Environmental,2002,36:125-130.
    [15]Piairie M R, Evans L R, M, S. B. An investigation of TiO2 photocatalysis for the treatment of water contamination with metals and organic chemicals [J]. Environ. Sci. Technol.,1993,27:1776.
    [16]付宏祥,吕功煊,李新勇.重金属离子的光催化还原研究进展[J].感光科学和光化学,1995,13(4):325-333.
    [17]黄锦勇,刘国光,张万辉,et al. TiO2光催化还原重金属离子的研究进展[J].环境科学与技术,2008,31(12):104-108.
    [18]李建伟,薛韩玲,葛岭梅,et al纳米Ti02涂膜反应器中NOx光催化脱除实验研究[J].湖南科技大学学报,2004,19(2):88-90.
    [19]马睿,谭欣,赵林.光催化转化氮氧化物的研究进展[J].安徽农业科学,2007,35(8):2215-2217.
    [20]沈文浩,龙周,陈小泉,et al纳米Ti02光催化降解甲醛的影响因素[J].华南理工大学学报,2010,38(8):142-146.
    [21]Dunlop P S, Byrne J A, Manga N. The photocatalytic removal of bacterial pollutants from drinking water [J]. Journal of Photochemistry and Photobiology,2002,148(1):355-363.
    [22]Matsunaga T, Okochim M. TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers [J]. Environmental Science and Technology,1995,29(2):501-505.
    [23]Matsunaga T, Tomoda R, Nakajima T. Photoelectrochemical sterilization of microbial cell s by semiconductor powers [J]. Microbiology Letters,1985,29(4):211-214.
    [24]Sunada K, Kikuchi Y. Bactericidal and detoxificat ion effect of TiO2 thin film photocatalysis [J]. Environmental Science and Technology,1998,32(5):726-728
    [25]鹿院卫,马重芳,王伟.纳米光催化杀菌技术及空气净化技术研究[J].工程热物理学报,2004,25(2):311-313.
    [26]张慧书,刘守新.Ti02光催化杀菌机理及应用研究进展[J].科学技术与工程,2009,9(17):5049-5064.
    [27]Wang R, Hashimoto K, Fujishima A. Light induced amphiphilic surface [J]. Nature,1997,388: 431-432.
    [28]关凯书,尹衍升,姜秋鹏.Ti02-SiO2复合薄膜光催化活性与亲水性关系的研究[J].硅酸盐学报,2003,31(3):219-224.
    [29]殷好勇,金振声,张顺利.在玻璃的Ti02涂膜上有机物分子的吸附及光催化分解对水接触角的影响[J].感光化学与光化学,2001,19(2):81.
    [30]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chemical Physics Letters,1986,123(1-2):126-128.
    [31]Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    [32]Irie H, Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders [J]. J.Phys.Chem.B,2003,107:5483-5486.
    [33]Burda C, Lou Y, Chen X. Enhanced nitrogen doping in TiO2 nanoparticles [J]. Nano. Lett.,2003,3(8): 1049-1051.
    [34]Khan S U M, Al-Shahry M, Ingler J W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [35]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S doped TiO2 photocatalyst under visible light [J]. Chem. Lett.,2003,32:364-365.
    [36]Yu J C, Yu J G, Wingkei K H. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders [J]. Chem. Mater.,2002,14(9):3808-3816.
    [37]Lu N, Quan X, Li J Y, et al. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability [J]. The Journal of Physical Chemistry C,2007,111: 11836-11842.
    [38]Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J.Phys.Chem.B, 1994,98(5):13669-13679.
    [39]Xie Y B, Yuan C W. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system [J]. Colloid. Surf.,2005,252(1):87-94.
    [40]Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. Journal of Catalysis,2003,216(1-2):505-516.
    [41]Yamashita H, Harada M, Misaka J. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2 [J]. Catalysis Today,2003,84(3-4):191-196.
    [42]Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nano-sized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. J.Mol.Catal.,2006,244(1-2):25-32.
    [43]Besselhouad Y, Robert D, Weber J V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. J.Photochem. Photobiol. A:Chem., 2004,163(3):569-580.
    [44]Zhang Y J, Yan W, Wu Y P, et al. Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition [J]. Mater. Lett.,2008,62(23): 3846-3848.
    [45]Jang J S, Choi S H, Kim H G, et al. Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light [J]. J.Phys.Chem.C,2008,112(44):17200-17205.
    [46]Liu H, Gao L. Preparation and properties of nanocrystalline a-Fe2O3-sensitized TiO2 nanosheets as a visible light photocatalyst [J]. J.Am.Ceram.Soc.,2006,89(1):370-373.
    [47]Li J, Liu L, Yu Y, et al. Preparation of highly photocatalytic active nano-size TO2-Cu2O particle composites with a novel electrochemical method [J]. Electrochem. Commun.,2004,6(9):940-943.
    [48]Zhang Y G, Ma L L, Yu Y. In situ fenton reagent generated from TiO2/Cu2O composite film:a new way to utilize TiO2 under visible light irradiation [J]. Environ. Sci. Technol.,2007,41(17):6264-6269.
    [49]Song H, Jiang H, Liu X, et al. Efficient degradation of organic pollutant with WOX modified nano TiO2 under visible irradiation [J]. J. Photochem. Photobio. A,2006,181(2-3):421-428.
    [50]Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles [J]. J. Am. Ceram. Soc.,2007,129(14):4136-4137.
    [51]Long M C, Cai W M, Kisch H. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4 [J]. Journal of Physical Chemistry C,2008,112(2):548-554.
    [52]Shang M, Wang W Z, Zhang L.3D Bi2WO6/TiO2 hierarchical heterostructure: conrollable synthesis and enhanced visible photocatalytic degradation performances [J]. Journal of Physical Chemistry C, 2009,113(33):14727-14731.
    [53]Xiao G C, Wang X C, Li D Z. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light [J]. Journal of Photochemistry and Photobiology A-Chemistry,2008,193(2-3):213-221.
    [54]Yuan Z H, Zhang L D. Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite [J]. Journal of Materials Chemistry,2001,11(4):1265-1268.
    [55]Liu Z F, Miyauchi M. Visible-light induced superhydrophilicity on a WO3/ITO/CaFe2O4 heterojunction thin film [J]. Chemical Communications,2009,15:2002-2004.
    [56]Kakuta N, Goto N, Ohkita H, et al. Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution [J]. J.Phys.Chem.B,1999,103:5917-5919.
    [57]Hu C, Lan Y Q, Qu J H, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azo dyes and bacteria [J]. J.Phys.Chem.B,2006,110:4066-4072.
    [58]Rodrigues S, Uma S, Martyanov L N, et al. AgBr/A1-MCM-41 visible-light photocatalyst for gas-phase decomposition of CH3CHO [J]. J. Catal.,2005,233(2):405-410.
    [59]Li Y, Zhang H, Guo Z, et al. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst [J]. Langmuir,2008,24(15):8351-8357.
    [60]Hu C, Hu X X, Wang L S, et al. Visible-light-induced photocatalytic degradation of azo dyes in aqueous AgI/TiO2 dispersion [J]. Environ.Sci.Technol,2006,40(24):7903-7907.
    [61]Chen S G, Paulose M, Ruan C M, et al. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes:preparation, characterization, and application to photoelectrochemical cell [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,177(2-3):177-184.
    [62]Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. Journal of the American Chemical Society,2008,130(4):1124-1125.
    [63]Hou Y, Li X Y, Zou X J, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation [J]. Environmental Science & Technology,2009,43(3):858-863.
    [64]Colon G, Murcia L S, Hidalgo M C, et al. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation [J]. Chemical Communication,2010,46(26):4809-4811.
    [65]Zang L, Lange C, Abraham I, et al. Amorphous microporous titania modified with platinum(IV) chloride-a new type of hybrid photocatalyst for visible light detoxification [J]. J.Phys.Chem.B,1998, 102:10765-10771.
    [66]Regan B O, Gratzel M. A low-cost,high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-739.
    [67]Wang P, Zakeeruddin S M, Moser J E. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nature Mater.,2003,2(6):402-407.
    [68]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术[J].环境科学进展,1997,5(3):1-10.
    [69]Osora H, Li W. Photosensitization of nanocrystalline TiO2 thin films by a polyimide bearingpendent substituted-Ru(bpy)23+ groups [J]. J. Photochem. Photobio. B,1998,43(3):232-238.
    [70]Tennakone K, Bandara J. Photocatalytic activity of dye-sensitized tin(IV)oxide nanocrystalline particles attached to zinc oxide particles:long distance electron transfer via ballistic transport of electrons across nanocrystallites [J]. Appl. Catal. A 2001,208:335-341.
    [71]Nasr S, Hotchandani P, Kamat V. Photoelectrochemistry of composite semiconductor thin films. Photo-sensitization of SnO2/CdS coupled nanocrystallites with a Ruthenium complex [J]. J. Phys. Chem. B,1997,101:7480-7487.
    [72]Islam A, Sugihara H, Hara K, et al. Sensitization of nanocrystalline TiO2 film by ruthenium(II)diimine dithiolate complexes [J]. J. Photochem. Photobiol. A. Chem.,2001,145(1-2):135-141.
    [73]Hara K, Horiuchi H, Katoh R, et al. Effect of the ligand structure on the efficiency of electron injection from excited Ru-phenanthroline complexes to nanocrystalline TiO2 films [J]. J. Phys. Chem. B,2002, 106(2):374-379.
    [74]Shabtai V H, Willner I. Photocatalyzed CO2-fixation to formate and H2 evolution by eosin-modified Pd-TiO2 powders [J]. J. Chem. Soci. Chem. Commun.,1994,18:2113-2114.
    [75]Schlettwein D, Oekermann T, Yoshida T, et al. Photoelectrochemical sensitisation of ZnO-tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly [J]. J. Electroanaly.Chem,2000,481:42-51.
    [76]Konstantinou I K, Albanis T A. TiO2 assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations:A review [J]. Appl. Catal. B:Environment,2004,49(1):1-14.
    [77]Chen F, Deng Z, Li X. Visible light detoxification by 2,9,16,23-tetracarboxyl phth-alocyanine copper modified amorphous titania [J]. Chem. Phys. Lett.,2005,415(1-3):85-88.
    [78]Chen Y, Wang K, Lou L. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation [J]. J. Photochem. Photobio. A 2004,163(1-2):281-287.
    [79]Liu Y, Dadap J I, Zimdars D, et al. Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation [J]. J. Phys. Chem. B 1999,103:2480-2486.
    [80]Moser J, Punchihewa S, Infelta P P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates [J]. Langmuir,1991,7:3012-3018.
    [81]Hurum D C, Gray K A, Rajh T, et al. Photoinitiated reactions of 2,4,6 TCP on degussa P25 formulation TiO2:wavelength-sensitive decomposition [J]. J.Phys.Chem.B,2004,128:16483-16487.
    [82]Kim S, Choi W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path [J]. J. Phys. Chem. B 2005,109(11):5143-5149.
    [83]Ikeda S, Abe C, Torimoto T, et al. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV)oxide under visible-light irradiation [J]. J. Photochem. Photobiol. A 2003,160:61-67.
    [84]Moon J, Yun C Y, Chung K W, et al. Photocatalytic activation of TiO2 under visible l ght using acid red 44 [J]. Catal.Today,2003,87(1-4):77-86.
    [85]张立德.超微粉体制备及应用技术.北京:中国石化出版社,2001.
    [86]Hodak J, Quinteros C, Liner M L, et al. Sensitization of TiO2 with phthalocyanines Part 1.Photo-oxidations using hydroxoaluminium tricarboxymonoamidephthalocyanine adsorbed on TiO2 [J]. J. Chem. Soc., Faraday Trans.,1996, (92):5081-5088.
    [87]Iliev V. Phthalocyanine-modified titanic-catalyst for photooxidation of phenols by irradiation with visible light [J]. J. Photochem. Photobiol. A 2002 151:195-199.
    [88]Li D, Dong W J, Sun S M, et al. Photocatalytic degradation of acid chrome blue K with porphyrin-sensitized TiO2 under visible light [J]. Journal of physical chemistry C,2008,112(38): 14878-14882.
    [89]Duan M Y, Li J, Mele G, et al. Photocatalytic activity of novel Tin porphyrin/TiO2 based composites [J]. Journal of physical chemistry C,2010,114(17):7857-7862.
    [90]Zou Z G, Ye J H, Abe R. Photocatalytic decomposition of water with Bi2InNbO7 [J] Catalysis Letters, 2000,68(3-4):235-239.
    [91]Zou Z G, Ye J H, Arakawa H. Photophysical and photocatalytic properties of InMO4 (M=Nb5+, Ta5+) under visible light irradiation [J]. Materials Research Bulletin,2001,36 (7-8):1185-1193.
    [92]Zou Z G, Ye J H, Nishihara Y. Preparation and Magnetic Properties of In(2-X) ZnxCu2O5 (x=0-1.4) Solid Solution [J]. Journal of Materials Science Letters,1999,18 (17):1387-1390.
    [93]Oshikiri M, Boero M, Ye J H, et al. Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region [J]. Journal of Chemical Physics,2002 117 (15):7313-7318.
    [94]Ye J H, Zou Z G, Matsushita A. A novel series of water splitting photocatalysts NiM2O6 (M= Nb, Ta) active under visible light [J]. International Journal of Hydrogen Energy,2003,28 (6):651-655.
    [95]Zou Z G, Ye J H, Arakawa H. Preparation, structural and optical properties of a new class of compounds, Bi2MNb07 (M=Al, Ga, In) [J]. Materials Science and Engineering B -Solid State Materials for Advanced Technology,2001,79(1):83-85.
    [96]Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7 (R=Y, Rare Earth):effect on band structure and photocatalytic properties [J]. Journal of Physical Chemistry B,2002,106(3):517-520.
    [97]Wrighton M S, Ellis A B, Ginley D S. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode [J]. J. Am. Chem. Soc,1976,98:44-48.
    [98]Ahuja S, Kutty T R N. Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol [J]. J. Photochem. Photobiol. A,1996,97: 99-107.
    [99]Cui X L, Yang Q H, Fu X X. Photocatalysed reduction of aqueous sodium carbonate using LaCoO3 nano particles [J]. Journal of Rare Earths,2003,21:124-126.
    [100]Fu X X, Yang Q H, Wang J Z, et al. Photocatalytic degradation of water soluble dyes by LaCoO3 [J]. Journal of Rare Earths,2003,21:424-426.
    [101]Yin J, Zou Z G, Ye J H. Photophysical and photocatalytic properties of MIno.5Nb0.5O3 (M=Ca, Sr, and Ba) [J]. J. Phys. Chem. B,2003,107:61-65.
    [102]Yin J, Zou Z G, Ye J H. A novel series of the new visible-light-driven photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with special electronic structures [J]. J. Phys. Chem. B,2003,107:4936-4941.
    [103]Yin J, Zou Z G, Ye J H. Possible role of lattice dynamics in the photocatalytic activity of BaM1/3N2/3O3 (M=Ni, Zn; N=Nb, Ta) [J]. J. Phys. Chem. B,2004,108:8888-8893.
    [104]Yin J, Zou Z G, Ye J H. Photophysical and photocatalytic activities of a novel photocatalyst BaZn1/3Nb2/3O3 [J]. J. Phys. Chem. B,2004,108:12790-12794.
    [105]Wells A F. Structural Inorganic Chemistry. Oxford University Press,1975.
    [106]Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chem. Phys. Lett.,2002,356:221-226.
    [107]Oshikiri M, Seitsonen A P, Parrinello M, et al. The promising new photo-catalyst InVO4 for water molecule decomposition in the visible wavelength region [J]. Mater. Resear. Soc.,2002,56:187.
    [108]Zou Z G, Ye J H, Arakawa H. Structural properties of InNbO4 and InTaO4:correlation with photocatalytic and photophysical properties [J]. Chem. Phys. Lett.,2000,332:271-277.
    [109]Ye J H, Zou Z G, Arakawa H, et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+) [J]. J. of Photochemistry and Photobiology A-Chemistry,2002,148:79-83.
    [110]Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolution under visiblelight irradiation on BiVO4 in aqueous AgNO3 solution [J]. Catal. Lett.,1998,53:229-230.
    [111]Tokunaga S, Kato H, Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with scheelite structure and their photocatalytic properties [J]. Chem. Mater.,2001,13:4624-4628.
    [112]Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and and its photocatalytic and photophysical properties [J]. J. Am. Chem. Soc.,1999,121(49):11459-11467.
    [113]Zou Z G, Ye J H, Arakawa H. Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst [J]. International Journalof Hydrogen Energy, 2003,28:663.
    [114]Tang J, Zou Z G, Ye J H. Photophysical decomposition of organic contaminats by Bi2WO6 [J]. Catalysis Lett.,2004,92 53.
    [115]Zhao X, Xu T G, Yao W Q, et al. Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation [J]. Applied Catalysis B:Environmental,2007, 72(1-2):92-97.
    [116]Zhang S C, Zhang C, Man Y, et al. Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties [J]. Journal of Solid State Chemistry,2006,179:62-69.
    [117]Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation [J]. Environmental Science and Technology,2007,41: 6234-6239.
    [118]Zou Z G, H, Y. J., Arakawa H. Photocatalytic behavior of a new series of In0.8M0.2TaO4 (M=Ni, Cu, Fe) photocatalysts in aqueous solutions [J]. Catalysis Letters,2001,75:209.
    [119]Chun W J, Ishikawa A, Fujisawa H, et al. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods [J]. J. Phys. Chem. B,2003,107(8):1798-1803.
    [120]Hitoki G, Takata T, Kondo J N, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ<500nm) [J]. Chem.Commun.,2002,16:1698-1699.
    [121]Kasahara A, Nukumizu K, Takata T, et al. LaTiO2N as a Visible-Light (<600nm)-Driven Photocatalyst [J]. J. Phys. Chem. B,2003,107(3):791-797.
    [122]Wang P, Huang B B, Qin X Y, et al. Ag@AgCI:A highly efficient and stable photocatalyst active under visible light [J]. Angew Chem. Int. Ed.,2008,47:7931-7933.
    [123]Wang P, Huang B B, Zhang X Y, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr [J]. Chem. Eur. J 2009,15:1821-1824.
    [124]Wang P, Huang B B, Qin X Y, et al. Ag/AgBr/WO3H2O:visible-light photocatalyst for bacteria destruction [J]. Inorg. Chem.,2009,48:10697-10702.
    [125]Dai P, Huang B B, Lou Z Z, et al. Synthesis of high efficient Ag@AgCI plasmon photocatalysts with various structures [J]. Chem. Eur. J 2010,16:538-544.
    [126]Hu C, Peng T W, Hu X X, et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation [J]. J. Am. Chem. Soc.,2010,132:857-862.
    [127]Zhou X F, Hu C, Hu X X, et al. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation [J]. J. Phys. Chem. C 2010 114:2746-2750.
    [128]Shirakawa H, Louis E J, MacDiarmid A C, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)X [J]. J. Chem. Soc., Chem. Commun.,1977 16(5): 578-580.
    [129]马建标.导电高分子材料.北京:化学工业出版社,2000.
    [130]蒋凤平.导电聚合物的制备与电化学性能[D].广州:暨南大学高分子化学与物理,2010.
    [131]杨亚杰.导电聚合物纳米材料的制备及特性研究[D].成都:电子科技大学材料物理与化学,2007.
    [132]太惠玲.导电聚合物纳米复合薄膜的制备及其氨敏特性研究[D].成都:电子科技大学材料物理与化学,2008.
    [133]李生英.导电聚合物/半导体纳米复合材料的制备及其光催化性能研究[D].兰州:西北师范大学高分子化学与物理,2006.
    [134]梁浩,高保娇.共轭导电聚合物的特性及应用[J].华北工学院学报,2000,1:50-54.
    [135]胡明,刘彦军.导电高分子聚噻吩及其衍生物的研究进展[J].材料导报,2006,20(1):64-68.
    [136]何杰,苏忠集,向丽,et al.聚合物太阳能电池研究进展[J].高分子通报,2007,4:53-65.
    [137]Kim Y G, Walker J, Samuelson L A., et al. Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells [J]. Nano Letters,2003,3(4):523-525.
    [138]Zhu Y F, Dan Y. Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange [J]. Solar Energy Materials and Solar Cells,2010,94(10):1658-1664.
    [139]Wang D S, Zhang J, Luo Q Z, et al. Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light [J]. Journal of Hazardous Materials,2009,169(1-3):546-550.
    [140]Liang H C, Li X Z. Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films [J]. Applied Catalysis B:environmental,2009,86(1-2):8-17.
    [141]李雪艳.二氧化钛/聚苯胺复合微粒材料的制备、结构和性能研究[D].天津:天津大学材料科学与工程,2007.
    [142]丁世海.聚苯胺衍生物纳米复合材料的制备及性质研究[D].长春:吉林大学化学学院,2009.
    [143]Gao J Z, Li S Y, Yang W, et al. Preparation and photocatalytic activity of PANI/TiO2 composite film [J]. Rare Metals,200726 (1):1-7.
    [144]Li X Y, Wang D S, Cheng G X, et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination [J]. Applied Catalysis B:Environmental,2008, 81(3-4):267-273.
    [145]Salem M A, Al-Ghonemiy A F, Zaki A B. Photocatalytic degradation of Allura red and Quinoline yellow with Polyaniline/Ti02 nanocomposite [J]. Applied Catalysis B:Environmental,2009,91(1-2): 59-66.
    [146]Min S X, Wang F, Han Y Q. An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites [J]. J Mater. Sci.,2007,42:9966-9972.
    [147]Zhang H, Zong R L, Zhao J C, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI [J]. Environmental Science & Technology,2008,42(10): 3803-3807.
    [148]Zhang H, Zhu Y F. Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization [J]. Journal of Physical Chemistry C,2010, 114(13):5822-5826.
    [149]Zhang H, Zong R L, Zhu Y F. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline [J]. Journal of Physical Chemistry C,2009,113 (11): 4605-4611.
    [150]Shang M, Wang W Z, Sun S M, et al. Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4 [J]. Journal of Physical Chemistry C,2009,113(47): 20228-20233
    [151]Teter D M, Hemley R J. Low-compressibility carbon nitrides [J]. Science,1996 271:53-55.
    [152]Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts [J]. Journal of Materials Chemistry,2008,18: 4893-4908.
    [153]孟雅丽,陈丹,宋文乔,et al.类石墨结构氮化碳的合成及其应用[J].广州化工,2010,38(8):91-93.
    [154]Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials,2009,8:76-80.
    [155]Wang X C, Maeda K, Chen X F, et al. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light [J]. J. Am. Chem. Soc.,2009,131: 1680-1681.
    [156]Yan S C, Li Z S, Zou Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation [J]. Langmuir,2010,26(6):3894-3901.
    [157]Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir 2009,25(17):10397-10401.
    [158]刘伟.石墨相碳氮化合物的制备及表征[D].长春:吉林大学原子与分子物理研究所,2009.
    [159]赵鹏.氮化碳、氮化硅纳米材料的合成及表征[D].合肥:合肥工业大学应用化学系,2009.
    [160]Chen X F, Jun Y S, Takanabe K, et al. Ordered mesoporous SBA-15 type graphitic carbon nitride:A semiconductor host structure for photocatalytic hydrogen evolution with visible light [J]. Chem. Mater.,2009,21:4093-4095.
    [161]Wang Y, Di Y, Antonietti M, et al. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids [J]. Chem. Mater.,2010,22:5119-5121.
    [162]陈启元,兰可,尹周澜,et al.半导体光解水研究进展[J].材料导报,2005,19(1):20-23.
    [163]Romero M, Blanco J, Sanchez B, et al. Solar photocatalytic degradation of water and air pollutants: challenges and perspectives [J]. Solar Energy,1999,66:169-182.
    [164]Hoffmann M R, Martin S T, Choi W. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95(1):69-95.
    [165]Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity [J]. J. Am. Chem. Soc.,2007,129:8406-8407.
    [166]何晓东.光子晶体及其应用的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2002.
    [167]王东栋.光子晶体理论、制备及其光学特性研[D].北京:北京交通大学光学系,2008.
    [168]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys.Rev.Lett,1987,58:2059-2062.
    [169]John S. Strong localization of photons in certain disordered dielectric super lattices [J]. Phys.Rev.Lett., 1987,58:2486-2489.
    [170]李伟,贺毅,张云,et al变色魔术师-自然界中的光子晶体[J].延安职业技术学院学报,2010,24(2):94-95.
    [171]王霞,王自霞,吕浩,et al.光子学视角分析自然界中的生物结构色彩美[J].科学通报,2010,55(12):1077-1084.
    [172]程冰.光子晶体用纳米颗粒的制备改性自组装及其光学性能[D].咸阳:陕西科技大学,2008.
    [173]韩国志,孙立国.反蛋白石光子晶体的研究进展[J].化学通报,2009,4:307-312.
    [174]王振领,林君.蛋白石及反蛋白石结构光子晶体[J].化学通报,2004,67(12):876-882.
    [175]Lopez C. Materials aspects of photonic crystals [J]. Adv. Mater.,2003,15 1679-1686.
    [176]曹艳玲.反蛋白石及TiO2空心微球非密堆积FCC结构光子晶体的制备及其带隙研究[D].长春:吉林大学凝聚态物理,2008.
    [177]Yablonovitch E. Photonic band-gap structures [J]. Journal of optical society of American B,1993,10: 283-285.
    [178]Yablonovitch E, Gmitter T J. Photonic band structure:The face-centered-cubic case employing nonspherical atoms [J]. Phys. Rev. Lett.,1991,67(17):2295-2298.
    [179]Deubel M, Freymann G V, Wegener M, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J]. Nature Mater.,2004,3(7):444-447.
    [180]Miklyaev Y V, Meisel D C, Blanco A, et al. Three-dimensional face-centered-cubic photonic crystal templates by laser holography:fabrication, optical characterization, and band-structure calculations [J]. Appl. Phys. Lett.,2003,82(8):1284-1286.
    [181]Mizeikis V, Sun H B, Marcinkeviius A, et al. Femtosecond laser micro-fabrication for tailoring photonic crystals in resins and silica [J]. Journal of Photochemistry and Photobiology A:Chemistry 2001,145:41-47.
    [182]Tarhan I I, Watson G H. Photonic band structure of fcc colloidal crystals [J]. Phys. Rev. Lett.,1996, 76:315-318.
    [183]Pradhan R D, Bloodgood J A, Watson G H. Photonic band structure of bcc colloidal crystals [J]. Phys. Rev. B 1997,55:9503-9507.
    [184]Vlasov Y A, Astrov V N, Karimov O Z, et al. Existence of a photonic pseudogap for visible light in synthetic opals [J]. Phys. Rev. B 1997,55:13357-13360.
    [185]Busch K, John S. Photonic bandgap formation in certain self-organizing systems [J]. Phys. Rev. E 1998,58:3896-3908.
    [186]Doosje M, Hoenders B J, Knoester J. Photonic bandgap optimization in inverted fcc photonic crystals [J]. J. Opt. Soc. Am. B,2000,17:600-606.
    [187]汤荣年PS/TiO2复合材料的蛋白石结构光子晶体制备及表征[J].电子元件与材料,2003,20(9):45-47.
    [188]Salvarezza R C, Vazquez L, Miguez H, et al. Behavior of crystal surfaces grown by sedimentation of SiO2 nanospheres [J]. Phys. Rev. Lett.,1996,77:4572-4575.
    [189]Holgado M, Santamaria F G, Blanco A, et al. Electrophoretic deposition to control artificial opal growth [J]. Langmuir 1999,15 (14):4701-4704.
    [190]Rogach A L, Kotov N A, S., K. D., et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals:A technique for rapid production of high-quality opals [J]. Chem. Mater.,2000, 12(9):2721-2726.
    [191]Johnson N P, McComb D W, Richel A, et al. Synthesis and optical properties of opal and inverse opal photonic crystals [J]. Synth. Met.,2001,116:469-473.
    [192]Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania [J]. Science 1998,281:802-804.
    [193]Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science,1998,281:538-540.
    [194]Park S H, Xia Y N. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters [J]. Langmuir,1999,15(1):266-273.
    [195]Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness [J]. Chem. Mater.,1999,11:2132-2140.
    [196]Jiang P, Ostojic G N, Narat R, et al. The fabrication and bandgap engineering of photonic multilayers [J]. Adv. Mater.,2001,13:389-393.
    [197]Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals [J]. Nature 2001,414:289-293.
    [198]Sang H I, Kim M H, Park O O. Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension [J]. Chem. Mater.,2003,15:1797-1802.
    [199]Cong H, Cao W. Colloidal crystallizati on induced by capillary force [J]. Langmuir,2003,19: 8177-8181.
    [200]Cademartiri L, Sutti A, Calestani G. Flux-assisted self-assembly of monodisperse colloidals [J]. Langmuir,2003,19:7944-7947.
    [201]Gu Z Z, Fujishima A, Sato O. Fabrication of high-quality opal films with controllable thickness [J]. Chem. Mater.,2002,14:760-765.
    [202]Gu Z Z, Horie R, Kubo S, et al. Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor [J]. Angew. Chem. Int. Ed.,2002,41: 1153-1156.
    [203]Egen M, Voss R, Griesebock B, et al. Heterostructures of polymer photonic crystal films [J]. Chem. Mater.,2003,15:3786-3792.
    [204]Yang S M, Miguez H, Ozin G A. Opal circuits of light-planarized microphotonic crystal chips [J]. Adv. Funct. Mater.,2002,12:425-431.
    [205]Zhou Z C, Zhao X S. Flow-controlled vertical deposition method for the fabrication of photonic crystals [J]. Langmuir 2004,20:1524-1526.
    [206]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J]. Nature,1997,389: 948-951.
    [207]Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization [J]. Nature 1997,389: 447-448.
    [208]Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths [J]. Science,1998,282:897-901.
    [209]Holland B T, Blanford C F, Do T, et al. Synthesis of highly ordered,three-dimensional,macroporous structures of amorphous or crystalline inorganic oxides,phosphates,and hybrid composites [J]. Chem. Mater.,1999,11:795-805.
    [210]Schroden R C, Al-Daous M, Blanford C F, et al. Optical properties of inverse opal photonic crystals [J]. Chem. Mater.,2002,14:3305-3315.
    [211]Jiang P, Hwang K S, Mittleman D M, et al. Template directed preparation of macroporous polymers with oriented and crystalline arrays of voids [J]. J. Am. Chem. Soc.,1999,121(50):11630-11637.
    [212]Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J]. Nature,2000,405:437-439.
    [213]Miguez H, Ozin G A, Tetreault N. US Patent Application,2007.
    [214]Guldin S, Httner S, Kolle M, et al. Dye-sensitized solar cell based on a three-dimensional photonic crystal [J]. Nano Lett.,2010,10(7):2303-2309.
    [215]Braun P V, Wiltzius P. Electrochemically grown photonic crystals [J]. Nature,1999,402:603-604.
    [216]Purcell E M. Spontaneous emission probabilities at radio frequencies [J]. Phys. Rev.,1946,69:681.
    [217]John S. Localization of light [J]. Physics Today,1991,44(5):32-40.
    [218]Drake J M, Genack A Z. Observation of nonclassical optical diffusion [J]. Phys.Rev.Lett.,1989,63(3): 259-262.
    [219]Dalichaouch R, Armstrong J P, Schultz S, et al. Microwave localization by two-dimensional random scattering [J]. Nature,1991,354:53-55.
    [220]Wiersma D S, Bartolini P, Lagendijk A, et al. Localization of light in a disordered medium [J]. Nature, 1997,390:671-673.
    [221]李正华,薛燕陵,沈廷根.光子晶体内的慢光及其应用[J].激光与红外,2008,38(1):3-6.
    [222]张曼.二维光子晶体带隙及波导慢光特性研究[D].成都:西南交通大学通信与信息系统,2009.
    [223]马顗晨.光子晶体波导中慢光的研究[D].北京:北京化工大学凝聚态物理,2009.
    [224]Brown E R, McMahon O B. High zenithal directivity from a dipole antenna on a photonic crystal [J]. Appl. Phys. Lett.,1996,68(9):1300-1302.
    [225]Brown E R, Parker C D, Yabnolovitch E. Radiation properties of a planar anenna on a photonic-crystal substrate [J]. J. Opt. Soc. Am. B,1993,10(2):404-407.
    [226]Gupta S, Tuttle G, Sigalas M, et al. Infrared filters using metallic photonic band gap structures on flexible substrates [J]. Appl. Phys. Lett.,1997,71(17):2412-2414.
    [227]Lei X Y, Li H, Ding F, et al. Novel application of a perturb-ed photonic crystal:High-quality filter [J]. Appl. Phys. Lett.,1997,71(20):2889-2891.
    [228]Melds A, Chen J C, Kurland I, et al. High transmission through sharp bends in photonic crystal waveguides [J]. Phys. Rev. Lett.,1996,77(18):3787-3790.
    [229]Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers [J]. Science,1998, 282:1476-1478.
    [230]Fan S H, Villeneuve P R, Joannopoulos J D. High extraction efficiency of spontaneous emission from slabs of photonic crystals [J]. Phys. Rev. lett.,1997,78(17):3294-3297.
    [231]Painter O, Lee P K, Scherer A, et al. Two dimensional photonic band gap defect mode laser [J]. Science,1999,284:1819-1821.
    [232]Zi J, Wan J, Zhang C. Large frequency range of negligible transmission in one-dimensional photonic quantum well structures [J]. Applied Physics Letters,1998,73(15):2084-2086.
    [233]Nishimura S A N, Lewis B A, Halaoui L I, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals [J]. Journal of the American Chemical Society,2003,125(20):6306-6310.
    [234]Silvia C, Agustin M, Leif H, et al. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells [J]. Adv. Mater.,2009,21:764-770.
    [235]Chen J I L, Freymann G V, Choi S Y, et al. Amplified photochemistry with slow photons [J]. Adv. Mater.,2006,18:1915-1919.
    [236]Chen J I L, Freymann G V, Kitaev V, et al. Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals [J]. J.Am.Chem.Soc.,2007,129:1196-1202.
    [237]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009,21:406-419.
    [238]于洪涛.功能性纳米异质结材料的制备、光电转换及水处理性能[D].大连:大连理工大学环境学院,2008.
    [239]Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev., 1995,95:49-68.
    [240]Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications [J]. J. Am. Ceram. Soc.,1997,80:3157-3171.
    [241]Kamat P V. Quantum dot solar cells, semiconductor nanocrystals as light harvesters [J]. J. Phys. Chem. C.,2008,112:18737-18753.
    [242]Reagan B, Graetzel M. A low cost, high efficiency solar cells based on dye sensitized colloidal TiO2 films [J]. Nature,1991,353:737-739.
    [243]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (x=Cl-, Br-, I", CN-, and SCN-) on nanocrystalline TiO2 electrodes. [J]. J. Am. Chem. Soc.,1993,115:6382-6390.
    [244]Chen D H, Huang F Z, Cheng Y B, et al. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes:a superior candidate for high-performance dye-sensitized solar cells [J]. Adv. Mater.,2009,21:2206-2210.
    [245]Koo H J, Kim Y J, Lee Y H, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells [J]. Adv. Mater.,2008,20:195-199.
    [246]Zhang Q F, Chou T P, Russo B, et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2008,47:2402-2406.
    [247]Zhang Q F, Chou T P, Russo B, et al. Polydisperse aggregates of ZnO nanocrystallites:a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells [J]. Adv. Funct. Mater.,2008 18:1654-1660.
    [248]Qian J F, Liu P, Xiao Y, et al. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells [J]. Adv. Mater.,2009,21:3663-3667.
    [249]Guo C W, Cao Y, Xie S H, et al. Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors [J]. Chem. Commun.,2003,6:700-701.
    [250]胡耀娟,金娟,张卉, et al.石墨烯的制备、功能化及在化学中的应用[J].物理化学学报,2010,26(8):2073-2086.
    [251]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,24(4):719-722.
    [252]Zhu Y W, Murali S, Cai W W, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J]. Adv. Mater.,2010,22:3906-3924.
    [253]Chen C, Cai W M, Long M C, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction [J]. ACS Nano.,2010,4(11):6425-6432.
    [254]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc.,1958,80(6): 1339.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.