聚合物球模板法凝胶注模制备可控孔梯度泡沫陶瓷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在合成材料中引入梯度孔结构,可以制备出许多新用途的功能材料。由于孔梯度泡沫陶瓷的气孔率和孔尺寸连续梯度变化,与一般泡沫陶瓷材料相比其过滤效率较高,并且在骨组织材料,热障材料及医学移植等方面都有着潜在的应用价值。然而目前制备完全连通的孔梯度泡沫陶瓷鲜见报道,制备具有可控的连续变化通孔梯度结构仍然是一个巨大挑战。
     本文通过研究多孔陶瓷和泡沫陶瓷的制备工艺及其特点,提出了一种新的孔梯度成型方法——凝胶注模工艺和聚合物球结合起来,制备可控孔梯度的泡沫陶瓷。本工艺基于有机单体原位聚合,制备的坯体结构均一、净尺寸成型,可以满足机加工要求,而且还适用于多种不同的材料组分和体系。实验采用Al2O3材质,通过合理选择聚合物球尺寸和数量,可以进行梯度多孔陶瓷的孔连通性和梯度层高度的设计。主要的研究结果如下:
     (1)剪切速率、分散剂、固含量、球磨时间及pH值对浆料粘度的影响研究表明,剪切速率较低时,不同固含量浆料的粘度都比较大。随着剪切速率增大到60s-1后,粘度显著降低且趋于平缓。随着浆料固含量的增加,粘度逐渐增加,其中60Vol.%的浆料粘度增加最快。实验综合得出球磨8h、pH为9、分散剂为0.5~0.7%及固含量为55Vol.%的浆料具有较好分散效果,粘度低且流动性好,成型的坯体宏观结构和微观性能都表现良好。
     (2)采用了不同方法对EPS表面进行改性,结果表明三乙醇胺对聚合物球的改性效果较差,氧等离子体和UV的改性效果较好。注浆成型时,浆料对未改性的球体表面润湿性较差,成型坯体中存在微孔等缺陷。而改性后球与浆料的相容性较好,没有微孔等缺陷。从球在模板中的受力变形模拟图及实验得知,要提高孔梯度陶瓷的气孔率,既需要对模板施加外力来减小模板间的孔隙,又要防止模板过分变形造成的泥浆渗透性降低及成型后模板的弹性后效造成坯体变形开裂。
     (3)研究分析了模板热熔法和溶出法对坯体和烧结体的影响。试验表明,直接烧结去除模板时,由于加热时球之间相互粘结收缩对骨架产生了拉力,造成骨架中细丝的断裂和裂纹的产生。而在二氯甲烷溶剂中预先移排模板,烧结后孔结构和形貌较完整。
     (4)对于烧结温度相同不同梯度层结构来说,随着梯度层数的增加,梯度层间结构的交错较多,抗压强度增加。当梯度层数相同时,随着球直径增大,骨架的厚度增粗,坯体的抗压强度也略有增加。用球径为2.1mm,2.6mm和3.2mm制备出了具有分级的孔结构的泡沫陶瓷在1500℃烧结时,孔隙率和抗压强度分别是70.5%和3.16Mpa。
The incorporation of gradient porous structure in synthetic materials may lead to thecreation of new functional materials for many innovative applications. Due to thecontinuous change of gradient in porosity and pore size, filter efficiency and highselectivity of pore-gradient ceramic foams (PGCF) are higher than that of traditionalceramic foams. PGCF offer an interesting potential for being used as bone tissuematerials, thermal barrier materials and medical implants. However, few techniqueshave been reported on the fabrication of PGCF with fully interconnected open cell.Creation of a continuously varying and spatially controlled gradient in porosity withinterconnected open pores is still a challenge for these processing steps.
     The forming process and their characteristic of porous ceramics and pore-gradientceramics are generalized in the paper. A novel approach was introduced to preparepore-gradient Al2O3ceramic foams with association of gelcasting process andpolymeric sphere template. Gelcasting process, based on the in situ polymerization oforganic monomers, shows the ability to fabricate homogeneous, near-net-shape andcomplex-shaped bodies with high strength required for machining. The approach can beadapted for many different compositions and systems, and allow the design of poreconnectivity and gradient height of ceramic foams by the appropriate selection of spheresizes and numbers. The limitation of ceramic foams fabricated by polymeric spongeprocess in sponge carrier can be resolved by this approach. The main results of studiesare as follows:
     (1) Influence of shear rate, dispersant, solid content, ball milling time and pH valueon the viscosity of Al2O3slurry was studied. Results show that viscosity of different solid content slurries is comparatively high at low shear rates. The viscosity decreasesdramatically and hardly changes after60s-1of shear rate. The viscosity decreases withthe increase of dispersant and slightly enhances with excessive dispersant.0.5-0.7%dispersant can effectively decreases viscosity of slurries. The viscosity increases withthe increase of solid content and enhances quickly at60Vol.%solid content. Slurryparticles can disperse well and accordingly viscosity is very low when ball milling timeis8h and pH value is9. Samples with55Vol.%solid content slurry maintaining goodfluidity perform well in both macro-structure and micro-performance.
     (2) Studies of different modification methods on EPS surfaces show thatmodification by triethylolamine is ineffective and modification by oxygen plasma andVacuum Ultraviolet is effective. Compared with treated sphere surface, wettability ofslurry for untreated surface is not good and micro-pores were found in gelcasting bodies.From the stress-strain simulation pictures of spheres in the template and experimentalresults we know, in order to enhance the porosity of PGCF, it is needed not only toenhance the applied force on template for reducing pores in the template, but to avoidthe reducing of slurry permeability due to excessive deformation of template, and thecrack of bodies linked to flexibility of formed template.
     (3) The influence of pre-removal of EPS template on the integrity of networks wasinvestigated. Some defects such as edge-delamination and micropores disappeared bysurface modification. The dendritic solidification structure, flawless filamentary of thenetwork and spherical-shaped walls perfectly maintained through template pre-removedwith organic solvent. This method was better than direct pre-removal of template byheating, because closely ordered spheres bonded together by adhesive force, which willcause strain to struts of sample and result in rupture of solid struts and cracks ofreticulation points.
     (4) As for the same sintering temperature and different gradient layers, compressivestrength enhanced along with the increase of numbers of gradient layers and intersectionof gradient structure. When gradient layer is same and diameter of spheres increases,compressive strength enhanced slightly due to the increase of strut thickness. The hierarchical pore structure was fabricated with EPS spheres of2.1mm,2.6mm and3.2mm diameters. Porosity and compressive strength of the pore-gradient Al2O3ceramicfoam were68.5%and3.06MPa at1500℃, respectively.
引文
[1] C. Galassi. Processing of porous ceramics: Piezoelectric materials [J]. J. Eur. Ceram.Soc.,2006,26(14):2951-2958.
    [2]王.慧.曾令可,罗民华等编著.多孔功能陶瓷制备与应用[J].化学工业出版社,2006:9-10.
    [3] R. Brezny, D.J. Green. Mechanical behavior of cellular ceramics [J]. MaterialsScience and Technology,11:467-516.
    [4] E. Ozcivici, R.P. Singh. Fabrication and Characterization of Ceramic Foams Basedon Silicon Carbide Matrix and Hollow Alumino-Silicate Spheres [J]. J. Am. Ceram.Soc.,2005,88(12):3338-3345.
    [5]靳洪允.泡沫陶瓷材料的研究进展[J].陶瓷科学与艺术,2005,(04):33-36.
    [6]21世纪的新材料——泡沫陶瓷[J].福建轻纺,2003,(03):22-23.
    [7] U.F. Vogt, M. Gorbar, P. Dimopoulos-Eggenschwiler, A. Broenstrup, G. Wagner, P.Colombo. Improving the properties of ceramic foams by a vacuum infiltration process[J]. J. Eur. Ceram. Soc.,2010,30(15):3005-3011.
    [8] M. Muhamadnor, L. Hong, Z. Arifinahmad, H. Mdakil. Preparation andcharacterization of ceramic foam produced via polymeric foam replication method [J]. J.Mater. Process. Technol.,2008,207(1-3):235-239.
    [9] U. Soy, A. Demir, F. Caliskan. Effect of bentonite addition on fabrication ofreticulated porous SiC ceramics for liquid metal infiltration [J]. Ceram. Int.,2010.
    [10] X. Mao, S. Shimai, S. Wang. Effects of Coarse Particles on the Gelcasting ofCeramic Foams [J]. J. Am. Ceram. Soc.,2008,91(7):2412-2414.
    [11]杨刚宾,蔡序珩,乔冠军,金志浩.多孔陶瓷制备技术及其进展[J].河南科技大学学报(自然科学版),2004,25(02):99-103.
    [12]蒲锡鹏,邱发贵,刘学建,黄莉萍.多孔陶瓷的制备及应用[J].陶瓷科学与艺术,2004,(01):37-42.
    [13] X. Zhu, D. Jiang, S. Tan. Preparation of silicon carbide reticulated porous ceramics[J]. Materials Science and Engineering A,2002,323(1-2):232-238.
    [14] V. Cannillo, M. Montorsi, C. Siligardi, A. Sola, G. Deportu, L. Micele, G. Pezzotti.Microscale computational simulation and experimental measurement of thermal residualstresses in glass–alumina functionally graded materials [J]. J. Eur. Ceram. Soc.,2006,26(8):1411-1419.
    [15] W. Szymczyk. Numerical simulation of composite surface coating as a functionallygraded material [J]. Mater. Sci. Eng. At,2005,412(1-2):61-65.
    [16]唐竹兴,王树海,陈达谦,江培秋,吴伯麟,赵宏伟.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅰ)[J].硅酸盐通报,2001,(02):23-29.
    [17]易佑宁.阶梯状孔梯度陶瓷材料性能的研究和探讨[J].江苏陶瓷,2003,36(03):7-8.
    [18] Y.H. Hsu, I.G. Turner, A.W. Miles. Fabrication of porous bioceramics withporosity gradients similar to the bimodal structure of cortical and cancellous bone [J].Journal of Materials Science: Materials in Medicine,2007,18(12):2251-2256.
    [19] H. Guo, X. Bi, S. Gong, H. Xu. Microstructure investigation on gradient porousthermal barrier coating prepared by EB-PVD [J]. Scripta Mater.,2001,44(4):683-687.
    [20] K. Satyamurthy. Thermal Stress Analysis of Brittle Ceramics With DensityGradients under Conditions of Transient Convective Heat Transfer [J]. Trans. J. Br.Ceram. Soc.,1980,79(1):10.
    [21] D. Yao, W. Zhang, J.G. Zhou. Controllable growth of gradient porous structures [J].Biomacromolecules,2009,10(5):1282-1286.
    [22] F.C. Buciuman, B. Kraushaar-Czarnetzki. Ceramic foam monoliths as catalystcarriers.1. Adjustment and description of the morphology [J]. Ind. Eng. Chem. Res.,2003,42(9):1863-1869.
    [23]王耀明.高温烟气净化用孔梯度陶瓷纤维膜的设计、制备及特性[J].学位论文.湖北:武汉理工大学,2007.
    [24] W. Meulenberg, J. Mertens, M. Bram, H. Buchkremer, D. Stover. Graded porousTiO2membranes for microfiltration [J]. J. Eur. Ceram. Soc.,2006,26(4-5):449-454.
    [25] C. Chen, K. Takita, S. Honda, H. Awaji. Fracture behavior of cylindrical porousalumina with pore gradient [J]. J. Eur. Ceram. Soc.,2005,25(4):385-391.
    [26] Y. Kinemuchi. Grading porous ceramics by centrifugal sintering [J]. Acta Mater.,2003,51(11):3225-3231.
    [27] B. Lee, I. Kang, A. Gain, K. Kim, H. Song. Fabrication of pore-gradientAl2O3–ZrO2sintered bodies by fibrous monolithic process [J]. J. Eur. Ceram. Soc.,2006,26(16):3525-3530.
    [28] J. Zeschky, T. Hofner, C. Arnold. Polysilsesquioxane derived ceramic foams withgradient porosity [J]. Acta Mater.,2005,53(4):927-937.
    [29]许巍巍.丝素蛋白/羟基磷灰石梯度多孔复合材料的制备及其性能[J].学位论文.江苏:苏州大学,2007.
    [30]杨保军,奚正平,汤慧萍,王培,汪强兵,刘忠军.金属多孔材料梯度层最佳厚度的研究[J].稀有金属材料与工程,2009,38(12):2217-2221.
    [31]戚建强,黄勇,欧阳世翕,汪长安.离心法制备气孔梯度氧化铝陶瓷[J].硅酸盐学报,2007,35(04):399-402.
    [32] M. Dr schel, M.J. Hoffmann, R. Oberacker, H. Both, W. Schaller, Y.Y. Yang, D.Munz. SiC-ceramics with tailored porosity gradients for combustion chambers [J]. KeyEngineering Materials,1999,175:149-162.
    [33]张芳,徐晓虹.孔梯度泡沫陶瓷的制备[J].武汉化工学院学报,2002,(04):31-33.
    [34] I. Ganesh, G. Sundararajan, S.M. Olhero, P.M.C. Torres, J.M.F. Ferreira. A novelcolloidal processing route to alumina ceramics [J]. Ceram. Int.,2010,36(4):1357-1364.
    [35]黄勇.陶瓷胶态注射成型新工艺[J].材料导报,2001,(02):41-42.
    [36] K. Prabhakaran, R. Sooraj, A. Melkeri, N.M. Gokhale, S.C. Sharma. A new directcoagulation casting process for alumina slurries prepared using poly(acrylate) dispersant[J]. Ceram. Int.,2009,35(3):979-985.
    [37]崔静涛,兰新哲,王碧侠,宋永辉,张静.陶瓷材料成型工艺研究新进展[J].陶瓷研究与职业教育,2008,(02):45-48,27.
    [38] G.A. Steinlage, R.K. Roeder, K.P. Trumble, K.J. Bowman. Centrifugal slip castingof components [J]. Am. Ceram. Soc. Bull.,1996,75(5):92-94.
    [39]庄志强,王剑,刘勇.陶瓷成型新方法及其应用的研究[J].陶瓷研究与职业教育,2004,(01):43-47.
    [40] F. Ortega, P. Sepulveda, V. Pandolfelli. Monomer systems for the gelcasting offoams [J]. J. Eur. Ceram. Soc.,2002,22(9-10):1395-1401.
    [41] M. Potoczek. Hydroxyapatite foams produced by gelcasting using agarose [J].Mater. Lett.,2008,62(6-7):1055-1057.
    [42] H. Akhondi, E. Taheri-Nassaj, H. Sarpoolaky, A. Taavoni-Gilan. Gelcasting ofalumina nanopowders based on gelation of sodium alginate [J]. Ceram. Int.,2009,35(3):1033-1037.
    [43] J.K. Montgomery, P.L. Drzal, K.R. Shull, K. Faber. Thermoreversible gelcasting:A novel ceramic processing technique [J]. J. Am. Ceram. Soc.,2002,85(5):1164-1168.
    [44] D. Guo, K. Cai, C. Nan, L. Li, Z. Gui. Gelcasting based solid freeform fabricationof piezoelectric ceramic objects [J]. Scripta Mater.,2002,47(6):383-387.
    [45]唐竹兴,王树海,陈达谦,江培秋,吴伯麟,赵宏伟.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅲ)[J].硅酸盐通报,2001,(05):11-15.
    [46]戚建强.离心—凝胶成型工艺制备气孔梯度陶瓷[博士论文][J].2007:110-111.
    [47] S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao. Template-basedgrowth of various oxide nanorods by sol-gel electrophoresis [J]. Adv. Funct. Mater.,2002,12(1):59-64.
    [48]张笑,罗民,高积强,欧阳达,金志浩.以木材为模板制备TiN/C多孔陶瓷[J].宁夏工程技术,2006,5(02):130-133,136.
    [49] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M.M. Sung, H. Shin. Template-DirectedSynthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications [J].Chem. Mater.,2008,20(3):756-767.
    [50]陈彰旭,郑炳云,李先学,傅明连,谢署光,邓超,胡衍华.模板法制备纳米材料研究进展[J].化工进展,2010,29(01):94-99.
    [51]任尚坤.模板法制备磁性纳米材料[J].金陵科技学院学报,2005,21(02):15-19.
    [52] J.E.G.J. Wijnhoven, W.L. Vos. Preparation of photonic crystals made of airspheres in titania [J]. Science,1998,281(5378):802.
    [53]郝凌云,周勇,江万权,朱玉瑞,李凡庆,胡源,陈祖耀.聚苯乙烯胶态晶体的合成[J].高等学校化学学报,2001,(11):1945-1947.
    [54]时拓,苏彬,艾建平,王娜娜,鲁阿庆,高朋召.模板法制备多孔无机材料的研究进展[J].陶瓷科学与艺术,2008,(03):12-17,21.
    [55]王巍;李晓天;.以多孔阳极氧化铝膜为模板制备介孔二氧化硅纳米纤维[J].无机材料学报,2010,(12):1277-1280.
    [56]任剑,杜中杰,张晨,励杭泉.聚合物泡孔材料为模板的溶胶-凝胶法[J].材料科学与工艺,2008,(05):664-666.
    [57]吴雯,王永刚,李峰,夏永姚.模板法制备的有序介孔Co3O4的电化学电容行为[J].化学学报,2009,(03):208-212.
    [58]杨卫亚,郑经堂,张艳姝,谭树成.模板法制备三维有序大孔CeO2[J].中国稀土学报,2006,24(增刊):128-131.
    [59]芦令超,申玉芳,常钧,刘福田,程新,郭建亭.氧化铝陶瓷料浆流变性的研究[J].硅酸盐通报,2003,(04):36-40.
    [60] H.A. Barnes, J.F. Hutton, K. Walters, An introduction to rheology, Elsevier,1991.
    [61] J. Yu, H. Wang, J. Zhang. Neural network modeling and analysis of gel castingpreparation of porous Si3N4ceramics [J]. Ceram. Int.,2009,35(7):2943-2950.
    [62] X. Xu, Z. Wen, X. Wu, J. Lin. Preparation of γ-LiAlO2green bodies through thegel-casting process [J]. Ceram. Int.,2009,35(4):1429-1434.
    [63]汤枫秋,黄校先,郭景坤. Al2O3表面化学特性的研究[J].陶瓷学报,1998,19(03):121-124.
    [64] A. Vesel. Modification of polystyrene with a highly reactive cold oxygen plasma[J]. Surface and Coatings Technology,2010,205(2):490-497.
    [65] M. Dhayal, K. Awasthi, Y. Vijay, D. Avasthi. Using fast atomic source andlow-energy plasma ions for polymer surface modification [J]. Vacuum,2006,80(6):643-646.
    [66]胡行俊.高分子材料光氧老化[J].合成材料老化与应用,1987,(04):26-41.
    [67] Z. Cherian, R. Lehman. Effects of adhesive type and polystyrene concentration onthe shear strength of bonded polystyrene/high-density polyethylene blends [J]. Int. J.Adhes. Adhes.,2005,25(6):502-506.
    [68]朱小娟,魏楠,张方辉.润湿角测试仪在ITO玻璃清洗工艺中的应用[J].现代显示,2009,(06):32-35.
    [69] L. Yan, K. Wang, J. Wu, L. Ye. Hydrophobicity of model surfaces with closelypacked nano-and micro-spheres [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007,296(1-3):123-131.
    [70] S. Suresh. Modeling and design of multi-layered and graded materials [J]. Prog.Mater. Sci.,1997,42(1-4):243-251.
    [71]王亦农,孙平川,黎明,门爱菊,马建标,何炳林.交联共聚丙烯酰胺-丙烯酸水凝胶溶胀态分子动力学的NMR弛豫研究[J].离子交换与吸附,1998,(03):191-196.
    [72] S. Ghosal, A. Emami-Naeini, Y.P. Harn, B.S. Draskovich, J.P. Pollinger. Aphysical model for the drying of gelcast ceramics [J]. J. Am. Ceram. Soc.,1999,82(3):513-520.
    [73] Y.T. Puyate, C.J. Lawrence. Models for predicting drying stresses and strains in afilm cast on a substrate: An alternative approach [J]. Chem. Eng. Sci.,2009,64(8):1820-1831.
    [74] X. Mao, S. Wang, S. Shimai. Porous ceramics with tri-modal pores prepared byfoaming and starch consolidation [J]. Ceram. Int.,2008,34(1):107-112.
    [75] L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, Cambridge UnivPr,1999.
    [76] J.M. Gómez de Salazar, M.I. Barrena, G. Morales, L. Matesanz, N. Merino.Compression strength and wear resistance of ceramic foams–polymer composites [J].Mater. Lett.,2006,60(13-14):1687-1692.
    [77] L. Hu, C.-A. Wang. Effect of sintering temperature on compressive strength ofporous yttria-stabilized zirconia ceramics [J]. Ceram. Int.,2010,36(5):1697-1701.
    [78] R. Brezny, D.J. Green. Mechanical behavior of cellular ceramics [J]. MaterialsScience and Technology,1992,11:467-516.
    [79] A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler. Processing Routes toMacroporous Ceramics: A Review [J]. J. Am. Ceram. Soc.,2006,89(6):1771-1789.
    [80] X. Zhu, D. Jiang, S. Tan. Improvement in the strength of reticulated porousceramics by vacuum degassing [J]. Mater. Lett.,2001,51(4):363-367.
    [81] P. Colombo, J.R. Hellmann. Ceramic foams from preceramic polymers [J]. Mater.Res. Innov.,2002,6(5):260-272.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.