单周期临界导通PFC转换器控制模式及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种电子设备和产品的快速发展,以及集成电路制造工艺的不断进步,开关电源已成为当今电子设备的研究热点之一,并影响着电子产品设计的成功与否。作为开关电源的主要控制技术之一,功率因数校正技术也在经历不断的改进,向着高效率、低成本、低功耗、以及轻薄小的方向发展。功率因数校正(Power Factor Correction, PFC)技术能有效抑制电网一侧的输入电流波形畸变,减小总谐波失真(Total Harmonic Distortion, THD),从而满足电网对开关电源功率因数及谐波含量日益严格的要求,特别是能够满足更多的便携式电子产品在小功率应用场合的普遍需求。
     本文首先对单级有源功率因数校正电路的工作原理和控制模式进行了较全面的论述。由于其低成本、低功耗的特点,单级有源PFC通常适用于中低功耗的便携式电子产品。接下来对单级Boost PFC转换器的拓扑结构、工作原理和稳定性进行了较为深入的讨论,包括电流连续导通模式(Continuous Conduction Mode,CCM)、电流断续导通模式(Discontinuous Conduction, DCM)、以及临界导通模式(Boundary Conduction Mode, BCM) Boost PFC转换器的实现方法及其工作原理。
     对单周期控制技术的非线性控制机理、工作原理、调制规律、以及不同工作模式(CCM、DCM、BCM)下单周期Boost转换器的稳定性进行了分析研究,提出了稳定性工作的条件。采用电压和电流双闭环反馈控制技术,实现单周期BCM PFC转换器的整流和稳压功能;根据环路稳定性特点,对电压控制环路和电流控制环路进行补偿;基于Simulink建立了单周期PFC转换器的高层次行为模型,仿真和测试结果验证了其正确性和可行性。
     基于SinoMos 1.0μm BiCMOS工艺,完成单周期临界导通变频PFC转换器的电路设计。基于双环最优控制模式,采用多矢量误差运放、可编程锯齿波振荡器、过零检测电路实现变频控制,有效减少整个电源系统在轻载与重载时的功率损失,以及导通损耗和噪声;去除复杂的模拟乘法器,简化了传统PFC控制电路的结构。系统采用的关键性技术如下:
     1)采用高阶曲率补偿带隙基准电压源。在一阶温度补偿的基础上,利用双极晶体管的电流增益β随温度呈指数变化的特点,对带隙基准进行高阶温度补偿,同时为了防止热振荡现象的影响,加入带热滞回功能的过温保护电路,极大的提高了带隙基准的稳定性;
     2)采用多矢量误差运放和可编程锯齿波振荡器,保证系统根据外接负载及时调整PWM开关频率,有效减少整个电源系统在轻载与重载时的功率损失,提高有用功率。仿真和测试结果表明,该PFC转换器能跟随负载变化调整工作频率,在变频模式与间歇模式之间进行转换,满足低压省电模式要求;
     3)采用过零电流检测电路实现电流环控制,通过控制开关管的开启时间实现单周期临界工作模式,减小导通损耗和噪声,避免出现较大的电流间隙,提高了功率因数,采用具有350mV滞回电压的迟滞比较器提高系统的抗干扰能力,增加峰值电流检测网络及前沿消隐电路,获得尽可能小的电流畸变;
     4)采用周期性自启动定时电路,以及在振荡器与辅助绕组之间加入分流电阻Rz,使系统能够根据输入线电压的变化,及时而准确地调整PWM开关信号的占空比,从而显著降低AC输入线电压过零点附近的交越失真现象。
     基于SinoMos 1.0μm BiCMOS工艺,对版图进行了物理实现,并对芯片总体布局布线中需要考虑的问题进行了详细的讨论,包括器件和单元电路的匹配性、关键路径的布线、电源和地线的隔离、串扰噪声和闩锁效应、以及ESD保护等。有效芯片面积为1.61mmm×1.52mm。
     基于SinoMos 1.0μm BiCMOS工艺,对整体电路进行了流片验证,测试结果表明:所设计的系统具有较好的功率因数校正功能,启动电流仅为36gA,稳定工作时电流为2.43mA,正常工作时的开关频率为5-6kHz, PF值为0.988,线性调整率小于1%,负载调整率为3%,THD为3.8%,效率为97.3%。所有数据表明,本文提出的单周期临界导通PFC转换器能够满足低压省电模式以及低零交越失真的设计要求,且结构简单,效率较高。该电路能够根据负载情况自动调整PWM开关频率,有效降低系统芯片所需的功耗。
With the rapid development of various electric devices and products, as well as the successive advancement of the integrated circuit manufacturing process, the switching power device has become one of the research focuses on the electric devices, and furthermore it has decided the success of the electronic product design. As one of the main control techniques of the switching power, the power factor correction (PFC) technology is also undergoing constant improvement and developing toward the direction of high efficiency, low cost, low power, light weight and small size. PFC technology can effectively restraint the input current waveform distortion at the side of the grid, and minimize the total harmonic distortion (THD), thereby meeting the increasingly stringent requirements of power factor and the harmonic content for the switching power supply by the grid, especially meeting the demands of the low power application for the portable electronic products.
     In this paper, the operating principle and control pattern of the single-stage active power factor correction (APFC) circuit are discussed completely at first. For its advantages of low cost and low power consumption, the single-stage APFC is widely used in the moderate and low-power portable electronic products. Then the topological structure, operating principle and the stability of the single-stage Boost PFC converter are discussed more in depth, mainly including the current continuous conduction mode (CCM), the current discontinuous conduction mode (DCM), and the boundary conduction mode (BCM) Boost PFC converter.
     According to the discussion of the nonlinear controlling mechanism, the operating principle, the modulation pattern and the stability of different operating modes, involving CCM, DCM, and BCM, have been analyzed and discussed. At last the stability working condition of the one-cycle PFC converter is proposed. Using the voltage and current double closed-loop feedback control technique achieves the one-cycle boundary conduction mode PFC converter with the rectification and stability functions. According to the loop stability conditions the compensation networks of the voltage control loop and the current control loop have been built respectively. Based on Simulink tool the high-level behavior model of the one-cycle PFC converter has been established. The simulation and test results verify the correctness and feasibility of this model.
     A one-cycle control BCM variable frequency PFC converter circuit is implemented using SinoMos 1.0μm BiCMOS process. Based on the double-loop optimal control mode, the circuit introduces the multi-vector error amplifier, the zero-crossing detection and the programmable sawtooth oscillator in order to achieve the variable frequency control, which effectively reduces the power loss of the entire power system at light loads and heavy loads, as well as the conduction loss and noise, and removes the complex analog multiplier and so simplifies the conventional PFC control circuit. The key design techniques used in the proposed PFC converter are as follows:
     1) A high-order curvature-compensated bandgap reference is studied. Based on the first-order temperature compensation, utilizing the characteristics of a bipolar transistor current gainβexponentially changing with temperature changes, a high-order temperature-compensated bandgap reference is implemented. In addition, an over-temperature protection circuit with thermal hysteresis function to prevent thermal oscillation is proposed, which greatly improves the performance of stability of the bandgap reference.
     2) A multi-vector error amplifier and a programmable sawtooth oscillator are introduced in this paper in order to modify the PWM switching frequency according to the external loads by the system, thus reducing the power loss of the entire power system at light loads and heavy loads effectively and increasing the useful power. The simulation and test results show that the PFC converter could change the work frequency with the load changes, and transform between the variable frequency mode and the interval mode to meet the requirements of low-power electric-saving PFC converter.
     3) A zero-crossing detection circuit is applied to realize the current control loop, which control the switching turn-on time to achieve the one-cycle BCM operating mode and to reduce the conduction loss and noise, as well as avoiding large current gap and improving power factor. A hysteresis voltage amplifier with 350mV hysteresis voltage is employed to strengthen the anti-jamming capability of the system. A peak current detection network and a leading edge blanking circuit are used for the current distortion as small as possible.
     4) The periodic self-starting timer circuit, with the shunt resistor Rz attached between the oscillator and the auxiliary winding, enables the system to accurately regulate the duty cycle of the PWM switching signals in terms of the input ac line voltage timely, thereby reducing the zero-crossing distortion in the vicinity of the AC input voltage zero-crossing points significantly.
     Based on SinoMos 1.0μm BiCMOS process, the whole layout of the chip is realized. At the same time, some issues which should be considered about the overall layout routing are discussed in detail, including the matching of devices and unit circuits, the routing of critical paths, the isolation of power supply and ground, the crosstalk noise, the latch-up effect, and the ESD protection, and so forth. The active die area is 1.61mm×1.52mm.
     Based on SinoMos 1.0μm BiCMOS process, the entire circuit has been verified. The test results are as follows:the designed system has a good power factor correction function, its start current is only 36μA, the stable operating current is 2.43mA, the normal operating frequency is 5~6kHz, power factor is 0.988, the linear adjusting rate is less than 1%, the load regulation rate is 3%, THD is 3.8%, and the system efficiency is 97.3%. All these data indicate that the proposed one-cycle BCM PFC converter could meet the requirements for low power saving mode and low zero-crossing distortion, as well as a simple structure and high efficiency. The circuit could adjust the PWM switching frequency automatically according to the load changes, and reduce required power consumption of the system chip efficiently.
引文
[1.1]周邦雄.实用电源技术手册.第1版.吉林:吉林电子出版社,2004.18-22.
    [1.2]张占松.开关电源原理与设计.北京:电子工业出版社,2005,7.
    [1.3]严百平,刘健,程红丽.不连续导电模式高功率因数开关电源.第1版.北京:科学出版社,2000.1-3.
    [1.4]J.M.Kwon, W.Y.Choi, H.L.Do, etc.. Single-stage hasf-bridge converter using coupled-inductor[J]. Electric Power Applications, IEEE Proceedings.2005,5, 152(3).748-756.
    [1.5]孟伟,马晓光,张瑛.对电网谐波治理的探讨.东北电力技术.2000,10(10).38-41.
    [1.6]冯捷,孙培德,王晔湛等.基于有功电流分离的新型谐波检测法.电子测量技术.2009,32(2).66-68.
    [1.7]林渭勋.现代电力电子技术.第1版.北京:机械工业出版社,2006.35-38.
    [1.8]翁利民.电力电子技术与谐波抑制、无功功率补偿技术研究综述.电力电容器.2004,7(3).6-10.
    [1.9]刑岩,蔡宣三.高频功率开关变换技术.第1版.北京:机械工业出版社.2005.48-51.
    [1.10]Weihua Deng, Bo Zhang, Zongbo Hu. Analysis of a Novel Boundary Conduction Mode (BCM) and Voltage Control of Buck Capacitor in Single-Stage PFC Circuit. Power Electronics and Motion Control Conference.2002,8(1).126-131.
    [1.11]Sulistyono.W, Enjeti.P. A series resonant AC-to-DC rectifier with high-frequency isolation. IEEE Transactions on Power Electronics.1995,11,10(6). 784-790.
    [1.12]Pietkiewicz.A, Tollik.D. Snubber circuit and MOSFET paralleling considerations for high power boost-based power-factor corrections. Telecommunications Energy Coference.1995,11.41-45.
    [1.13]In.Dong.Kim, Bose.B.K. New ZCS turn-on and ZVS turn-off unity power factor PWM rectifier with reduced conduction loss and no auxiliary switches. Power Electronics Specialists Conference.1998,147(2).46-152.
    [1.14]Yungteak.Jang, Jovanovic.M.M. A new soft-switched high-power-factor boost converter with IGBTs. IEEE Transactions on Power Electronics.2002,17(4). 469-476.
    [1.15]De.Souza.A.F, Barbi.I. A new ZVS-PWM unity power factor rectifier with reduced conduction losses. IEEE Transactions on Power Electronics.1995,10(6). 746-752.
    [1.16]Da.Cunha.Duarte, C.M, Barbi, I. Eng. Sch. A new ZVS-PWM active-clamping high power factor rectifier:analysis, design, and experimentation. Applied Power Electronics Conference and Expositon.1998,1.230-236.
    [1.17]Chien.Ming.Wang. A novel zero-Voltage-switching PWM boost rectifier with high power factor and low conduction losses. IEEE Transactions on Industrial Electronics.2005,52(2).427-435.
    [1.18]飞兆半导体欧洲分公司工业及白色商品系统市场开发经理Jon Harper.准谐振电源设计之探讨.
    [1.19]孙频东.Boost电源变换器原理与仿真.计算机仿真.2003,20(4).118-120.
    [1.20]Power Converter Theory, http://www.datel-europ.com/en/download/ application_notes/6-29_6-45.pdf.
    [1.21]丁道宏.国内外开关电源的技术与市场.电子产品世界.2005,2.20-22.
    [1.22]Abraham I. Pressman等著,王志强译.开关电源设计.电子工业出版社,2006.
    [2.1]贲洪奇,冯驳,吴新科.全桥结构的单级PFC电路研究.哈尔滨工业大学学报.2003,35(4).420-427.
    [2.2]孙绮敏,谢运祥.单级功率因数校正电路的发展.通信电源技术.2006,23(3).28-30.
    [2.3]许化民.单级功率因数校正技术.[硕士学位论文],南京:南京航空航天大学,2002.
    [2.4]魏晨.一种新型单级PFC AC-DC变换器的研究.广州:华南理工大学,2007.
    [2.5]程庆生.APFC技术在通信电源中的应用.[硕士学位论文],合肥:合肥工业大学,2006.
    [2.6]周志强,鄢毅之,蔡丽娟.单相单级功率因数校正变换器的综述.http://dianzi.77fu.com/diannengzhiliang/39948_2.html.
    [2.7]Jindong.Zhang, Alex.Uan-Zo-Li, Fred.C.Lee. General Studies on Signle-Stage Power-Factor-Correction Techniques [A]. Proc.17th Virginia Tech. Power Electronics Semina [C].1999.47-53.
    [2.8]董建杰,陈可中,肖桂平等.高频功率放大器最佳导通角的理论定义与控制.现代电子技术.2007,30(1).170-172.
    [2.9]Vilathgamuwa M., Deng J., Tseng K.J. EMI suppression with switching frequency modulated DC-DC converters. IEEE Industry Applications Magazine.1999, 5(6).27-33.
    [2.10]Paramesh J. Von Jouanne A. Use of sigma-delta modulation to control EMI from switch mode power supplies. APEC.1999, (1).153-159.
    [2.11]李意,林龙凤,尹华杰.开关电源电磁干扰(EMI)机理及新的抑制方法.电源技术应用.2003,Z1.121-127.
    [2.12]李意,尹华杰.单级功率因数校正(PFC)研究的新进展.电源技术应用.2003,6(5).211-214.
    [2.13]R Mammano. Switching power supply topology voltage mode vs. current mode. Unitrode design note dn-62.1999.
    [2.14]刘大年,鲁玲.单端反激开关电源原理与设计.吉林大学学报(信息科学版).2004,22(3).189-194.
    [2.15]高原,邱新芸,汪晋宽.峰值电流控制开关电源斜坡补偿的研究.仪器仪表学报.2003,24(4).118-120.
    [2.16]林薇,刘永根,张艳红.开关电源峰值电流模式次谐波振荡研究.信息与电子工程.2009,7(4).330-334.
    [2.17]吴霜菊.平均电流模式PWM降压开关电源设计.[硕士学位论文],南京:东南大学,2004.
    [2.18]樊明,管磊.开关电源平均电流模式控制的建模与参数设计.机电设备.2007,24(4).26-29.
    [2.19]L.Dixon. Average current mode control of switching power supplies. Unitrode application note U-140.
    [2.20]林维明,何塞安.林慧聪新型单相无源功率因数校正整流器的电路拓扑、工作原理和设计分析.电工技术学报.2004,19(1).80-84.
    [2.21]齐磊,席自强,辛占强等.电流滞环式单相有源功率因数校正电路的研究.湖北工业大学学报.2010,25(1).51-54.
    [2.22]包伯成,许建平,刘中.斜坡补偿Buck变换器工作状态域估计.电子学报.2009,37(12).2787-2791.
    [2.23]叶强,来新泉,李演明等.一种DC-DC全区间分段线性斜坡补偿电路设计.半导体学报.2008,29(2).281-287.
    [2.24]王红义,来新泉,李玉山.减小DC-DC中斜坡补偿对带载能力的影响.半导体学报.2006,27(8).1484-1489.
    [2.25]包伯成,许建平,刘中.开关DC-DC变换器斜坡补偿的稳定性控制研究.电子科技大学学报.2008,37(3).387-400.
    [2.26]杨汝,张波DC-DC buck变换器时间延迟反馈混沌化控制.物理学报.2007,56(7).3789-3795.
    [2.27]潘汝政,孙广生,严萍等.Boost ZVS PWM变换器混沌现象研究.电工技术学报.2007,22(5).78-83.
    [2.28]张波,曲颖.电压反馈型Boost变换器DCM的精确离散映射及其分岔和混沌现象.电工技术学报.2002,17(3).43-47.
    [2.29]刘芳,张浩.电压型SEPIC变换器中的分岔行为与低频振荡现象分析.电工技术学报.2008,23(6).54-62.
    [2.30]Fossas Erric, Oliver Gerard. Study of chaos in the buck converter. IEEE Trans. on Circuit and System.1996,43(1).13-25.
    [2.31]Wood J R. Chaos:a real phenomenon in power electronics. IEEE Trans. On Circuit and System I.1989,3(35).115-124.
    [2.32]Deane J H B, Hamil D C. Instability subharmonics and chaos in power electronic system. IEEE Trans. on Power Electronics.1990,6,5(3).260-268.
    [2.33]王学梅,张波.单相SPWM逆变器的分岔及混沌现象分析.电工技术学报.2009,24(1).101-107.
    [3.1]张占松,蔡宣三.开关电源的原理与设计.第1版.北京:电子工业出版社,1998.
    [3.2]阮新波,严仰光.直流开关电源的软开关技术.第1版.北京:科学出版社,2000,11-27.
    [3.3]揭东华.3kVA功率因数校正装置研制.[硕士学位论文],南京:南京航空航天大学.
    [3.4]DaFeng Weng, S.Yuvarajan. Constant-Switching-Frequency AC/DC Converter Using Second-Harmonic-Injection PWM. IEEE Transactions on Power Electronics.1996,1,11(1).115-121.
    [3.5]Semdley K M, Cuk S. One Cycle Control of Switching Converter. Power Electronics Specialists Conference.1991,1.888-896.
    [3.6]Smedly K M, Cuk S. One Cycle Control of Switching Converter. IEEE Trans. On Power Electronics.1991,1,10(6).625-633.
    [3.7]Smedly K M, Cuk S. One Cycle Control of Switching Converter. IEEE Trans. On Power Electronics.1991,1,10(6).634-639.
    [3.8]Lai Zheren, Smedley Keyue M, Ma Yunhong. Time Quantity One-Cycle Control for Power Factor Correctors. IEEE Trans on Power Electronics.1997,3, 12(2).369-375.
    [3.9]周名维,罗全明,杜雄.一种高效率积分复位控制单相功率因数校正.重庆大学学报.2003,2,26(2).1-4.
    [3.10]Casini D, Marchesoni M. Sliding Mode Multi level Control for Improved Performances in Power Conditioning Systems. IEEE Trans on PE.1995,1,10(4). 453-463.
    [3.11]Merfert.I. Analysis and Application on a New Control Method for Continuous-Mode Boost Converters in Power Factor Correction Circuits. IEEE Power Electronics Specialists Conference.1997,1,1.96-102.
    [3.12]Yuelu Feng, Yoshihiro Konishi, Mutsuo Nakaoka. Deadbeat Control Scheme for Three Phase Current-Fed PFC Converter with an Optimum PWM Strategy. IEEE International Conference on Power Electronics and Drive Systems.1999,7,1. 485-488.
    [3.13]Henry S. H. Chung, Eugene P.W.Tam, S.Y R. Hui. Development of a Fuzzy Logic Controller for Boost Rectifier with Active Power Factor Correction. IEEE Power Electronics Specialists Conference.1999,8,1(27).149-154.
    [3.14]M.Fu, Q.Chen. A DSP Based Controller for Power Factor Correction (PFC) in a Rectifier Circuit. IEEE Applied Power Electronics Conference and Exposition. 2001,1(4).144-149.
    [3.15]K.De Gusseme, D.M.Van de Sype, J.A.A.Melkebeek. Design Issues for Digital Control of Boost Power Factor Correction Converters. IEEE International Symposium on Industrial Electronics.2002,2,3(26).731-736.
    [3.16]徐坚,龚春英.单周控制单相Boost PFC积分时间常数的影响.电力电子技术.2008,1,42(1).14-16.
    [3.17]王发强,张浩,马西奎.单周期控制Boost变换器中的低频波动现象 分析.物理学报.2008,3,57(3).1522-1528.
    [3.18]Brown R, Soldano M. One Cycle Control IC Simplifies PFC Designs[C]. Applied Power Electronics Conference and Exposition:2(2). Austin. TX:IEEE APEC. 2005,3.825-829.
    [3.19]袁冰,来新泉,贾新章等.片内频率补偿实现电流模DC-DC高稳定性[J].西安电子科技大学学报.2008,8,35(4).685-690.
    [3.20]朱樟明,杨银堂.PWM降压型DC/DC转换器的高层次模型[J].固体电子学研究与进展.2008,12,28(4).607-611.
    [3.21]杨旭,裴云庆,王兆安.开关电源技术.北京:机械工业出版社2004.
    [3.22]Wang Faqiang, Zhang Hao, Ma Xikui. Studied on Low-frequency Oscillation in the Boost Converter with One Cycle Control. Acta Physica Sinica. 2008,57(3).1522-1528.
    [3.23]Tang W, Lee F C, Ridleey R B. Cohen 11993 IEEE Transactions on Power Electronics.8.396.
    [3.24]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社.2006.
    [3.25]Dan Mitchell, Bob Mammano. Designing Stable Control Loops. Unitrode Design Seminar 2001, Texas Instruments.
    [3.26]蔡宣三,龚绍文.高频功率电子学——直流-直流变换部分.北京:科学出版社.1993.
    [3.27]Lloyd Dixon. Control Loop Cookbook. Unitrode, Texas instruments.
    [3.28]李娅妮,杨银堂,朱樟明.双环控制单周期PFC转换器高层次模型机电路.西安电子科技大学学报.2010,37(4).608-612.
    [3.29]De Belie L.L., Van de Sype D.M., Melkebeek J.A.A.. Digitally Controlled Boost PFC Converter with Improved Output Voltage Controller [J]. Electr Eng. 2007,1,89(5).363-370.
    [3.30]刘帘曦,杨银堂,朱樟明.一种无滤波器高效立体声D类音频功率放大器[J].西安电子科技大学学报.2009,4,36(2).308-313.
    [4.1]Smedley K M. Cuk S. One-Cycle Control of Switching Converters.1991, 6.
    [4.2]Smedley K M. Cuk S. Dynamic of One-Cycle Controlled Cuk Converter. 1995,11.888-896.
    [4.3]Qiao CH, Zhao ZH, Liu Y. Comparisons of PWM and One-cycle Control for Digital Power Amplifier. IEEE Transactions on Industrial Electronics.2002,12, 49(6).1342-1344.
    [4.4]Enrico S, Slobodam C. Modeling of One-cycle Controlled Switching Converters. Telecommunications Energy Conference.1992,10.131-138.
    [4.5]Jian Sun. On the Zero-Crossing Distortioni in Single-Phase PFC Converters, IEEE Transactions on Power Electronics.2004,5,19(3).865-892.
    [5.1]Panov Yuri and M JovanoviC Milan. Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads [J]. IEEE Trans. Power Electronics.2002,7,17(3).457-460.
    [5.2]James Culpepper Barry, Suzuki Hidehiko. Switching DC-to-DC converter with discontinuous pulse skipping and continuous operating modes without external sense resistor, US patent 6396252 B1,2002.
    [5.3]Majid Naveed, Mobers Tom, G.R.Seinen Erwin. Low power stand-by for switched-mode power supply circuit with burst mode operation,US patent 5812383, 1998.
    [5.4]Sandri Paolo, Rosa Borghi Maria, Rigazio Luca. DC-to-DC converter functioning in a pulse skipping mode with low power consumption and PWM inhibit, US patent 5745352,1998.
    [5.5]Wen C. C., Chen C. L.. Magamp application and limitation for multi-winding flyback converter [J]. IEE Proc. Electric Power Applications.2005,5, 152(3).517-525.
    [5.6]Jian Sun. On the Zero-Crossing Distortioni in Single-Phase PFC Converters, IEEE Transactions on Power Electronics.2004,5,19(3).865-892.
    [5.7]Li Jinghu, Wang Yongsheng, Yu Mingyan, etc. A Novel Piecewise Curvature-corretced CMOS Bandgap Reference. Devides, Circuits and Systems.2008, ICCDCS 2008.7th International Caribbean Conference.2008,4.1-5.
    [5.8]Luo Fangjie, Deng Honghui, and Gao Minglun. A Design of CMOS Bandgap Reference with Low Thermal Drift and Low Offset. Circuits and Systems, 2008, IEEE Asia Pacific Conference.2008,11.538-541.
    [5.9]Chen Jianghua, Ni Xuewen, and Mo Bangxian. A Curvature Compensated CMOS Bandgap Voltage Reference for High Precision Applications. Circuits and Systems,2007, ASIC 2007.7th International Conference.2007,10.510-513.
    [5.10]姜韬,杨华中.多点曲率补偿的带隙基准电压源设计方法.半导体学报.2007,4,28(4).490-495.
    [5.11]张春茗,邵志标.高精度分段曲率校正CMOS带隙基准的设计.电子学报.2007,11,35(11).2193-2197.
    [5.12]吴志明,杨鹏,吕坚等.非线性补偿的低温漂低功耗CMOS带隙基准源的设计.电子科技大学学报.2009,1,38(1).137-140.
    [5.13]辛新鹏,李冬梅,王志华.一个电压接近1V 10ppm/℃带曲率补偿的CMOS带隙基准源.半导体学报.2008,1,29(1).24-28.
    [5.14]Dong-OK Han, Jeong-Hoon Kim, Nam-Heung Kim. Design of Bandgap Reference and Current Reference Generator with Low Supply Voltage. Solid-State and Integrated Circuits Technology Proceedings. ICSICT 2008 9th International Conference.2008,10.1733-1736.
    [5.15]Qiao Ming, Zhou Xianda, etc.. A Versatile 600V BCD Process for High Voltage Applicatins. Communications, Circuits and Systems.2007, ICCCAS 2007. International Conference.2007,7.1248-1251.
    [5.16]Zhang Zhengyuan, Feng Zhicheng, etc.. A Research for BCD Compatible Technology. Solid-State and Integrated-Circuit Technology,2008, ICSICT 2008,9th International Conference.2008,10.192-194.
    [5.17]Liu Zhiming, Fu Zhongqian, etc.. A 1.8V LDO Voltage Regulator with Foldback Current Limit and Thermal Protection. Journal of Semiconductors.2009,8, 30(8).085007-1-085007-5.
    [5.18]谭传武,陈卫兵等.电源管理芯片中过热保护电路设计.湖南工业大学学报.2009,9,23(5).31-34.
    [5.19]Yang Yintang, Li Yani, Zhu Zhangming. A high precision high PSRR bandgap reference with thermal hysteresis protection. Journal of Semiconductors. 2010,31(9).095010-5.
    [5.20]Li Yani, Yang Yintang, Zhu Zhangming. Low-power Variable Frequency PFC Converters. Journal of Semiconductors.2010,3(1).400-1-5.
    [5.21]Brown.R, Soldano.M.. One Cycle Control IC Simplifies PFC Designs. APEC.2005,3,2(2).825-829.
    [5.22]Lamar D.G, Fernandez A, Arias M, etc.. A Unity Power Factor Correction Preregulator With Fast Dynamic Response Based on a Low-Cost Microcontroller. IEEE Transactions on Power Electronics.2008,3,23(2).635-642.
    [5.23]Jiang Zhihong, Huang Lipei, Zhu Jihong. One-cycle Controller for Parallel-connected Interleaving Critical Continuous Conduction Mode PFC Converter. J T Singhua University (Sci & Tech).2007,47(7).1197-1200.
    [5.24]Karaarslan.A. Hysterisis Control of Power Factor Correction with a New Approach of Sampling Technique. IEEE 25tth Electrical and Electronics Engineers in Israel, Eilat, Israel. IEEE, Piscataway. USA,2008,12.765-769.
    [5.25]Lei Tao, Lin Hui, Zhang Xiaobin. Exploring Mechanism of Chaotic Phenomena of PFC Boost Converters Based on Peak Current Control. Journal of Northwestern Polytechnical University.2008,6,26(3).336-340.
    [5.26]Lai Xingquan, Li Zuhe, Yuan Bing, etc.. Control of Chaos in Double-loop Current-mode DC/DC Based on Adaptive Slope Compensation. Acta Physica Sinica. 2010,59(4).2256-2263.
    [5.27]Ma Xikui, Liu Weizeng, Zhang Hao. Analysis of Fast-scale Bifurcations and Chaos Phenomena in Boost PFC Converter. Proceedings of the CSEE.2005, 25(5).61-67.
    [5.28]Zhong Bing, Min Chen, Stephanie K.T.M., etc.. Recent Developments in Single-Phase Power Factor Correction. Fourth power conversion conference, Nagoya, Japan. IEEE, Piscataway, USA.2007,4.1520-1526.
    [5.29]O'Sullivan D.L., Egan M.G., Willers M.J.. A Family of Single-Stage Resonant AC/DC Converters with PFC. IEEE Transactions on Power Electronics. 2009,2,24(2).398-408.
    [5.30]Sun Jian. On the Zero-crossing Distortion in Single-phase PFC Converters. IEEE transactions on power electronics.2004,5,19(3).685-692.
    [5.31]Laszlo H, Liu Gang, Milan M.J.. Design-Oriented Analysis and Performance Evaluation of Buck PFC Front-end. IEEE Transactions on Power Electronics.2010,1,25(1).85-94.
    [5.32]Xu Jian, Gong Chunying. Effect of Integration Time Constant in One Cycle Controlled Single-phase Boost PFC. Power Electronics.2008,42(1).14-15.
    [5.33]Zhu Zhangming, Yang Yintang. A CMOS Flyback PWM Controller with Low No-Load Power Consumption. Journal of semiconductors.2008,29(11). 2275-2280.
    [5.34]Wang Chuanyun, Xu Ming, Fred C.L, etc.. Light load efficiency improvement for multi-channel PFC.2008 IEEE power electronics specialists conference, Rhodes, Greece. IEEE, Piscataway, USA.2008,6.4080-4085.
    [5.35]Wang Zhengshi, Chen Huiming. Zero-voltage Switching Converter Absorbing Parasitic Parameters for Super High Frequency Induction Heating. Zhejiang University Sci A.2008,4,9(4).564-571.
    [5.36]Liu J.C.P., Tse C.K., Poon N.K., etc.. A PFC Voltage Regulator with Low Input Current Distortion Derived from a Rectifierless Topology. IEEE Transactions on Power Electronics.2006,7,21(4).906-911.
    [6.1]陈贵灿,成军,张瑞智.模拟CMOS集成电路设计.西安:西安交通大学出版社,2002,3.
    [6.2]Di Long, Xianlong Hon, Sheqin Dong. Optional two-dimension common centroid layout generation for MOS transistors unit-circuit [A]. IEEE International Symposium on Circuits and Systems[C]. IEEE Press,2005,3.2999-3002.
    [6.3]Alan Hastings. The Art of Analog Layout. Prentice Hall,2001.
    [6.4]M. D. Ker, S.C. Liu. Whole-chip ESD protection design for submicron CMOS VLSI. Proc. of IEEE International Symposium on Circuits and Systems.1997. 1920-1923.
    [6.5]Alan Hastings.模拟电路版图的艺术.北京:清华大学出版社,2004.
    [6.6]Christopher Saint. IC Mask Design.北京:清华大学出版社,2004..
    [6.7]赵建统,薛红兵,梁树坤.谈当今电源产业及电源技术的发展趋势.中国电源学会全国电源技术第十六届年会.深圳,SPSSC,2005.
    [6.8]Yorbe Zhang.电源管理技术:消费类电子产品永恒的主题.电子工程专辑,2004.
    [6.9]张为.模拟电路版图的艺术.北京:电子工业出版社,2007,4.
    [6.10]Ron Hogervorst, John P, Tero, etc.. A Compact Power-Efficient 3V CMOS Rail-Rail Input/Output Operational Amplifier for VLSI Cell Libraries. IEEE J. Solid-State Circuits.1994,29(12).1505-1512.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.