中国春—长穗偃麦草二体附加和代换系以及中国特有小麦对铝的耐性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性土壤一般指表土pH<5.50的土壤,红壤、黄壤、砖红壤和赤红壤等都是这种类型土壤。近年来,酸雨沉降及不良耕作方式加速了土壤酸化,导致酸性土壤中的铝毒害问题日益严重,限制了作物生物和经济产量的提高。酸性土壤铝毒害已成为全球性最重要的农业问题之一。
     为了研究酸性条件下不同长穗偃麦草E染色体和中国特有小麦对铝耐性的差异并从中发现可能的耐铝抗源,本文通过水培法对27份中国春-长穗偃麦草二体附加和代换系以及28份中国特有小麦进行了耐铝测试,并利用86对随机分布在小麦21条染色体的SSR引物对特有小麦进行分析,从而研究其遗传差异与耐铝的关联。所获得的主要结果如下:
     1.中国春-长穗偃麦草二体附加和代换系对铝的耐性差异
     27个不同的中国春-长穗偃麦草二体附加和代换系对铝的耐性存在差异。DA2E在不同铝浓度下的再生根伸长量均显著或极显著低于中国春,但二者耐铝指数差异几乎都不显著;DA4E在不同铝浓度下的再生根伸长量与中国春几乎都无显著差异,但耐铝指数均显著或极显著低于中国春。其余5个二体附加系无论再生根伸长量还是耐铝指数几乎都与中国春相当,耐铝性能无显著差异。
     DS1E/1A在无铝、DS4E/4D在所有铝浓度处理下的再生根伸长量分别极显著高或低于中国春,但DS1E/1A以及DS4E/4D在几乎所有铝浓度处理下的耐铝指数均显著或极显著低于中国春;DS3E/3B虽在几乎所有处理下的再生根伸长量显著或极显著低于中国春,但仅在pH4.50+200μM Al3+处理下的耐铝指数显著或极显著低于中国春;DS5E/5B和DS7E/7A在pH4.50+200μM Al3+处理下的再生根伸长量和耐铝指数均显著或极显著低于中国春的相应指标;DS6E/6A和DS6E/6B在无铝处理以及DS6E/6D在pH4.50+200μM Al3+处理下的再生根伸长量都显著或极显著低于中国春,但与中国春在所有处理下的耐铝指数均无显著差异;DS1E/1B在几乎所有处理下的再生根伸长量与中国春都无显著差异,但在pH4.50+200μM Al3+处理下的耐铝指数极显著低于中国春。
     2.不同中国特有小麦对铝的耐性差异
     本研究所测试的3种中国特有小麦对铝耐性的差异较大,从中鉴定出了一些材料具有与中国春相似或更优的耐铝能力。
     云南铁壳麦耐铝能力总体较强,所有材料都能耐pH4.00+120μM Al3+,即使在pH4.00+240μM Al3+和pH4.00+360μM Al3+处理下仍可找到一些与中国春耐铝性能相当或更优的材料。
     新疆稻麦As360是本研究所发现的耐铝性能最佳的材料。除此之外的新疆稻麦在所有铝浓度处理下的再生根伸长量和耐铝指数均显著或极显著低于中国春,表明它们的耐铝能力不及中国春。
     多数西藏半野生小麦在不高于pH4.00+120μM Al3+处理下与中国春耐铝性能相当,但在高于pH4.00+120μM Al3+处理下的耐铝性能几乎都不及中国春。
     3.中国特有小麦遗传差异与耐铝抗源的关系
     根据多态性SSR分子标记聚类结果,将中国春在内的28份中国特有小麦聚为两大类,其中一类包括所有云南铁壳麦、西藏半野生小麦和中国春;第二类则只包括7份新疆稻麦。
     新疆稻麦As360的耐铝能力在不同铝浓度处理下均优于中国春,而其它新疆稻麦均不耐铝,在聚类图上,所有新疆稻麦与中国春的遗传距离较远,处于不同的分支。因此,As360具有与中国春相同或相似的耐铝基因的可能性较小,二者很可能是独立起源的耐铝抗源。
     所有云南铁壳麦在pH4.00+120μM Al3+处理下的耐铝能力与中国春相当,即使在pH4.00+240μM Al3+和pH4.00+360μM Al3+处理下仍可以找到部分材料与中国春的耐铝性能相当。在聚类图上它们与中国春处在同一大支下面的不同小分支,表明它们的耐铝基因可能有一定的关系。
     部分西藏半野生小麦在pH4.00+120μM Al3+处理下的耐铝能力与中国春相当,且与中国春聚在同一分支,说明这些西藏半野生小麦可能具有与中国春相同或相似的耐铝基因。
Acid soils, with a pH 5.50 or lower, distributed extensively around the world's land. Aluminum toxicity is one of the limiting factors for crop production in the acidic soils. There are some main acid soil types, including red soils, yellow soils, humid-thermo ferralitic and lateritic red earths. In recent years, acid deposition and poor tillage have accelerated the soil acidification. The aluminum toxicity in acidic soils has become one of the seriously global agricultural puzzles.
     For comparing the aluminum tolerance of wheat lines with different Lophopyrum elongatum chromosomes as well as Chinese endemic wheats and found potential new sources of aluminum tolerance,27 T. aestivum cv. Chinese Spring-L. elongatum disomic addition and substitution lines and 28 Chinese endemic wheats were tested for aluminum tolerance by using hydroponic screening. The Chinese endemic wheats werte further subjected to SSR analyses for studying the association between the genetic dissimilarity and aluminum tolerance. The main results were as follows:
     1. Aluminum tolerance of T. aestivum cv. Chinese Spring-L. elongatum disomic addition and substitution lines
     Significant difference on aluminum tolerance was observed in 27 T. aestivum cv. Chinese Spring-L. elongatum disomic addition and substitution lines, of which, the root regenerate length (RRL) of disomic additional line 2E (DA2E) was significant different lower than that of Chinese Spring (CS), while no significant different was observed in aluminum tolerance index (RTI) between DA2E and CS in all aluminum concentrations. The RRL of DA4E was almost no significant different with that of CS, but the RTI was significant different lower than that of Chinese Spring. Based on RRL and RTI, the aluminum tolerance of the remaining five disomic addition lines were very similar to CS.
     The RRL of substitution lines DS1E/1A in 0μM Al3+, DS4E/4D in all aluminum stress were respectively significant higher or lower than that of CS, leading to the RTI of them were significant lower than that of CS. Though the RRLs of substitution line DS3E/3B in all aluminum stress were respectively significant lower than that of CS, only the RTI in pH4.50+200μM Al3+ was lower than that of CS. Compared with CS, the aluminum of DS5E/5B and DS7E/7A in pH4.50+200μM Al3+ were worse than it. The RRLs of DS6E/6A and DS6E/6B without aluminum and DS6E/6D in pH4.50+200μM Al3+ were respectively lower than that of CS, while their RTIs without significant difference, suggesting that the aluminum tolerance of them were very similar. The RRL of DS1E/1B in all aluminum stress were respectively the same as those of CS, however, the RTI in pH4.50+200μM Al3+ were lower than that of CS.
     2. Aluminum tolerance among Chinese endemic wheats
     The aluminum tolerance of three types of Chinese endemic wheats were not the same, some wheat lines showed the same or even much better aluminum tolerance as/than CS.
     Among all the three types of Chinese endemic wheats, Yunnan hulled wheats have shown much better aluminum tolerance than Xinjiang rice wheat and Tibet semi-wild wheats. It was found that all of Yunnan hulled wheat lines showed similar aluminum tolerance as CS in pH4.00+120μM Al3+. Distinguishly, some Yunnan hulled wheat lines showed much better aluminum tolerance than CS even in pH4.00+240μM Al3+ and pH4.00+360μM Al3+, respectively.
     Xinjiang rice wheat line As360 is one of the best aluminum tolerance wheat lines in all the tested Chinese endemic wheats. Surprisingly, the aluminum tolerance of the remaining Xinjiang rice wheats was poorer than CS.
     Most of Tibet semi-wild wheats showed the same aluminum tolerance as CS when aluminum concentration below 120μM Al3+
     3. The association between genetic dissimilarity and aluminum tolerance in Chinese endemic wheats
     Based on the polymorphic SSR data clustering results, all Chinese endemic wheats could divide into two groups. The one group contained Yunnan hulled wheats, Tibet semi-wild wheats and CS, while the remaining group contained seven lines of Xinjiang rice wheat.
     The genetic distance between aluminum tolerance Xinjiang rice wheat line As360 and CS was very far, suggesting that the aluminum tolerance gene(s) of As360 probably not the same as that of CS.
     All Yunnan hulled wheats showed the same aluminum tolerance as CS when aluminum below 120μM Al3+. Distinguishly, some Yunnan hulled wheats showed the same or much better aluminum tolerance as/than CS. Combined with clustering data, it suggested that the aluminum tolerance genes of Yunnan hulled wheats may be different from CS.
     Some Tibet semi-wild lines showed the same aluminum tolerance as CS when aluminum concentration below 120μM Al3+ and showed very near distance with CS, suggesting that the aluminum tolerance genes of them were probably very similar or the same.
引文
1. 庄巧生.中国粮食发展战略.农业出版社,1990,pp:401-415
    2. 熊毅,李庆魁.中国土壤.北京:科学出版社,1987,pp:39
    3. 李庆逵.中国红壤.北京:科学出版社,1988
    4. 赵福庚,何龙飞,罗庆云.植物逆境生理生态学.化学工业出版社,2004,pp:154
    5. Boland NS, Hedley MJ, White RE. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant and Soil,1991,134:53-63
    6. Mahler RL, Halvorson AR, Koehler FE. Long-term acidification of farmland in northern Idaho and east Washington. Communications in Soil Science Plant Analysis,1985,16:83-95
    7. Coventry DR, Slattery WJ. Acidification of soil associated with lipins grown in a crop rotation in north-eastern Victoria. Australian Journal of Agricultural Research,1991,42:391-397
    8. 许玉凤,曹敏建,王文元,等.植物耐铝毒害的研究进展.沈阳农业大学学报,2002,33(6):452-455
    9. 陈荣府,沈仁芳.水稻(Oryza sativa L.)铝毒害与耐性机制及铝毒害的缓解作用.土壤,2004,36(5):481-491
    10. Foy CD, Fleming AL. Aluminum tolerance of two wheat cultivars related to nitrate reductase activities. Journal of Plant Nutrition,1982,5:1313-1333
    11. Foy CD, Duke JA, Devine TE. Tolerance of soybean germplasm to an acid tatum subsoil. Journal of Plant Nutrition,1992,21:1301-1325
    12. Clark RB, Pier HA, Knudsen D, et al. Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. Journal of Plant Nutrition,1981,3:257-374
    13. Furlani RR, Clark RB. Screening sorghum for aluminum tolerance in nutrient solution. Agronomy Journal,1981,73:587-594
    14. Sakurai N. Cell wall functions in growth and development-aphysical and chemical point of view. Journal of Plant Research,1991,104:235-251
    15.林咸永,唐剑锋,李刚,等.铝胁迫下小麦根细胞壁多糖组分含量的变化与其耐铝性的关系.浙江大学学报(农业与生命科学版),2005, 31(6):724-730
    16. Leon V, Kochian. Cellular mechanisms of aluminum toxicity and resistance in plants. Plant Physiology,1995,24:123-163
    17. Bache BW, Sharp GS. Soluble polymeric hydroxy aluminum ions in acid soil. Journal of Soil Science,1976,27:167-174
    18. Miyasaka SC, Buta JG, Howell RK, et al. Mechanism of aluminum tolerance in snap beans:root exudation of citric acid. Plant Physiology,1991,96:737-743
    19. Larsen PB, Degenhardt J, Tai CY, et al. Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiology, 1998,117:9-18
    20. Pellet DM, Grunes DL, Kochian LV. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Plantarum,1995,196:788-795
    21. Ma JF, Zheng SJ, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiology,1997,38(9):1019-1025
    22. Ryan PR, Raman H, Gupta S, et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology,2009,149:340-351
    23. Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat Al-induced specific secretion of oxalic acid from root tips. Plant Physiology,1998,117:745-751
    24. Ma Z, Miyasaka SC. Oxalate exudation by taro in response to Al. Plant Physiology,1998,118: 861-865
    25. Ma JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology,2000,122:687-694
    26. Saber N, Abdel-Moneim A, Barakat S. Role of organic acids in sunflower tolerance to heavy metals. Biology Plant,1999,42:65-73
    27.Kerven GL, Asher CJ, Edwards DG, et al. Sterile solution culture techniques for aluminum studies involing organic acids. Journal of Plant Nutrition,1991,14:975-985
    28. Dall'Agnol M, Bouton JH, Parrott WA. Screening methods to develop Alfalfa germplams tolerant of acid aluminum toxic soils. Crop Science,1996,36:64-70
    29.林咸永,章永松,陶勤南.不同耐Al性的小麦基因型在酸性Al毒土壤的适应性及其与体内养分状况的关系.浙江大学学报(农业与生命科学版),2001,26(6):635-639
    30.彭嘉桂,陈成榕,卢和顶,等.铝(Al)对不同耐性作物品种形态和生理特性的影响.生态学报,1995,15(1):104-107
    31.杨建立,何云峰,郑绍建.植物耐铝机理研究进展.植物营养与肥料学报,2005,11(6):836-845
    32.刘保国,Hadzi-Taskovic, Sukalovic V.铝对玉米幼苗生长发育的影响.西南农业大学学报,1997,19(5):420-424
    33. Raman H, Ryan PR, Raman R, et al. Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theoretical and Applied Genetics. 2008,116:343-354
    34. Zhou LL, Bai GH, Carver B, et al. Identification of new sources of aluminum resistance in wheat. Plant and Soil.2007,297:105-118
    35. Riede CR, Franel LJ, Anderson JA, et al. Additional sources of resistance to tan spot of wheat. Crop science,1996,36:771-777
    36. Stodart BJ, Raman H, Coombes N, et al. Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genetic Resource and Crop Evolution, 2007.54:759-766
    37. Dvorak J. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Candian Journal Genetical Cytology,1980,21:243-254
    38. Dvorak J, Chen KC. Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia. Candian Journal Genetical Cytology,1984,26:128-132
    39.刘树兵,贾继增,王洪刚,等.长穗偃麦草与普通小麦间的多态性及E组染色体的特异RAPD标记.作物学报,1998,24(6):687-690
    40.刘树兵,贾继增,王洪刚,等.利用生化分子标记确定长穗偃麦草与小麦染色体的部分同源性.遗传学报,1999,26(1):37-42
    41.李玉京,刘建中,李滨,等.长穗偃麦草基因组中与耐低磷营养胁迫有关的基因的染色体定位.遗传学报,1999,26(6):703-710
    42.李玉京,李滨,刘建中,等.长穗偃麦草酸性磷酸酶与碱性磷酸酶编码基因的染色体定位.遗传学报,1998,25(5):449-453
    43.彭远英,彭正松,宋会兴.小麦中国春背景下长穗偃麦草光合作用相关基因的染色体定位.中国农业科学,2005,38(11):2182-2188
    44.马渐新,周荣华,董玉琛,等.来自长穗偃麦草的抗小麦条锈病基因的定位.科学通报,1999,44(1):65-69
    45. Lawrence GJ, Shepherd KW. Chromosomal location of genes controlling seed proteins in species related to wheat. Theoretical and Applied Genetics,1981,59(1):25-31
    46.唐朝晖,刘守斌,尤明山,等.普通小麦背景中长穗偃麦草高分子量麦谷蛋白基因的表达、染色体定位与分子标记.农业生物技术学报,2003,11(1):34-39
    47. Dvorak J, Kasarda DD, Dietler MD, et al. Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Candian Journal Genetical Cytology,1986,28 (5):818-830
    48.陈国跃,董攀,魏育明,等.普通小麦背景中长穗偃麦草[Lophopyrum elongatum (Host) A. Love] E染色体组的RGAP特异标记.作物学报,2007,33(11):1782-1787
    49. Yen C, Luo MC, Yang JL. The origin of the Tibetan weedrace of hexaploid wheat,Chinese spring, chengduguangtou and other landraces of white wheat complex from China. In:miller TE and Koebner RMD(Eds). Proceeding 7th International Wheat Genetic Symposium. Institute of plant Sciences Research. Cambridge, England, volumel,1988, pp:175-179
    50. Zhuang QS, Li ZS. Proceeding 8th International Wheat Genetic Symposium. (Li ZS and ZY Xin eds) Beijing, China,1993, pp:11-18
    51. Riley R, Coucoli H, Chapman V. Chromosome interchanges and the phylogeny of wheat. Heredity,1967,22:233-248
    52.邵启全,李长森,巴桑次仁.西藏半野生小麦.遗传学报,1980,7(2):149-156
    53.吕萍,张自立.云南小麦和西藏半野生小麦的核型及带型.遗传,1983,5(4):20-22
    54.陈佩度,黄莉,刘大钧.用中国春双端二体分析西藏小麦的染色体构成.遗传学报,1991,18(1):39-43
    55. Chen QF, Yen C, Yang JL. Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genetic Resource and Crop Evolution,1998,45:407-410
    56.陆平.西藏半野生小麦染色体组型分析和断穗基因定位.西藏农业科技,2000,22(2):23-27
    57.黄亨履,翁跃进,张贤珍,等.西藏半野生小麦遗传多样性研究进展以及原位保存的建议植物遗传资源科学,2002,3(2):28-33
    58.董玉琛,郑殿升,乔丹杨,等.“云南小麦”(Triticum aestivum ssp.yun-nanense King)的考察与研究.作物学报,1981,(7):145-151
    59.黄俐,陈佩度,刘大钧.用中国春双端二体分析云南小麦的染色体构成.中国农业科学,1989,22(4):13-16.
    60.姚景侠,杨芳彬,师素云,等.小麦属的新种—新疆稻穗麦之研究.遗传,1983,5(1):17-20
    61.陈勤,孙雨珍,董玉琛.新疆小麦种间杂种的细胞遗传学研究.作物学报,1985,11(1):23-28
    62. Luo MC, Dvorak J. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese spring wheat. Euphytica,1996,91:31-35
    63. Aniol A. Gentics of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant and Soil, 1990,123:223-227
    64. Aniol AM. Physiological aspects of aluminum tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theoretical and Applied Genetics, 1995,91:510-516
    65.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京科学出版社,2002
    66. Takagi H, Namai H. Murakami K. Exploration of aluminum tolerance genes in wheat. In Sakamoto S(ed). Proceeding of the 6th International Wheat Genetics Symposium, Kyoto University, Kyoto, Japan,1983, pp:141-146
    67. Aniol A, Gustafson JP. Chromosomal location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics Cytology,1984,26:701-705
    68. Paplinker LA, Bethea AS, Singleton TE, et al. Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese spring wheat. Planta,2001,212:329-334
    69. Basu U, Good AG, Aung T, et al. A 23-KD root exudates polypetide co-segregates with aluminum resistance in Triticum aestivum. Physiologia Plantarum,1999,106:53-61
    70. Tang C, Rengel Z, Abrecht D, et al. Aluminum-tolerant wheat uses more water and yield higher than aluminum-sensitive one on a sandy soil with subsurface acidity. Field Crops Research,2002, 78:93-103
    71. Ma HX, Bai GH, Carver BF, et al. Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas66. Theoretical and Applied Genetics,2005,112:51-57
    72. de Sousa CAN. Classification of Brazilian wheat cultivars for aluminium toxicity in acid soils. Plant Breeding,1998,117:217-221
    73. Garvin DF, Carver BF. Role of genotypes tolerant of acidity and aluminium toxicity. In:Rengel Z (ed), Handbook of soil acidity, New York USA Marcel Dekker,2003, pp:387-406
    74.陈庆富.中国特有小麦起源探讨.贵州农业科学,1999,27(1):20-25
    75.黄亨履.西藏山南地区的小麦资源.作物品种资源,1983(4):9-15
    76.张宗锦,刘世全,张世熔,等.西藏酸性土壤的分布和酸度特征.四川农业大学学报,2003,21(4):322-327
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.