PIP法C_f/SiC复合材料组成、结构及性能高温演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着C_f/SiC复合材料在航空航天和军事领域日益广泛的应用,近年来对C_f/SiC复合材料的研究热度不断升温,其中先驱体浸渍裂解(PIP)法在设备要求、复杂构件近净成型等方面表现出来的优势使其受到越来越多的关注。不过,当长时间处于应用环境中时,PIP法C_f/SiC复合材料的组成、结构和性能会发生一系列的演变。为了对PIP法C_f/SiC复合材料的应用提供技术支持,本文开展了PIP法C_f/SiC复合材料组成、结构和性能的高温演变研究,重点研究了基体、纤维、界面和力学性能的高温演变规律以及C_f/SiC复合材料损伤失效机理。
     首先研究了聚碳硅烷(PCS)转化SiC陶瓷基体的高温演变规律,结果发现惰性气氛中1200℃时SiC陶瓷基体(SC1200)除含有硅元素和碳元素外,还含有杂元素氧(1.99wt%)和少量氢元素,其中氧元素主要以SiO_2形式存在,碳元素主要以SiC和自由碳(约为11wt%)形式存在,其结构为部分自由碳原子固溶于SiC相网络的无定型态;1500℃时开始碳热还原反应,氧含量减少;1600℃时,发生固溶于SiC相网络的自由碳沉淀析出,同时自由碳相开始从无定型态转变为乱层石墨结构;1800℃时,SiC陶瓷转变为由乱层石墨结构碳连续相包围SiC纳米晶(约7nm )的多晶态。
     在研究SiC陶瓷基体结构演变的基础上,研究了PCS转化SiC本体陶瓷的热物理性能、氧化特性和烧蚀特性的高温演变规律。与SC1200相比,惰性气氛1800℃热处理SiC陶瓷(SC1800)的热膨胀系数从4.3×10~(-6)/℃增大到4.8×10~(-6)/℃,热扩散系数从0.016cm~2·s~(-1)增大到0.086cm~2·s~(-1);同时由于SiC陶瓷的结晶程度增加、贫氧环境中自由碳相的高温稳定性优于SiC相以及热扩散系数变大缓解了烧蚀表面的热量累积,使得SC1800的抗烧蚀能力增加。SiC陶瓷的氧化特性研究结果表明:不同温度热处理SiC陶瓷中自由碳相均在600℃开始氧化;SC1200中由于部分自由碳原子固溶于SiC相网络,导致自由碳相少量氧化后SiC相就在731℃开始氧化,此时SiC陶瓷出现最大失重2.24wt%;而1600℃以上高温热处理后,SiC陶瓷中出现相分离,自由碳形成连续相保护SiC晶粒,因此自由碳相的氧化程度增加,SiC陶瓷失重超过7.00wt%,同时SiC相的氧化温度提高100℃以上。
     通过研究碳纤维结构和性能的高温演变发现,当热处理温度在1000℃以下时,碳纤维主要是去除表面胶;当热处理温度在1000~1600℃之间,随着热处理温度的升高,碳纤维进一步碳化排出灰分,石墨化程度和拉伸强度均逐渐增加,而且在1600℃热处理后呈现乱层石墨结构,拉伸强度达到最大;当热处理温度高于1600℃时,随着热处理温度的升高,碳纤维石墨化程度持续增加,拉伸强度逐渐减小,而且在1800℃热处理后,其结构为4nm左右的石墨带沿纤维轴向延伸,拉伸强度仍然较高(与碳纤维原丝相当)。
     研究了PIP法C_f/SiC复合材料界面结构的高温演变规律,发现在1200℃下裂解制备C_f/SiC复合材料(CSC1200)的界面相为一个C/SiO_2复合层,而且由于乱层石墨结构碳层和无定型态SiO_2层弹性特征不同,承力时裂纹在它们之间扩展,使碳纤维较好地发挥增强增韧的作用;在1800℃高温热处理后复合材料界面相转变为乱层石墨结构碳纤维呈化学结合的多晶态SiC陶瓷,同时存在较大的SiC晶粒(200nm)。
     在研究基体、纤维和界面的基础上,首次系统研究了不同条件高温热处理后PIP法C_f/SiC复合材料力学性能的演变规律。在Ar中不同温度下进行1h热处理时,当热处理温度为1600℃,C_f/SiC复合材料表现为低强度韧性断裂,经再次浸渍裂解PCS的后致密化工艺后,力学性能有较好的恢复,达到热处理前试样CSC1200的84%以上;当热处理温度大于1700℃,C_f/SiC复合材料表现为低强度脆性断裂,并且经后致密化工艺后,力学性能恢复较小,仍保持脆性断裂。因此,1600~1700℃是C_f/SiC复合材料高温损伤机理发生转变的重要温度范围。
     在1600℃Ar中对C_f/SiC复合材料进行不同时间热处理,结果表明随着热处理时间的延长,复合材料的失重率逐渐增加、力学强度逐渐下降,并在5h热处理后从韧性断裂转变为脆性断裂;比较研究了真空中1600℃不同时间热处理对C_f/SiC复合材料力学性能的影响,发现随着热处理时间的延长,复合材料的力学性能逐渐下降而失重率几乎不变,而且与Ar气氛相比,相同时间热处理复合材料的力学性能较好,热处理10h后复合材料才出现脆性断裂。对热处理后复合材料进行后致密化发现,Ar中5h内或真空中10h内热处理复合材料的力学性能都得到较好的恢复,并再次转变为韧性断裂。说明当温度为1600℃,Ar中5h或真空中10h热处理是复合材料结构和性能发生质变的临界点。
     系统地研究了PIP法C_f/SiC复合材料力学性能的高温损伤失效机理。研究表明,高温热处理后C_f/SiC复合材料中碳纤维主要受到化学损伤,同时其增韧作用也受热应力的影响。试样CSC1200的基体与界面相含有氧元素,在界面相内氧元素含量较高,界面相为一个C/SiO_2复合层;在惰性气氛中当温度升到1500℃以上,基体和界面相中发生碳热还原反应,在此过程中,生成的SiO气体加速了硅元素向碳纤维表面的扩散,并在碳纤维表面反应生成新界面相SiC。在1600℃Ar中,随着热处理时间延长,原界面相C/SiO_2被削弱,SiO气体迁移对碳纤维的化学损伤逐渐增加,与碳纤维呈化学结合的新界面相SiC逐渐加强;当热处理时间达到5h,碳热还原反应引起的碳纤维化学损伤和新界面相开始发挥主导作用,此时复合材料在热应力的促进作用下,从韧性断裂转变为脆性断裂,因此经低温去应力退火工艺后复合材料可以再次转变为韧性断裂;当热处理时间超过5h,碳热还原反应引起的碳纤维化学损伤和新界面相完全发挥主导作用,复合材料呈脆性断裂,且不可恢复。在1600℃真空中,由于及时排出SiO气体,碳纤维的化学损伤及新界面相的形成减缓,使得复合材料结构和性能发生质变的临界点从5h延迟到10h,这一结果证实了SiO气体在复合材料中迁移与反应的作用。SiO_2的熔点为1723℃,当热处理温度在1700℃以上,熔化的SiO_2加快了Si元素的扩散、碳纤维的化学损伤和新界面相的形成,使得复合材料在短时间内(<1h)从韧性断裂转化为脆性断裂,且不可恢复。
     采用PIP法在碳纤维表面制备碳涂层,新制备的C_f/SiC束丝复合材料的耐高温性能得到明显的改善。
     在研究SiC基体和C_f/SiC复合材料高温稳定性的基础上,研究了C_f/SiC复合材料烧蚀特性的高温演变,发现随着热处理温度的升高,C_f/SiC复合材料抗烧蚀性能逐渐提高,与基体抗烧蚀性能的演变规律相同,因为对抗环境破坏时基体发挥主要作用,对碳纤维增强体进行保护。之后,通过研究以四正丁氧基锆、二乙烯基苯、PCS三种有机物为先驱体制备锆改性C_f/SiC复合材料,发现改性后复合材料的抗烧蚀性能增强,原因是锆改性复合材料中存在耐超高温陶瓷相,具有较好的抗烧蚀性能而且烧蚀过程中能在烧蚀区形成氧化物保护层。
Recently, the carbon fiber reinforced silicon carbide (C_f/SiC) composites have been widely investigated due to the popular applications in the aeronautic, astronautic and military fields. As one kind method to fabricate C_f/SiC composites, the precursor infiltration and pyrolysis (PIP) route has attracted much more attentions, due to the advantages of simple requests for equipments, near net shape for complex components, and so on. However, the compositions, microstructures and properties of C_f/SiC composites will be changed, when the C_f/SiC composites are applied in high-temperature circumstances for several hours. Consequently, in order to offer technologies for applications of the C_f/SiC composites, the paper investigated the high-temperature evolutions of the compositions, microstructures and properties of C_f/SiC composites fabricated via the PIP route. Especially, the evolutions of SiC matrix, C fiber and interphase, as well as the damage mechanisms of mechanical properties of C_f/SiC composites, were highly focused.
     The composition and microstructure evolutions of SiC matrix derived from polycarbosilane (PCS) in the protective atmosphere were researched. It is found that in the SiC matrix derived from PCS at 1200℃(called as SC1200), there are a little of elementals O (1.99 wt%) and H except the Si and C; And the elemental O mainly exists as SiO_2, when the C mainly exists as both SiC and free carbon (nearly 11 wt%); Its microstructure is amorphous including part of free carbon dissolved in the SiC continuum. At 1500℃, the concentration of elemental O decreases due to the carbothermic reductions; At 1600℃, the free carbon dissolved in the SiC continuum deposits, and the free carbon phase becomes turbostratic from amorphous; At 1800℃, the SiC matrix is nanocrystalline with the turbostratic carbon surrounding the SiC nanocrystals (about 7 nm).
     Obviously, the thermal, oxidation and ablation characteristics of the SiC bulk ceramics derived from PCS are affected by the microstructures. Compared with the SC1200, the thermal expansion coefficient of the SiC ceramics after 1800℃annealing (called as SC1800) increases from 4.3×10~(-6)/℃to 4.8×10~(-6)/℃, when the thermal diffusivity becomes 0.086 cm~2/s from 0.016 cm~2/s; Due to the increase of crystalline and thermal diffusivity, and the better thermal stability of C phase than SiC phase in the poor oxidation atmosphere, the anti-ablation properties of the SC1800 also increases. The oxidation characteristics of the SiC ceramics are as follows: Although the free carbon phases all start to be oxidized at 600℃in the SiC ceramics annealed at various temperatures, the oxidation degrees are different. For the SC1200, the ratio of weight loss is only 2.24 wt% before the SiC phase starts to be oxidized at 731℃, because there is part of free carbon dissolved in the amorphous SiC continuum; For the SiC ceramics annealed above 1600℃, the oxidation degrees of the free carbon phases increase, resulting in the ratio of weight loss of the SiC matrix over 7.00 wt%, and the oxidation temperatures of the SiC phases are prolonged more than 100℃, because the free carbon dissolved in the SiC continuum deposits and the SiC nanocrystals are protected by the free carbon continuum.
     The high-temperature evolutions of C fibers under vacuum were also investigated. Below 1000℃, the fiber sizing of C fibers is eliminated; During 1000~1600℃, the ratio of weight loss, the graphite degree and the tensile strength of C fibers all gradually increase with the increasing temperature, and especially, at 1600℃, the texture of C fibers start to become the turbostratic carbon with the biggest tensile strength; Above 1600℃, the graphite degree of C fibers increases, whereas the tensile strength decreases with the increasing temperature. Especially, at 1800℃, there are nearly 4 nm wide straps of the graphite along the axes of C fibers, and the tensile strength is still high equal to the raw fiber.
     The microstructure evolutions of interphases in the C_f/SiC composites in the protective atmosphere were investigated. In the C_f/SiC composites fabricated at 1200℃(called as CSC1200), the interphase is an organized multilayer (C/SiO_2), and due to the differences of elastic characteristics between the amorphous SiO_2 layer and the turbostratic carbon layer, the matrix cracks extend between them when the composites bear loads, resulting in the good reinforcing effect of C fibers on the composites’strengths. After 1800℃annealing, the interface is the chemical bonding between the nanocrystalline SiC interphase and C fibers with the turbostratic carbon structure, and there are big SiC crystals (200 nm) on the interface.
     Effects of annealing conditions on the mechanical properties of C_f/SiC composites were researched systematically concerning temperature, holding time and pressure. When the annealing time is 1 h under Ar, the C_f/SiC composites annealed at 1600℃show the low strength and tough fracture behavior, and the mechanical properties of the annealed composites after the redensification rout recover well, which can reach above 84% of that of CSC1200; However, the C_f/SiC composites annealed above 1700℃show the low strength and brittle fracture behavior, and the mechanical properties of the annealed composites after the redensification rout are still poor and keep brittle. Consequently, the damage mechanism of mechanical properties of the C_f/SiC composites changes in the temperature range from 1600℃to 1700℃.
     When the C_f/SiC composites are annealed at 1600℃under Ar, the ratios of weight loss gradually increase and the mechanical properties decrease with the annealing time increasing. And the fracture behaviors of the C_f/SiC composites become brittle from tough, when the annealing time is longer than 5 h. Then, the effects of annealing time at 1600℃under vacuum on the C_f/SiC composites were compared. It is found that the mechanical properties gradually decrease while the ratios of weight loss hardly change with the increasing time, and the strengths of the C_f/SiC composites are better than that of the C_f/SiC composites annealed under Ar for the same annealing time. When the annealing time is longer than 10 h, the fracture behaviors of C_f/SiC composites become brittle from tough. Finally, after the redensification route, the mechanical properties of the C_f/SiC composites annealed under Ar in 5 h or annealed under vacuum in 10 h recover well, and become tough again. So the annealing times (5 h under Ar or 10 h under vacuum) are the critical points of the qualitative changes about the microstructures and properties of the C_f/SiC composites when the annealing temperature is 1600℃.
     The damage mechanisms of mechanical properties of the C_f/SiC composites annealed at various conditions were systematically investigated. The results show that the chemical damage is the major damage for the C fibers in the C_f/SiC composites during the high-temperature annealing, and the reinforcing effect of C fibers is affected by the thermo-mismatch stress at the same time. In the CSC1200, there is the elemental O in the matrix and interphase, even higher content in interphase due to a C/SiO_2 multilayer as the interphase. So during protective atmospheres, the carbothermic reductions happen above 1500℃. The product SiO gas accelerates the elemental Si diffusing to the C fibers, and then the new interphase SiC is formed at the surfaces of C fibers. At 1600℃under Ar, the original interphase (the C/SiO_2 multilayer) is gradully weakened with the annealing time increasing, while the chemical damage to C fibers is gradully enhanced due to the transplant of SiO gas, and the chemical bonding between the new interphase SiC and C fibers is also enhanced; When the annealing time is 5 h, the fracture behaviors of the C_f/SiC composites become brittle from tough, because the chemical damage to C fibers and the new interphase start to become dominant, and there are big thermo-mismatch stresses at the same time, so the fracture behaviors of the C_f/SiC composites recover tough after the low-temperature stress-releasing annealing; When the annealing time is above 5 h, the chemical damage to C fibers and the new interphase completely become dominant, so the fracture behaviors of the C_f/SiC composites become brittle from tough, and can not recover forever. At 1600℃under vacuum, the chemical damage to C fibers and the forming of the new interphase are decelerated by the releasing of SiO gas, so the critical point of the qualitative changes about the microstructures and properties of the C_f/SiC composites is prolonged to 10 h. Consequently, effects of the transplant and reaction of SiO gas in the C_f/SiC composites are confirmed by the result. When the annealing temperature is above 1700℃, the elemental Si diffusing, the chemical damage to C fibers and the forming of new interphase are deteriorated by the SiO_2 melt, because the melting point of SiO_2 is 1723℃. So the fracture behaviors of the C_f/SiC composites become brittle from tough in a short time (less than 1 h), and can not recover forever.
     After the carbon coating on the C fibers is fabricated by PIP process, the thermal stability of the C_f/SiC minicomposites is obviously improved.
     Based on the completely understanding about the thermal stability of the SiC matrix and C_f/SiC composites, the high-temperature evolutions of ablation characteristics were further researched. It is found that the anti-ablation properties of the C_f/SiC composites gradully become better after the higher temperature annealing, and the result is the same with the evolutions of anti-ablation properties of the SiC bulk ceramics, because the SiC matrix plays the key role to prevent the destructions by the circumstance, and protects the C fibers. Then, the Zr-doped C_f/SiC composites were fabricated via PIP route using the precursors of Zirconium n-butoxide, Divinylbenzene and PCS. The anti-ablation properties of the Zr-doped C_f/SiC composites are better than that of the C_f/SiC composites, because there are ultra high temperature ceramics in the Zr-doped C_f/SiC composites, which have the better anti-ablation properties than SiC and can form the oxide films on the surfaces of the ablation zones.
引文
[1]周瑞发,韩雅芳,李树索.高温结构材料[M].北京:国防工业出版社,2006.
    [2] Warren R. Ceramic Matrix Composites [M]. London: Chapman and Hall, 1992: 199~243.
    [3] Eesmann T M, Sheldon B W, Lowden R A. Vapor-phase fabrication and properties of continuous-filament ceramic composites [J]. Science, 1991, 253: 1104~1109.
    [4] Sanokawa Y, Ido Y, Sohda Y, et al. Application of continuous fiber reinforced silicon carbide matrix composites to a ceramic gas turbine model for automobiles [J]. Ceramic Engineering and Science Proceedings, 1997, 18: 221~228.
    [5] Jian K, Chen Z H, Ma Q S, et al. Effects of pyrolysis processes on the microstructures and mechanical properties of C_f/SiC composites using polycarbosilane [J]. Materials Science and Engineering A, 2005, 390: 154~158.
    [6] Paquette E, Warburton R, Eckel A. Cooled CMC Scramjet Combustor Structure Development [C]. Indianapolis: AIAA, 2002: 1~5.
    [7] Naslain R. High Temperature Ceramic Matrix Composites [M]. Bordeaux: Woodhead, 1993: 215~229.
    [8]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001.
    [9]陈朝辉.先驱体结构陶瓷[M].长沙:国防科技大学出版社,2003.
    [10]张立同.纤维增韧碳化硅陶瓷复合材料-模拟、表征与设计[M].北京:化学工业出版社,2009.
    [11] Filser F, Kocker P, Weibel F, et al. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). International Journal of Computerized Dentistry, 2001, 4(2): 89~106.
    [12] Evans A G. Prospectilve on the development of high-toughness ceramics [J]. Journal of the American Ceramic Society, 1990, 73(2): 187~206.
    [13] Xia K, Terence G. The toughening and strengthening of ceramic materials through discontinuous reinforcement [J]. Journal of Materials Science, 1994, 29(19): 5219~5231.
    [14]肖鹏.高温陶瓷基复合材料制备工艺的研究[J].材料工程,2000,(2):41~44.
    [15] DiCarlo J A, Bansal N P. Fabrication routes for continuous fiber reinforced ceramic composites [R]. NASA/TM-1998-208819.
    [16] Haug T, Knale H, Ehrmann U. Processing, properties and structure development of polymer-derived fiber-reinforced SiC [J]. Journal of the American Ceramic Society, 1989, 72(2): 104~110.
    [17] Nakano K, Kamiya A, Nishino Y, et al. Fabrication and characterization ofthree-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites [J]. Journal of the American Ceramic Society, 1995, 78(10): 2811~2814.
    [18] Naslain R. Design, Preparation and properites of non-oxide CMCs for application in engines and nuclear reactors: an overview [J]. Composites Science and Technology, 2004, 64(2): 155~170.
    [19]陈朝辉,李永清,张长瑞等.先驱体法陶瓷基复合材料研究的进展[R].长沙:国防科技大学内部资料汇编,1997.
    [20]郑文伟.连续碳纤维增强碳化硅的制备工艺结构性能研究[硕士学位论文].长沙:国防科技大学, 1995.
    [21]赵稼祥.日本先进材料技术的研究与进展[R].北京:出国考察报告,1997.
    [22] Tanaka T, Tamari N, Kondoh I, et al. Fabrication of three-dimensional Tyranno fibre reinforced SiC composite by the polymer precursor method [J]. Ceramics International, 1998, 24: 365~370.
    [23] Ziegler G, Richter I, Suttor D. Fiber-reinforced composites with polymer-derived matrix: processing, matrix formation and properties [J]. Composites Part A, 1999, 30: 411~417.
    [24] Herwood W J, Whitmarsh C K, Jacobs J M, et al. Low cost, near-net shape ceramic composites using resin transfer molding and pyrolysis (RTMP) [J]. Ceramic Engineering and Science Proceedings, 1996, 17(4): 174~183.
    [25]马江,张长瑞,周新贵等?先驱体转化法制备陶瓷基复合材料异型构件研究[C]?长沙:湖南宇航材料学会年会,1998:34~36.
    [26]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科技大学,2003.
    [27]侯向辉,李贺军,刘应楼等.先进陶瓷基复合材料制备技术-CVI法现状及进展[J].硅酸盐通报,1999,(2):32~36.
    [28] Byung J O, Young J L, Doo J C. Febrication of carbon/silicon carbide composites by isothermal chemical vapor infiltration, using the in situ whisker-growing and matrix-filling process [J]. Journal of the American Ceramic Society, 2001, 84(1): 245~247.
    [29] Krenkel W. Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications [M]. Weinheim: WILEY-VCH, 2008: 113~139.
    [30] Shin D W, Park S S, Choa Y H, et al. Silicon/silicon carbide composites fabricated by infiltration of a silicon melt into harcoal [J]. Journal of the American Ceramic Society, 1999, 82(11): 3251~3253.
    [31] Harnisch B, Kunkel B, Papenburg U, et al. Ultralight weight C/SiC mirrors and structures [J]. ESA Bulletin, 1998, 95(8): 148~152.
    [32] Rak S Z. A Process for C/SiC composites using liquid polymer infiltration [J].Journal of the American Ceramic Society, 2001, 84(10): 2235~2239.
    [33] Simmer S, Derby B. The processing of novel reaction bonded SiC ceramics using alloyed silicon infiltrates [C]. Fourth Euro-Ceramics, 1995, 4: 393~400.
    [34]徐永东.三维碳/碳化硅复合材料的制备与性能[D].西安:西北工业大学,1996.
    [35] Suzuki K, Kume S, Nakano K. Fabrication and characterization of 3D C/SiC composites via slurry and PCVI joint process [J]. Key Engineering Materials, 1999, 164-165: 113~116.
    [36] Berbon M Z, Dietrich D R, Marshall D B, et al. Transverse thermal conductivity of thin C/SiC composites fabricated by slurry infiltration and pyrolysis [J]. Journal of the American Ceramic Society, 2001, 84(10): 2229~2234.
    [37] Mühlratzer A. Production, properties and applications of ceramic matrix composites [J]. DKG, 1999, 74(4): 30~35.
    [38]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术,2003,(1):24~32.
    [39] Zheng G B, Sano H, Uchiyama Y, et al. The properties of carbon fibre/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane [J]. Journal of Materials Science, 1999, 34: 827~834.
    [40]何新波,张长瑞,周新贵等.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的显微结构[J].航空材料学报,1999,19(3):43~50.
    [41]马彦,马青松,陈朝辉.连续纤维增强陶瓷基复合材料国外应用研究进展[J].材料导报,2007,21:401~404.
    [42] Anderson B L. X-38 program status/overview [C]. Arcachon: 2nd Inter Symp Atmospheric Reentry Vehicles and Systems, 2001.
    [43] Wulz H G, Trabandt U. Large integral hot CMC structures designed for future reusable launchers [C]. Atlanta: AIAA, 1997: 1~10.
    [44] Muühlratzer A, Handrick K, Pfeiffer H. Development of a new cost-effective ceramic composite for re-entry heat shield applications [J]. Acta Astronautica, 1998, 42(9): 533?540.
    [45] Ishikawa T, Ogasawara T. Overview of development activities of spaceplane components using NUSK-CMC (CMC with continuous Si-Ti-C-O fiber) [C]. Kyoto: AIAA, 2001: 1~10.
    [46] Ogasawara T, Ishikawa T, Matsuzaki T. Thermal response and oxidation behavior of Si-Ti-C-O fiber/Si-Ti-C-O ceramic matrix composites under atmospheric re-entry conditions [C]. Kyoto: AIAA, 2001: 1~7.
    [47]张建艺.陶瓷基复合材料在喷管上的应用[J].宇航材料工艺,2000,(4):14?16.
    [48] Mathieu A, Monteuuis B, Gounot V. Ceramic matrix composite materials for a low thrust bipropellant rocket engine [C]. Orlando: AIAA, 1990: 1~8.
    [49] Beyer S, Knabe H, Strobel F. Development and Testing of C/SiC Components for Liquid Rocket Propulsion Applications [C]. Los Angeles: AIAA, 1999: 1~12.
    [50] Dirling R B. Progress in materials and structures evaluation for the HyTech program [C]. Washington: AIAA, 1998: 1~11.
    [51] Bouquet C, Fischer R, Larrier J M, et al. Composite technologies development status for scramjet applications [C]. Norfolk: AIAA, 2003: 1~9.
    [52] Uhrig G, Larrieu J M. Towards an all composite SCRAMJET combustor [C]. Indianapolis: AIAA, 2002: 1~11.
    [53] Bouquet C, Lacombe A, Hauber B, et al. Ceramic Matrix Composites Cooled Panel Development for Advanced Propulsion Systems [C]. Palm Springs: AIAA, 2004: 1~8.
    [54] Bouquet C, Luc-Bouhali A, Hauber B, et al. Validation of a leak-free C/SiC heat exchanger technology [C]. Norfolk: AIAA, 2003: 1~11.
    [55]张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1~6.
    [56]胡海峰.陶瓷先驱体的分子设计与合成及其在CMCs制备中的应用[D].长沙:国防科技大学,1998.
    [57]苏波,吴小进,陈朝辉.聚碳硅烷/二乙烯基苯的高温裂解[J].高分子材料科学与工程,1994,(2):121~123.
    [58]李钒.先驱体转化制备C_f/SiC复合材料工艺与性能的研究[硕士学位论文].长沙:国防科技大学,2005.
    [59] Kolaya E L, Nathan. The influence of carbon on the structure of preceramic polymer derived SiC [J]. Ceramic Engineering Science and Processing, 1997, 18(4): 473~480.
    [60] Wang Y, Li H, Zhang L, Cheng L. Oxidation behavior of polymer derived SiCO powders [J]. Ceramics International, 2009, 35: 1129~1132.
    [61]赵稼祥.先进制造与材料应用技术[J].纤维复合材料,1996,(6):27~31.
    [62]赵稼祥.碳纤维的发展与应用[J].纤维复合材料,1996,(4):46~50.
    [63]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1997.
    [64] Ly H Q, Taylor R, Day R J. Carbon fibre-reinforced CMCs by PCS infiltration [J]. Journal of Materials Science, 2001, 36: 4027~4035.
    [65]马江.先驱体液相浸渍工艺制备纤维增强碳化硅基复合材料[硕士学位论文].长沙:国防科技大学,2000.
    [66]王建方,陈朝辉,刘维民等.不同碳纤维表面状态对C_f/SiC复合材料性能的影响[J].材料导报,2002,16(3):67~69.
    [67]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].长沙:国防科技大学,2005.
    [68] Lacroix C, Leguillon D, Martin E. The influence of an interphase on the deflection of a matrix crack in a ceramic-matrix composite [J]. Composites Science and Technology, 2002, 62: 519~523.
    [69] Ostertag R, Haug T, Woltersdorf J, et al. Structure and properties of interlayers in polymer-derived C/SiC composites [J]. Journal of the European Ceramic Society, 1994, 14(5): 427~439.
    [70]尹洪峰,徐永东,张立同等.纤维增韧陶瓷基复合材料界面相的作用及其设计[J].硅酸盐学报,1999,3:23~28.
    [71] Kearns R J, Hay R S. The role of the fiber-matrix interface in ceramic composites [J]. American Ceramic Society Bulletin, 1989, 68(2): 229~430.
    [72] Dhakate S R, Parashar V K, Raman V, et al. Influence of ceramic interphase on the mechanical properties of T-300 carbon composites [J]. Journal of Materials Science Letters, 2000, 19: 1575~1577.
    [73]尹洪峰,徐永东,成来飞等.界面相对碳纤维增韧碳化硅复合材料性能的影响[J].硅酸盐学报,2000,28(1):1~5.
    [74] Lu C C, Headinger M H, Majidi A P, et al. Fabrication of a NicalonTM fiber/Si3N4-based ceramic-matrix composite by the polymer pyrolysis method [J]. Journal of Materials Science, 2000, 35(24): 6301~6308.
    [75] Nakano K. Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites [J]. Journal of the American Ceramic Society, 1998, 106(3): 364~368.
    [76] Zheng G, Sano H, Suzuki K, et al. A TEM study of microstructure of carbon fiber/polycarbosilane-derived SiC composites [J]. Carbon, 1999, 37: 2057~2062.
    [77] Hwang L R, Fergus J W, Chen H P, et al. Interface compatibility in ceramic-matrix composites [J]. Composites Science and Technology, 1996, 56(12): 1341~1348.
    [78] Takeda M, Imai Y, Kagawa Y, et al. High-tempreture thermal stability of Hi-NicalonTM SiC fiber/SiC matrix composites under long term cyclic heating [J]. Materials Science and Engineering A, 2000, 286(2): 312~323.
    [79]孙成俊,郑文伟,肖加余等.碳纤维沥青裂解碳涂层研究[J].宇航材料工艺,1998,1:48~51.
    [80] Bhatt R T, Chen Y L, Morscher G N. Microstructure and tensile properties of BN/SiC coated Hi-Nicalon, and Sylramic SiC fiber performs [J]. Journal of Materials Science, 2002, 37: 3991~3998.
    [81]周新贵,张长瑞,何新波等.热压制备碳化硼涂层碳纤维增强碳化硅复合材料[J].高技术通讯,2000,10(6):68~70.
    [82] Parthasarathy T A, Boakye E E, Keller K A, et al. Evaluation of porous ZrO2-SiO2 and monazite coatings using NextelTM 720-fiber-reinforced BlackglasTM minicomposites [J]. Journal of the American Ceramic Society, 2001, 84(7): 1526~1532.
    [83] Sato K, Morozumi H, Funayama O, et al. Developing interfacial carbon-boron-silicon coatings for silicon nitride-fiber-reinforced composites for improved oxidation resistance [J]. Journal of the American Ceramic Society, 2002, 85(7): 1815~1822.
    [84]何新波,张长瑞,周新贵等.裂解碳涂层对碳纤维增强碳化硅复合材料力学性能的影响[J].高技术通讯,2000,10(9):92~94.
    [85] Berbon M, Calabrese M. Effect of 1600℃heat treatment on C/SiC composites fabricated by polymer infiltration and pyrolysis with allylhydridopolycarbosilane [J]. Journal of the American Ceramic Society, 2002, 85(7): 1891~1893.
    [86]乔生儒,李玫,韩栋等.3D-C/SiC的高温弯曲性能和后处理对弯曲性能的影响[J].机械强度,2003,25(5):495~498.
    [87]简科,陈朝辉,陈国民等.裂解升温速率对聚碳硅烷先驱体转化制备C_f/SiC材料弯曲性能的影响[J].材料工程,2003,(11):11~13.
    [88]曹英斌.先驱体转化热压工艺制备C/SiC复合材料工艺、结构、性能研究[D].长沙:国防科技大学,2000.
    [89]罗国清,乔生儒.加载速率对3D-C/SiC不同温度拉伸性能的影响[J].材料工程,2003,(10):9~10,39.
    [90]刘兴法.3D-C/SiC的高温拉-拉疲劳性能研究[硕士学位论文].西安:西北工业大学,2003.
    [91]杨忠学.3D-C/SiC的高温拉伸蠕变性能[硕士学位论文].西安:西北工业大学,2003.
    [92]乔生儒,罗清泉,杜双明等.3D C/SiC复合材料的高温拉伸性能[J].机械科学与技术,2004,23(3):335~338.
    [93]乔生儒,杨忠学,韩栋等.3D C/SiC复合材料拉伸蠕变损伤和蠕变机理[J].材料工程,2004,(4):34~36.
    [94]乔生儒,杜双明,纪岗昌,韩栋,李玫.3D-C/SiC复合材料的损伤机理[J].机械强度,2004,6(3):307~312.
    [95]白世鸿,乔生儒,舒武炳等.陶瓷材料高温断裂韧性评价[J].材料工程,2000,(11):21~22,25.
    [96]成来飞,徐永东,张立同等.3D C/SiC复合材料在复杂环境试验中性能演变的两重性[J].稀有金属材料与工程,2006,35(4):521~527.
    [97] Michael C, Halbig, David N. Degradation of Continuous Fiber Ceramic Matrix Composites Under Constant-Load Conditions [R]. NASA/TM-2000-209681.
    [98]张笔峰.先驱体转化C/SiC复合材料本征及服役性能研究[硕士学位论文].长沙:国防科技大学,2010.
    [99] Mario A, Alicia D. Infiltration of C/SiC composites with silica sol-gel solutions: PartⅠ. Infiltration by dropping. Journal of Materials Research, 1999, 14(11): 4230~4238.
    [100] Mario A, Alicia D. Infiltration of C/SiC composites with silica sol-gel solutions: PartⅡ.Infiltration under isostatic pressure and oxidation resistance. Journal of Materials Research, 1999, 14(11): 4239~4215.
    [101]索相波,陈朝辉,王松等.聚硅氧烷封孔处理对C_f/SiC复合材料抗氧化性能的影响[J].航空材料学报,2004,24(6):34~37,46.
    [102]李鸿鹏,马康民,李锋贺等.难熔金属在陶瓷基复合材料上的应用[J].航空维修与工程,2004,(3):24~25.
    [103] Cheng L F, Xu Y D, Zhang L T, et al. Oxidation behavior of C/SiC composites with Si-W coating from room temperature to 1500℃[J]. Carbon, 2000, 38(15): 2133~2138.
    [104] France O, Macret J L. Processing of ESA Symposium [M]. Noordwijk: ESTEC, 1990.
    [105]潘育松,徐永东,陈照峰等.2D C/SiC复合材料烧蚀性能分析[J].兵器材料科学与工程,2006,29(1):17~21.
    [106] Chen Z, Fang D, Miao Y, et al. Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2900 and 3550℃[J].Corrosion Science, 2008, 50: 3378~3381.
    [107] Yan B, Chen Z, Zhu J, et al. Effects of ablation at different regions in three-dimensional orthogonal C/SiC composites ablated by oxyacetylene torch at 1800℃[J]. Journal of Materials Processing Technology, 2009, 209: 3438~3443.
    [108] Fang D, Chen Z, Song Y, et al. Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch [J]. Ceramics International, 2009, 35: 1249~1253.
    [109]仇沱,马眷荣.工程陶瓷弯曲强度试验方法[M].北京:中国建筑材料科学研究院, 1986.
    [110] ASTM Test Method D2344-76, Annual Book of ASTM Standards [M]. Philadelphia, PA: American Society for Testing and Materials, 1988.
    [111] GB75-70-03,高温结构陶瓷平面应变断裂性试验方法[S].
    [112] GB3362-81,碳纤维单丝拉伸性能检测方法[S].
    [113] GB 3362-82,碳纤维复丝拉伸性能检测方法[S].
    [114] GJB 323A-96,烧蚀材料烧蚀试验方法[S].
    [115]王英华.X光衍射技术基础(第二版)[M].北京:原子能出版社,1993.
    [116]施良和.凝胶色谱法[M].北京:科学出版社,1980.
    [117] GB 4333.1-84,硅铁化学分析方法[S].
    [118] Appiah K A, Wang Z L, Lackey W J. Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites [J]]. Carbon, 2000, 38: 831~838.
    [119]周长城.C/SiC复合材料及其空气舵防热套的低温制备研究[D].长沙:国防科技大学,2008.
    [120] Bouillon E, Laffon C, Flank A M. Study of the polymer to ceramic evolution induced by pyrolysis of organic precursor [J]. Physical Review B, 1989, 158(1-3): 229~230.
    [121] Kusakabe K, Li Z Y, Maeda H, et al. Preparation of supported composites membrane by pyrolysis of polycarbosilane for gas separation at high temperature [J]. Journal of Membrace Science, 1995, 103: 175~180.
    [122] Yajima S, Hayashi J, Omori M, et al. Development of tensile strength Silicon carbide fiber using organosilicon precursor [J]. Nature, 1976, 261: 525~528.
    [123] Monthioux M, Delverdier O. Thermal behavior of (Organosilicon) polymer-derived ceramics. V: Main facts and trends [J]. Journal of the European Ceramic Society, 1996, 16: 721~737.
    [124] Baklanava N I, Kulyukin V N, Kostrovsky V G, et al. High-temperature evolution of SiC/C products derived from preceramic polymers [J]. Journal of Materials Synthesis and Processing, 1999, 7(5): 289~296.
    [125] Ma Y, Wang S, Chen Z. Raman spectroscopy studies of the high-temperature evolution of the free carbon phase in polycarbosilane derived SiC ceramics [J]. Ceramics International, 2010, 36: 2455~2459.
    [126] Hilbig A, Müller E, Wenzel R, et al. The microstructure of polymer-derived amorphous silicon carbide layers [J]. Journal of the European Ceramic Society, 2005, 25: 151~156.
    [127] Ly H Q, Taylor R, Day R J, et al. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products [J]. Journal of Materials Science, 2001, 36: 4037~4043.
    [128]马青松.聚硅氧烷先驱体转化制备陶瓷基复合材料研究[D].长沙:国防科技大学,2003.
    [129] Ly H Q, Taylor R, Day R. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II Pyrolysis and characterization [J]. Journal of Materials Science, 2001, 36: 4045~4057.
    [130] Jiang X X, Brydson R, Appleyard S P, et al. Characterization of the fibre-matrix interfacial structure in carbon fibre-reinforced polycarbosilane-derived SiC matrix composites using STEM/EELS [J]. Journal of Microscopy, 1999, 196: 203~212.
    [131] Martin H-P, Ecke R, Müller E. Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction [J]. Journal of the European Ceramic Society, 1998, 18: 1737~1742.
    [132]梁英教,车萌昌.无机物热力学数据手册[M].辽宁:东北大学出版社,1993.
    [133] Sasaki Y, Nishina Y, Sato M, et al. Raman study of SiC fibres made from polycarbosilane [J]. Journal of Materials Science, 1987, 22: 443~448.
    [134] Karlin S, Colomban P. Raman study of the chemical and thermal degradation of as-received and sol–gel embedded Nicalon and Hi-Nicalon SiC fibers used in ceramic matrix composites [J]. Journal of Raman Spectroscopy, 1997, 28: 219~228.
    [135] Dong S M, Chollon G, Labrugère C, et al. Characterization of nearly stoichiometric SiC ceramic fibres [J]. Journal of Materials Science, 2001, 36: 2371~2381.
    [136] Okumura H, Sakuma E, Lee J H, et al. Raman scattering of SiC: application to the identification of heteroepitaxy of SiC polytypes [J]. Journal of Applied Physics, 1987, 61: 1134~1136.
    [137] Kawashima Y, Katagiri G. Observation of the out-of-plane mode in the Raman scattering from the graphite edge plane [J]. Physical Review B, 1999, 59: 62~64.
    [138] Li Z Q, Lu C J, Xia Z P, et al. X-ray diffraction patterns of graphite and turbostratic carbon [J]. Carbon, 2007, 45: 1686~1695.
    [139] Trassl S, Motz G, R?ssler E, et al. Characterization of the free carbon phase in precursor-derived Si-C-N ceramics. Part I: spectroscopic methods [J]. Journal of the American Ceramic Society, 2002, 85(1): 237~244.
    [140] Zhang Z F, Babonneau F, Laine R M, et al. Poly(methylsilane)-a high ceramic yield precursor to silicon carbide [J]. Journal of the American Ceramic Society, 1991, 74(3): 670~673.
    [141] Laine R M, Babonneau F, Blowhowiak K Y, et al. The evolutionary process during pyrolytic transformation of poly(N-methylsilazane) from a preceramic polymer into an amorphous silicon nitride/carbon composite [J]. Journal of the American Ceramic Society, 1995, 78(1): 137~145.
    [142] Kroll P. Modeling the‘free carbon’phase in amorphous silicon oxycarbide [J]. Journal of Non-Crystalline Solids, 2005, 351: 1121~1126.
    [143] Trassl S, Kleebe H J, Str?mer H, et al. Characterization of the free-carbon phase in Si–C–N ceramics: part II, comparison of different polysilazane precursor [J]. Journal of the American Ceramic Society, 2002, 85(5): 1268~1274.
    [144] Ferrari A C, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon and nanodiamond [J]. Philosophical Transactions of the Royal Society of London, Series A, 2004, 362: 2477~2512.
    [145] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095~14107.
    [146] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. The Journal of Chemical Physics, 1970, 53: 1126~1130.
    [147] Tan P H, Dimovski S, Gogotsi Y. Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones [J]. Philosophical Transactions of the Royal Society of London, Series A, 2004, 362: 2289~2310.
    [148] Ma Y, Ma Q-S, Suo J, et al. Low-temperature fabrication and characterization of porous SiC ceramics using silicone resin as binder [J]. Ceramics International, 2008, 34: 253~255.
    [149]马彦,马青松,陈朝辉.先驱体作粘结剂低温制备SiC多孔陶瓷[J].稀有金属材料与工程(增刊1), 2007,36:531~533.
    [150] Huger M, Souchard S, Gault C. Oxidation of nicalon SiC fibres [J]. Journal of Materials Science, 1993, 12: 414~416.
    [151] Shimoo T, Toyoda F, Okamura K. Oxidation kinetics of low-oxygen silicon carbide fiber [J]. Journal of Materials Science, 2000, 35: 3301~3306.
    [152] Zima T M, Baklanova N I, Titov A T. The behavior of the oxide-coated NicalonTM fibers exposed to air at 1000℃[J]. Journal of the European Ceramic Society, 2005, 25: 1943~1952.
    [153] Shukla S K, Tiwari R K, Ranjan A,et al. Some thermal studies of polysilanes and polycarbosilanes [J]. Thermochimica Acta, 2004, 424: 209~217.
    [154] GB/T 3045-2003,SiC化学分析方法[S].
    [155]王其坤.先驱体浸渍裂解工艺制备C_f/UHTCp/SiC复合材料及其性能研究[D].长沙:国防科技大学,2008.
    [156] Vidano R, Rischbach D B. New lines in the raman spectra of carbons and graphite [J]. Journal of the American Ceramic Society, 1978, 61: 13~17.
    [157] Havel M, Colomban P. Raman and rayleigh mapping of corrosion and mechanical aging in SiC fibers [J]. Composites Science and Technology, 2005, 65: 353~358.
    [158] Després J-F, Monthioux M. Mechanical properties of C/SiC composites as explained from their interfacial features [J]. Journal of the European Ceramic Society, 1995, 15: 209~224.
    [159]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [160] Ma Y, Wang S, Chen Z. In situ growth of a carbon interphase betweencarbon fibres and a polycarbosilane-derived silicon carbide matrix [J]. Carbon, 2011, 49: 2869~2872.
    [161] Tanoglu M, Parvizi-Majidi A. A SiC/SiC composite produced by polymer pyrolysis of polydiphenylcarbosilane [J]. Science and Engineering of Composite Materials, 1998, 7: 239~247.
    [162] Vahlas C, Laanani F, Monthioux M. Thermodynamic approach to the oxidation of the Hi-Nicalon fibre [J]. Journal of the American Ceramic Society, 1999, 82: 2514~2516.
    [163] Vahlas C, Monthioux M. On the thermal degradation of the Lox-M Tyranno fibre [J]. Journal of the European Ceramic Society, 1995, 15: 445~453.
    [164] Le C P, Monthioux M, Oberlin A. Understanding Nicalon fibre [J]. Journal of the European Ceramic Society, 1993, 11: 95~103.
    [165] Chollon G, Pailler R, Naslain R, et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon). Journal of Materials Science, 1997, 32: 327~347.
    [166] Dwivedi H, Mathur R B, Dhami T L, et al. Evidence for the benefit of adding a carbon interphase in an all-carbon composite [J]. Carbon, 2006, 44: 699~709.
    [167] Zhong J, Qiao S, Lu G, et al. Rapid fabrication of C/C/SiC composite by PIP of HMDS [J]. Journal of Materials Processing Technology, 2007, 190: 358~362.
    [168]邹武.三维编织C/SiC复合材料的制备及其性能研究[D].西安:西北工业大学,2001.
    [169] Evans A G, Zok F W, Mackin T J. The Structural Performance of Ceramic Matrix Composites, in High Temperature Mechanical Behavior of Ceramic Composites [M]. Boston: Butterworth-Heinemann, 1995, 3~86.
    [170] Krenkel W. Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications [M]. Weinheim: WILEY-VCH, 2008: 231~259.
    [171]何新波.连续纤维增强碳化硅陶瓷基复合材料的研究[D].长沙:中南工业大学,2000.
    [172] Lévêque D, Auvray M H. Study of carbon-fibre strain in model composites by raman spectroscopy [J]. Composites Science and technology, 1996, 56: 749~754.
    [173] Wood R J, Huang Y, Young J R, et al. Measurement of thermal strains during compressive fragmentation in single-fibre composites by raman spectroscopy [J]. Composites Science and technology, 1995, 55: 223~229.
    [174] Gouadec G, Colomban P, Bansal P N. Raman study of Hi-Nicalon-fiber-reinforced celsian composites:Ⅱ, Residual stress in fibers [J]. Journal of the American Ceramic Society, 2001, 84(5): 1136~1142.
    [175] Melanitis N, Galiotis C. Compressional behaviour of carbon fibres Part 1. A raman spectroscopic study [J]. Journal of Materials Science, 1990, 25: 5081~5090.
    [176] Naslain R, Lamon J, Pailler R, et al. Micro/minicomposites: a useful approach to the design and development of non-oxide CMCs [J]. Composites: Part A, 1999, 30: 537~547.
    [177] Padmavathi N, Subrahmanyam J, Ray K K, et al. Carbon fiber reinforced silicon carbide mini-composites-solution approach [J]. Journal of Materials Processing Technology, 2008, 204: 434~439.
    [178]刘海韬.夹层结构SiC_f/SiC雷达吸波材料设计、制备及性能研究[D].长沙:国防科技大学,2010.
    [179]郑晓慧.C_f/SiC复合材料用玻璃陶瓷系抗氧化涂层的设计、制备与性能研究[D].长沙:国防科技大学,2009.
    [180] Li H, Zhang L, Cheng L, et al. Oxidation analysis of 2D C/ZrC-SiC composites with different coating structures in CH4 combustion gas environment [J]. Ceramics International, 2009, 35: 2277~2282.
    [181] Wang Z, Dong S, Zhang X, et al. Fabrication and properties of C_f/SiC-ZrC composites [J]. Journal of the American Ceramic Society, 2008, 91(10): 3434~3436.
    [182] Wang C R, Yang J M, Hoffman W. Thermal stability of refractory carbide/boride composites [J]. Materials Chemistry and Physics, 2002, 74: 272~281.
    [183] Padmavathi N, Kumari S, Prasad V V B, et al. Processing of carbon-fiber reinforced (SiC+ZrC) mini-composites by soft-solution approach and their characterization [J]. Ceramics International, 2009, 35: 3447~3454.
    [184] Das B P, Panneerselvam M, Rao K J. A novel microwave route for the preparation of ZrC-SiC composites [J]. Journal of Solid State Chemistry, 2003, 173: 196~202.
    [185] Rezaie A, Fahrenholtz W G, Hilmas G E. Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500℃[J]. Journal of the European Ceramic Society, 2007, 27: 2495~2501.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.