细晶铝锭熔铸的3003及3004铝合金组织及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金的晶粒细化对最终的产品性能起着决定性的作用,而钛是铝合金中最主要的晶粒细化元素,采用细晶铝锭来细化铝合金具有多方面的优势。本文主要研究了细晶铝锭熔炼的3003、3004铝合金微观组织和性能,并进一步研究了富铈混合稀土(RE)对细晶铝锭熔炼的3003铝合金微观组织的影响,以及由细晶铝锭熔炼的3003铝合金的均匀化制度,试验结果如下:
     (1)采用细晶铝锭、Al-5Ti-1B中间合金、Al-5Ti中间合金细化3003铝合金,均随钛含量增加,晶粒逐渐变小;钛含量相近时,Al-5Ti中间合金细化能力最弱,Al-5Ti-1B丝中间合金细化能力最强;细晶铝锭+Al-10RE,细晶铝锭+Al-10RE+Al-5B细化能力略强于细晶铝锭。
     (2)对于细晶铝锭熔炼的3003铝合金,随着富铈混和稀土含量的增加(0—0.3%),析出相、二次枝晶间距发生距明显变化,在稀土含量为0.25%时,析出相球形化程度最高,二次枝晶间距达到最小。
     (3)在610℃下0-7h内均匀化处理细晶铝锭熔炼的3003铝合金,随着保温时间的延长,析出相更集中地分布于晶界处;析出相的平均直径、体积分数在6小时时分别达到最小值;圆形度在6小时时达到最大值。适宜均匀化制度为在610℃下6h。
     (4)由细晶铝锭熔铸的3003铝合金,在未均匀化时,铸态力学性能优于加Al-10Ti、Al-5Ti-1B中间合金试样;均匀化之后,其延伸率稍低于加Al-10Ti中间合金试样,但高于Al-5Ti-1B细化合金。由细晶铝锭熔铸的3003铝合金箔材的力学性能与Al-5Ti-1B细化试样的力学性能相当,优于Al-10Ti细化试样的力学性能;析出相与Al-5Ti-1B细化试样的相似,多为规则的块状。
     (5)由细晶铝锭熔铸的3004铝合金,在未均匀化时,其力学性能优于加Al-5Ti-1B中间合金试样,但劣于加Al-10Ti中间合金试样;在均匀化处理后,其性能和加Al-5Ti-1B中间合金试样的性能相近,但劣于加Al-10Ti中间合金试样。细晶铝锭熔铸的3004铝合金箔材的力学性能优于Al-5Ti-1B、Al-10Ti细化试样的力学性能,而且其中的析出相多为规则的块状。数量较少且分布较为均匀。而在Al-5Ti-1B、Al-10Ti细化的试样中,析出相形态没有规则,分布呈带状集中。
It is the crucial for the properties of aluminum alloys that the grain refinement of the alloys, and titanium is the key refining element in the aluminum alloys. It has many advantages that Grain-refining aluminum ingot (GRAI) with low titanium content is used to refine grain of aluminum alloys. In this case, microstructures and properties of 3003 and 3004 aluminum alloys that are melted by GRAI are investigated, and 3003 aluminum alloys that are melted by GRAI with different cerium-rich mixtures of rare earth(RE) contents and homogenization of the alloys are investigated further. The results are as following:
     (1) The grain of the 3003 aluminum alloys that are melted by GRAI, 3003 aluminum alloys added Ti by Al-5Ti-1B and Al-5Ti master alloy gradually become smaller with the increase of Ti contents. The refinement efficiency of Al-5Ti master alloy is the worst and that of rod-shaped Al-5Ti-1B master alloy is the best when the Ti contents are the same. The refining efficiency of GRAI+Al-10RE and GRAI+Al-10RE+Al-5B is better than GRAI.
     (2) The precipitated phases and the second dendrite arm spacing are distinctly changed with the increase of RE from 0 to 0.3% in the 3003 aluminum alloys that are melted by GRAI. The precipitated phases have been obviously spheroidized, and the second dendrite arm spacing is the smallest when the RE contents is at 0.25%.
     (3) The 3003 aluminum alloys that are melted by GRAI are homogenized at 610℃for 0-7h. With the increase of holding time, the precipitated phases much more centralize on the grain boundary. The average diameter and the volume fraction of precipitated phases achieve the smallest values, and the roundness attains the biggest values when the holding time is 6h. So the best homogenization regime is 610℃for 7h.
     (4) The mechanical properties of as-cast 3003 aluminum alloys added Ti by GRAI are the best, especially its elongation is markedly higher than that added Ti by Al-10Ti master alloy and Al-5Ti-1B master alloy. After homogenization, the elongation of alloys added Ti by GRAI is a little lower than that added Ti by Al-10Ti master alloy, but higher than that added Ti by Al-5Ti-1B master alloy. The mechanical properties of 3003 aluminum foil that are melted by GRAI are similar to the foil added Ti by Al-5Ti-1B master alloy, but better than that added Ti by Al-10Ti master alloy. Morphologies and distribution of the precipitated phases of 3003 aluminum foil added Ti by GRAI and Al-5Ti-1B master alloy are similar, most of them are regular block.
     (5) The mechanical properties of as-cast 3004 alloys added Ti by GRAI are better than the alloys added Ti by Al-5Ti-1B, but worse than that added Ti by Al-10Ti in state, After homogenization, the mechanical properties of the 3004 Al alloys added Ti by GRAI is similar to the alloys added Ti by Al-5Ti-1B master alloy, but lower than that added Ti by Al-10Ti master alloy. The mechanical properties of 3004 aluminum foil that are melted by GRAI are better than the alloys added Ti by Al-5Ti-1B master alloy and Al-10Ti master alloy. The precipitated phases of 3004 foil that are melted by Ti addition of GRAI are more uniform distribution, most of them are regular block, but the morphologies of the precipitated phases are irregularity, and distribution is zonal in 3004 aluminum foil added Ti by Al-10Ti or Al-5Ti-1B master alloy.
引文
[1]轻金属编写组.轻金属材料加工手册(上)[M].北京:冶金工业出版社,1979:17~26.
    [2]孙光鹏,郝蔚琪.3003铝合金中第二相在不同工艺条件下的形态及其变化[J].轻合金加工技术,2003,31(11):46~49.
    [3]高亢之.电解电容器负(阴)极用铝箔的制造技术[J].轻合金加工技术,2001,29(4):1~7.
    [4]池国明.3A21铝合金板带材再结晶退火组织性能的研究[J].轻合金加工技术,2001,29(8):20~23.
    [5]D.T.L.Alexander,A.L.Greer.Solid-state intermetallic phase tranformations in 3XXX aluminium alloys[J].Acta Materialia,2002,50:2571~2583.
    [6]黄明宇,丁健君,顾卫标,等.稀土在铝合金常规供应态、动态超塑性中的作用分析[J].江苏冶金,2000,(6):1~3.
    [7]王莉梅.稀土元素对某些铝合金组织和性能的影响[J].轻合金加工技术,1991,22(9):37~41
    [8]Bφrge Forbord, Hakon Hallem, Nils Ryum et al. Precipitation and recrystallisation in Al-Mn-Zr with and without Sc[J]. Materials Science and Engineering, 2004, A387-389: 936~939.
    [9]刘相法,张作贵,边秀房,等.AlTiB中间合金细化行为的温度特性[J].铸造,1999,(9):12~14.
    [10]衡雪梅,刘俊,黄振翅.中间合金细化剂在铝合金中的应用及细化机理[J].理化检验-物理分册,2004,40(6):300~303.
    [11]孙海斌,左秀荣,仲志国,等.铝合金晶粒细化方法的研究现状及最新动向[J].热加工工艺,2005.(12):71~73.
    [12]邦达列夫,那帕尔科夫,塔拉雷什金著.王永海,张法明,高革译.变形铝合金的细化处理[M].北京:冶金工业出版社,1988:78~197.
    [13]Z. Horita, T. Fujinami, M. Nemoto et al. Improvement of mechanical properties for Al alloys using equal-channel angular pressing Journal of Materials[J]. Processing Technology, 2001, 117: 288~292.
    [14]Segal V M. Materials Processing by Simple Shear[J]. Materials Science and Engineering, 1995, A197: 157~164.
    [15]张郑,席明哲,等.7475铝合金的ECAP组织细化研究[J].轻合金加工技术,2000,28(10):37~39.
    [16]Rohit K. Paramatmuni, Keh-Minn Chang, Bruce S. Kang et al. Evaluation of cracking resistance of DC casting high strenth aluminum ingots[J]. Materials Science and Engineering, 2004, A379: 293~301.
    [17]郑子樵,李红英,李伟,等.铝合金的晶粒微细化研究[J].湘潭矿业学院学报,2003,18(2):41~43.
    [18]Limmaneevichitr, W. Eidhed. Fading mechanism of grain refinement of aluminium-silicon alloy with Al-Ti-B grain refiners[J]. Materials Science and Engineering, 2003, A349: 197~206.
    [19]张建新,刘伟强.微量添加剂对铝合金晶粒细化的工艺探讨[J].有色金属,2002,(5):53~55.
    [20]K. Venkateswarlu, B.S. Murty, M. Chakraborty. Effect of hot and heat treatment of Al-5Ti-B master alloy on the grain refining efficiency of aluminium[J]. Materials Science and Engineering, 2001, A301: 180~186.
    [21]高泽生.铝---钛系晶粒细化剂与第三元素[J].轻合金加工技术,1994,22(10):29~33.
    [22]孝云祯,马宏声,路贵民,等.Al—Ti—B晶粒细化合金中的有效形核相[J].中国有色金属学报,1997,7(3):137~139.
    [23]张建新,钟建华.用于铝合金晶粒细化的中间合金研究现状与分析[J].铝加工,2002,25(1):24~26.
    [24]薛希国,谷吉存,闫振武.铝钛硼晶粒细化剂机理研究的进展及最新动向[J].铝加工,2004,(1):43~45。
    [25]靳丽,张新明,唐建国,等.高温退火对阴极铝箔腐蚀性能的影响[J].中国有色金属学报,2003,13(2):423~426.
    [26]孙光棚,郝蔚琪.3003铝合金中第二相在不同工艺条件下的形态及其变化[J].轻合金加工技术,2003,31(11):46~49.
    [27]刘桂云,迟文祥,李亚红.电视机屏蔽用3003-00.1mm箔材生产工艺研究[J].铝合金加工技术,2003,31(7):45~47.
    [28]E. Gomaa, M. Mohsen, A.S. Taha. A Study of Annealing Stage in Al-Mn (3004) Alloy after Cold Roling Using Positron Annihilation Lifetime Technique and Vickers Microhardness Measurements[J]. Materials Science and Engineering,2003, A362: 274~279.
    [29]张辉,钟华萍,彭大暑.3003铝合金多道热轧工艺的试验模拟[J].中南工业大学学报,1999,30(4):407~409.
    [30]刘新开.铝合金板带材多道次轧制中亚晶粒形态和结构的变化[J].铝加工,1997,20(5):12~16.
    [31]王荣发,张卫文,朱权利,等.内导管插入结晶器深度对2024/3003梯度合金组织性能的影响[J].特种铸造及有色合金,2004年年会专刊:205~207.
    [32]X. zhang, S. Lo Russo. The pitting Behavior of AL-3103 Implanted with Molybdenum[J]. Corrossion Science, 2001,43: 85~97.
    [33]铃木祐峙等著.卜精涛 译.加镍对铝合金耐蚀性的影响[J].铝加工,1994,17(1):60~65.
    [34]A. Afseth, J.H. Nordlien, G.M. Scamans. Filiform Corrosion of Binary Aluminium Model Alloys[J]. Corrosion Science, 2002, 44: 2529~2542.
    [35]X. Zhang, S. Lo Russo, A. Miotello. The Corrosion Behavior of Zn Coating on AL-3103 Alloy[J]. Surface and Coating Technology, 2001,141: 187~193.
    [36]陈鼎,黎文献.铝和铝合金的深冷处理[J].中国有色金属学报,2000,10(6):891~894.
    [37]F. Schurack, J. Eckert, L. Schultz. Ouasicrystalline Al-alloy with High Strength and Good Ductility[J]. Materials Science and Engineering, 2000, (294-296): 164~167.
    [38]H.J. Chang, E.F. leury, G.S. Song. Formation of Quasicrystalline Phase in Al-rich Al-Mn-Be Alloy[J]. Journal of Non-crystalline Solids, 2004, (334&335): 12~16.
    [39]张萌,蒋建生,洪春勇,等.快速凝固Al-Mn合金中准晶相形貌的SEM观察[J].电子显微学报,1993,(5):418~421.
    [40]G. Trambly de Laissardiere, D. Mayou, V. Simonet. Origin of Magnetism in Al-Mn and Al-Pd-Mn Quasicrystals Related Crystals and Liquids[J]. Journal of Magnetism and Magnetic Materials, 2001, (226-230):1029~1031.
    [41]前长山.3003铝基感光鼓的浇铸工艺研究[J].铝加工,2000,23(3):6~7.
    [42]谢署英.连续挤压开发3103(3003)铝合金管[J].加工工艺/铝加工,2002,25(4):21~24.
    [43]李国强,于志方.3003铝合金连续挤压管扩径开裂原因及消除措施[J].轻金属,1994,(2):62~63.
    [44]王琦,郭瑞,高作文.防盗盖用3003-H16铝合金板带生产工艺研究[J].轻合金加工技术,2002,30(1):21~24.
    [45]张卫文,李元元,朱权利,等.2024/3003梯度铝合金力学性能与断口特征[J].特种铸造及有色金属,2004年年会专刊:203~204.
    [46]王希维.用3004铸轧板坯试制罐板带后的思考[J].铝加工,1995,18(6):23~25.
    [47]张君尧.铝合金材料的新进展(3)[J].轻合金加工技术,1998,26(7):1~6.
    [48]G.F. Dirras. Cyclic shear tests on Aluminium 3004 and 5182 alloy: macroscopic behaviour and substructural development[J]. Materials Science and Engineering, 1997, A234-236: 966~969.
    [49]蒋显全,张秀锦,张新明.热轧温度对易拉罐用3004H19的力学性能和金相组织的影响[J].四川有色金属,1999,(3):16~24.
    [50]范雅铭.退火温度对3004铝合金板材组织和性能的影响[J].轻合金加工技术,2003,31(8):19~21.
    [51]张德芬,胡卓超,王福,等.冷轧3004铝合金再结晶织构的研究[J].轻金属,2004,(1):53~57.
    [52]张德芬,胡卓超,左良,等.3004铝合金再结晶织构及其显微组织[J].东北大学学报(自然科学版),2004,25(9):840~843.
    [53]沈健,张新明.中间退火对3004和金组织、织构和各项异性的影响[J].铝加工,1994,17(3):44~47.
    [54]孙东立,姜石峰,高兴锡.均匀化处理对3004铝合金显微组织的影响[J].中国有色金属学报,1999,9(3):556~61.
    [55]温熙宇,王玉林,郑炀曾,等.3004铝合金铸轧板均匀化热处理的组织和织构[J].金属热处理学报,1994,15(3):44~48.
    [56]温熙宇,包耳.3003易拉罐特薄带材生产技术发展和理论研究现状[J].轻金属,994,(9):59~64.
    [57]包耳,温熙宇,张静武,等.铸轧法生产罐用3004铝合金板材工艺中析出相的研究[J].轻金属,1994,(3):39~42.
    [58]佟长清.3004合金铸锭锰偏析及均匀化处理[J].轻合金加工技术,1997,25(1):31~6.
    [59]韩淑芝,娄明珠.3004铝合金冷轧薄板的ODF分析[J].轻金属,1994,(1):49~51.
    [60]M.Y. Huh, K.R. Lee, O. Engler Evolution of texture and strain states in AA3004 sheet during rolling with a dead block[J]. International Journal of Plasticity,2004,20: 1183~1197.
    [61]沈健,章四琪,卢斌,等.3004铝合金退火过程中的形核行为[J].材料科学与工艺,1995,3(4):67~71.
    [62]王国军.变薄拉深用铝合金材料研究进展[J].机械工程师,2004,(9):5~7.
    [63]张新明,蹇雄.中间退火前后冷轧变形量对3003铝合金阴极箔比电容的影响[J].中国有色金属报,2005,15(3):334~337.
    [64]郑宪.不粘锅用3003—4铝合金熔铸工艺研究[J].轻合金加工技术,1998,26(2):5~7.
    [65]焦兴贵.搪瓷制品用3003—4铝合金板材生产工艺研究[J].轻合金加工技,2002,30(7):27~29.
    [66]王庆国.铝合金不粘锅复合模具设计[J].轻合金加工技术,2002,30(5):47~48.
    [67]杨璐,牟春.3003铝合金幕墙板生产控制工艺优化[J].加工工艺,2002,25(5):16~17.
    [68]李卫.汽车空调器用铝合金盘管的开发[J].轻合金加工技术,2003,31(7):25~27.
    [69]张靖,刘楚明,李慧中,等.汽车热交换器用复合箔Gleeble模拟轧制及退火工艺参数的研究[J].轻合金加工技术,2005,33(3):30~32.
    [70]罗春辉,甘卫平,肖亚庆.铝质汽车散热器及其材料[J].轻合金加工技术,1996,24(4):3~10.
    [71]陈叙.热交换器用铝材的开发[J].铝加工,1996,19(5):42~50.
    [72]甘卫平,罗春辉.汽车空调用的铝热交换器及其材料[J].铝加工,1995,18(2):22~26.
    [73]祖国胤,王宁,于九明,等.TLP连接技术在不锈钢-3003铝合金复合板制备中的应用[J].中国有色金属学报,2005,15(1):79~83.
    [74]费劲,李元元,张卫文,等.双流浇注连续铸造铝合金梯度材料的工艺参数[J].特种铸造及有色金属,2003,(3):1~3.
    [75]费劲,张卫文,陈维平,等.半连续铸造制备2024/3003梯度材料的研究[J].特种铸造及有色金属,2003,(1):24~26.
    [76]费劲,李元元,张卫文,等.2024/3003铝合金圆锭的自由压制变形研究[J].锻压技术,2003,(6):6~9.
    [77]彭志辉,王皋,甘卫平,等.4004铝合金表面恒温氧化动力学研究[J].中南工业大学学报,1998,29(5):479~482.
    [78]彭志辉,甘卫平,庞欣,等.热处理工艺对铝合金复合硬钎焊板力学性能的影响[J].金属热处理,2000,(5):22~24.
    [79][美国]K.D wade,D.H.Scott.刘静安译,张君尧校.改善铝合金真空钎焊板芯材的研究[J].轻合金加工技术,1994,22(28):23~28.
    [80]王凤春,陈世光,于凡.改善电子屏蔽铝合金箔冲压性能的研究[J].轻合金加工技术,2004,32(9):15~16.
    [81]祁艳华,王武举,杨志峰.中等扁度矩形铝合金波导管的研制[J].轻合金加工技术,2001,29(1):22~24.
    [82]王明星,刘志勇,宋天福,等.电解生产低钛铝合金工业实验及产品中钛分布的均匀性分析[J].轻金属,2003,(4):41—44.
    [83]刘忠侠,宋天福,谢敬佩,等.低钛铝合金的电解生产与晶粒细化[J].中国有色金属学报,2003,13(5):1257—1261.
    [84]王经涛,王海波,许育中,等.稀土铝合金的枝晶间距[J].稀有金属材料与工程,1995.24(1):38~42.
    [85]徐维,赵宝荣,高平.混合稀土加入量对A356合金组织及性能的影响研究[J].兵器材料科学与工程,2004.27(1):48~51.
    [86]聂祚仁,尹志民,张新明.微量稀土元素在铝中的分布及作用机理[J].中国有色金属学报,1995,5(增刊2):133~136.
    [87]傅高升,孙峰山,任立英,等.微量稀土对工业纯铝中杂质相的变质行为[J].中国稀土学报,2001,19(2):133~137.
    [88]章复中.铝-稀土二元相图在铝合金研制中的应用[J].轻金属,1983.(12):59~62.
    [89]李金文,沈时英,李章存.稀土对铝合金的细化变质和除气作用[J].轻金属,1989.(7):31~34.
    [90]Degnas, P. Weisbecker, G. Geandier, et. al. Experimental study of phase transformations in 3003 aluminium alloys during heating by in situ energy X-ray synchrotron radiation [J]. Journal of Alloys and Compounds, 2005,400: 16~124.
    [91]Y.J. Li, L. Arnberg. Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization [J]. Materials Science and Engineering,2003,A347:130~135.
    [92]范广新,王明星,刘志勇,等.电解加钛与熔配加钛对工业纯铝晶粒细化作用的研究[J].中国有色金属学报,2004,14(2):250~254.
    [93]LIU Zhiyong, WANG Mingxing, WENG Yonggang, et al. Grain Refinement Effect and Mechanism of Al Based Alloy Containing Low-Content Ti Produced By Electrolysis[J]. The Chinese Journal of Nonferrous Metals. 2002,12(6): 1122~1126.
    [94]陈永禄,傅高升,陈文哲.均匀化退火对Al-1Mn-1Mg合金中析出相形态的影响[J].材料热处理学报,2006,27(1):40~44.
    [95]李海,郑子樵,王芝秀.7055铝合金二次时效特征研究-(Ⅱ)显微组织与断口形貌特征[J].稀有金属材料与工程,2005,34(8):1230~1234.
    [96]张新梅,郝丽华,蒋大鸣,等.Al-Mg-Si合金拉伸断口研究[J].材料工程,1996,(5):35~36
    [97]Li Yanjun, Arnberq Lars. Precipitation of Dispersoids in DC-cast 3003 alloy[J]. Materials Science Forum, 2002,396-402: 875~880.
    [98]Li Y.J.,Arnberg L.. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization[J]. Acta Materialia, 2003,51(12): 3415~3428.
    [99]Luiggi, Ney Jose. Thermoelectric power study of non-isothermal precipitation in 3003 alloys[J]. Materials Research and Advanced Techniques, 1997,88(4): 274~277.
    [100]Luiggi, Ney Jose. Analysis of thermoelectric power measurements in the study of precipitation kinetics in 3003 Al alloy[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1997, 28(1): 149~159.
    [101]Luiggi, Ney Jose. Isothermal precipitation of commercial 3003 Al alloys studied by thermoelectric power[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1997 28(1): 125~133.
    [102]Mathew E.V., Ramachandran T.R., Gupta K. P., et. al. Homogenization of commercial Al-Mn alloys[J]. Journal of Materials Science Letters, 1984,3(7): 605~610.
    [103]陈昌麟.高强铝合金穿晶剪切断裂研究[J].北京航天航空大学学报,2002,5(28):519~523.
    [104]蔡泽高,刘以宽,王承忠,等.金属磨损与断裂[M].上海:上海交通大学出版社,1985:122~125.
    [105]孟繁琴,陈廉情,赵伟敏,等.稀土、碲复合变质处理对铝硅铜合金断口形貌的影响[J].铸造,2005,54(2):161~163.
    [106]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社,1979:122~135.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.