基于拉曼自频移和谱压缩的全光量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模数转换器将连续的模拟信号转换为离散数字信号,是信息处理系统中的重要器件。随着数字化技术的高速发展,模数转换器在高速通信、实时监测、雷达信号处理、图像处理以及空间通信等领域的作用也愈加突出。同时,人们对信息处理系统中模数转换器性能的要求也日益提高。目前实际应用最广泛的是电子模数转换器,但是由于受到电子迁移率的限制,电子模数转换器在超高速模数转换中遭遇电子瓶颈,限制了其性能的进一步提高。超导材料模数转换器要求低温的工作环境,这大大限制了其应用范围。而全光模数转换技术可以克服电子模数转换和超导材料模数转换的限制,将是未来信息处理系统的关键技术。全光量化是全光模数转换器的重要组成部分,是全光模数转换器的重要研究课题。本论文针对基于拉曼自频移和谱压缩的全光量化进行了详细研究,其主要内容可概括为以下几点:
     (1)简要介绍了全光模数转换器和全光量化的研究背景与意义,并回顾了光量化的发展历程以及国内外研究现状。
     (2)构建了由高非线性光纤、色散渐增光纤和阵列波导光栅组成的全光量化结构。首先,窄脉宽、高功率的脉冲在高非线性光纤中产生拉曼自频移效应,实现功率—波长的转变,是此量化结构的主要部分;自频移后脉冲经过色散渐增光纤时,谱宽压缩,可有效提高量化精度;最后,阵列波导光栅用来空间分离谱压缩后的脉冲,为全光量化的下一步——编码做准备。描述了全光量化的数值分析基础——广义非线性薛定谔方程的推导过程,并简要介绍了求解广义非线性薛定谔方程的数值方法——分步傅里叶法。
     (3)采用矩量法求解脉冲参量如脉宽、啁啾、能量、延时和中心波长频移量沿传输方向的演化公式,来分析脉冲在光纤中的传输情况。纠正了J. Santhanam和G. P. Agrawal在推导过程中的错误,获得更准确的表达式;并针对在亚皮秒脉冲入射的情况,将修正后的结果和修正前的结果进行了对比。
     (4)超短脉冲在光纤中的拉曼自频移现象是由光纤的拉曼延迟响应特性引起的,其自频移幅度不仅与脉冲特性有关,还与传输光纤有很大的关系。本文中详细研究了亚皮秒脉冲在三种不同光纤(如光子晶体光纤、保偏光纤、普通高非线性光纤等)中产生的拉曼自频移现象,对比了不同形状、不同脉宽、不同峰值功率的脉冲在光纤中发生拉曼自频移效应后的输出脉冲,并对如何选择合适的工作光纤提出了合理化建议。采用两根不同的高非线性光纤进行了拉曼自频移实验,改变入射功率,获得140nm的自频移范围。
     (5)基于拉曼自频移后形成的拉曼孤子特性,首次详细描述了亚皮秒孤子在色散渐增光纤中的谱压缩过程,并对比了基孤子在五种不同类型(即直线型、指数型、高斯型、双曲型和对数型)色散渐增光纤中的演化过程和谱压缩效果。结果表明,直线型、指数型和对数型色散渐增光纤更适合压缩拉曼自频移后脉冲的谱宽。
     (6)模拟了亚皮秒脉冲入射时,由光子晶体光纤、色散渐增光纤和阵列波导光栅组成的全光量化系统的性能,论证了此全光量化结构的可行性。利用矩量法获得理想状况下孤子延时的表达式,并详细讨论了脉冲在拉曼自频移和谱压缩过程中伴随的脉冲延时对采样速率的影响。
Analog-to-digital converters (ADCs) which convert analogue signals into digital ones, play an important role in the signal processing system. With recent tremendous growth of the high-speed digital technique, the effect of the ADCs on the high-speed communications, real-time measurements, radar systems, image processing, and space communications enhances. And the ultrawide-bandwidth applications also encourage the demands of high-speed and high-resolution ADCs. Recently, electrical ADCs are most widely used in practical applications. But to electrical ADC, the enhancement of performance is limited by its electron mobility. Superconducting material ADCs need to work under cold condition, which limits their applications. All-optical ADCs can overcome the disadvantage of the electrical and superconducting material ADCs. All-optical analog-to-digital conversion, which is characterized by high-speed and high-resolution will be extremely beneficial to signal processing systems in future. And all-optical quantization is a key technology to the realization of the all-optical ADCs. The researches on the all-optical quantization are highly significant. The works presented in the dissertation focus on the investigation of all-optical quantization based on the Raman self-frequency shift and spectral compression. The main contents of the dissertation are shown as follows:
     (1) Research backgrounds of the all-optical ADCs and all-optical quantization are simply introduced. The development history and status of the all-optical quantization at home and broad are reviewed.
     (2) An all-optical quantization configuration is constructed with highly nonlinear fiber (HNLF), dispersion-increasing fiber (DIF) and arrayed waveguide grating (AWG). Firstly, the Raman self-frequency shift (RSFS) occurs as pulses with narrow pulse widths and high powers propagation in the HNLF, which can realize the conversion from power to wavelength. Where, the RSFS is the mainly part of the all-optical quantization. Then, the spectra of the shifted pulses are compressed as propagating along the DIF, which can effectively improve the resolution of the all-optical quantization. Finally, the AWG separates the compressed pulses, which prepares for the following coding process.. Generalized nonlinear Schr?dinger equation (GNLS equation) is used to describe the propagation of the pulse in fiber. In this dissertation, the inference of the GNLS equation is shown. And the split-step Fourier method, the mostly used numerical method to analyze the GNLS equation, is depicted.
     (3) Pulse propagation in an optical fiber is analyzed through using the moment method to solve the evolution equation of the pulse parameters, such as pulse width, chirping, energy, time delay, and frequency shift. More accurate expressions are obtained by modified the mistakes in the reference by J. Santhanam and G. P. Agrawal. And the results before and after modification are contrasted for the case of subpicosecond pulses injected.
     (4) The physical origin of the RSFS in fibers is related to the delayed nature of the Raman response. So the RSFS depends on not only the pulse characteristics, but also the propagating fiber.The RSFS of subpicosecond pulses in three different fibers, viz. photonic crystal fiber (PCF), polarization maintaining fiber (PMF) and commonly HNLF, are detailedly investigated. When the shape, width and peak power of input pulses are different, the output pulses after the RSFS are compared. And several rational suggestions are given for choosing suitable fibers. Experimental results about the RSFS in two different HNLFs are presented. By changing the input peak power, the frequency shift of 140nm can be obtained.
     (5) Based on the characteristics of the Raman solitions origined from the Raman self-frequency shifted pulse, the spectral compression processes of subpicosecond solitons are firstly described. The fundamental solitons are injected into the DIF as input pulses. Five different DIFs, viz. linear-type, exponential-type, Gaussian-type, hyperbolic-type, and logarithm-type DIFs, are used to compress the spectra of fundamental solitons. The evolutions and spectral compression in five DIFs are investigated. The results show that the linear-type, exponential-type, and logarithm-type DIFs are more suitable for compressing the spectra of the shifted pulses.
     (6) The performance of the all-optical quantization system composed of PCF, DIF, and AWG is analyzed as subpicosecond pulses input. The feasibility of the suggested all-optical quantization scheme is testified. Under ideal condition, the time delay of soliton is derived first time by analyzing the GNLS equation using the moment method. And the influence on the sampling velocity from the time delay which is accompanied with the RSFS and spectral compression is discussed.
引文
[1]杨淑娜.新型光子模数转换技术的研究.硕士学位论文.浙江,浙江大学, 2010
    [2] R. H. Walden. Analog-to-digital conversion survey and analysis. IEEE J. Sel. Area. Comm., 1999, 17(4): 539-550
    [3] A. E. Siegman and D. J. Kuizenga. Proposed method for measuring picosecond pulsewidths and pulse shapes in CW mode-locked lasers. IEEE J. Quantum Electron., 1970,QE-6(4): 212-215
    [4] S. Wright, I. M. Mason, and M. G. F. Wilson. High-speed electro-optic analogue-digital conversion. Electron. Lett., 1974, 10(24): 508-509
    [5] M. Jarrahi, R. F. W. Pease and T. H. Lee. Spatial quantized analog-to-digital conversion based on optical beam-steering. J. Lightwave Technol., 2008, 26(14): 2219-2226
    [6] M. Jarrahi, D. A. B. Miller, R. F. W. Pease, et al.. Optical spatially quantized high performance analog-to-digital conversion. Conference on Lasers and Electro-Optics, Baltimore, MD, 2007, 1-2
    [7] M. Jarrahi, R. F. W. Pease, D. A. B. Miller, et al.. Optical spatical quantization for higher performance analog-to-digital conversion. IEEE Trans. Micro. Theory Tech., 2008, 56(9): 2143-2150
    [8] B. J. Bortnik and H. R. Fetterman. High-speed photonically assisted analog-to-digital conversion using a conversion wave multiwavelength source and phase modulation. Opt. Lett., 2008, 33(19): 2230-2232
    [9] J. Kim, M. J. Park, M. H. Perrott, et al.. Photonic subsampling analog-to-digital conversion of microwavelength signals at 40-GHz with higher than 7-ENOB resolution. Opt. Express, 2008, 16(21): 16509-16515
    [10] K. Ikeda, J. M. Abdul, A. Namiki, et al.. Optical quantizaing and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer. Opt. Express, 2005, 13(11): 4296-4302
    [11] R. C. Williamson. Two decades of photonic analog-to-digital converters. 2004’Conference on Lasers and Electro-Optics, San Francisco, 2004, 1: 2
    [12] T. Nishitani, T. Konishi, H. Furukawa, et al.. All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing. Opt. Express, 2005, 13(25): 10310-10315
    [13] T. Konishi, K. Tanimura, K. Asano. All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique. J. Opt. Soc. Am. B, 2002, 19(11): 2817~2823
    [14] T. Nishitani, T. Konishi, K. Itoh. Integration of a proposed all-optical analog-to-digital converter using self-frequency shifting in fiber and a pulse-shaping technique. Opt. Rev., 2005, 12(3): 237~241
    [15] T. Nishitani, T. Konishi, K. Itoh. Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression. IEEE J. Quantum Electron., 2008, 14(3): 724~732
    [16] A. Maruta, Y. Yamamoto, S. I. Oda, et al.. All-optical analog-to-digital conversion utilizing nonlinear phenomena in fiber. 2002’Lasers and Electro-Optics Society, 2002, 2: 430 - 431
    [17] S. I. Oda, A. Maruta, L. I. Kitayama. All-optical quantization scheme based on fiber nonlinearity. IEEE Photon. Technol. Lett., 2004, 16(2): 587~589
    [18] S. I. Oda and A. Maruta. All-optical analog-to-digital conversion based on 2nd-order soliton splitting in fiber. Nonlinear Guided Waves and Their Applications, Dresden, Germany, 2005, ThA1
    [19] S. I. Oda and A. Maruta. A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion. IEEE Photon. Technol. Lett., 2005, 17(2): 165~167
    [20] S. I. Oda, A. Maruta. 2-bit all-optical analog-to-digital conversion by slicing supercontinuum spectrum and switching with nonlinear optical loop mirror and its application to quaternary ASK-to-OOK modulation format converter. IEEE Trans. Commun., 2005, E88-B(5): 1963~1967
    [21] H. Goto, T. Konishi, T. Nishitani, et al.. All optical intensity equalizer based on effective control of spectral modulation induced by self-phase-modulation using super-Gaussian signals. the 10th Anniversary International Conference on Transparent Optical Networks, Athens, 2008, 1: 124-127
    [22] S. I. Oda, A. Maruta. Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber. IEEE J. Sel. Top. Quantum Electron., 2006, 12(2): 307–314
    [23] T. Nishitani, T. Konishi and K. Itoh. All-optical Analog-to-digital Conversion Using Optical Interconnection for Gray Code Coding. Proc. of SPIE, 2006, 6353: 63530H-1 63530H-8
    [24] C. Xu and X. Liu. Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters. Opt. Lett., 2003, 28(12): 986~988
    [25] P. P. Ho, Q. Z. Wang, J. Chen, et al.. Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation. Appl. Opt., 1997, 36(5): 3425~3429
    [26] K. Ikeda, J. M. Abdul, H. Tobioka, et al.. Design consideration so fall-optical A/D conversion: non-linear fiber-optic Sagnac-loop interferometer-based optical quantizing and coding. J. Lightwave Technol., 2006, 24(7): 2618~2628
    [27] J. M. Jeonga and M. E. Marhica. All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer. Opt. Commun., 1992, 91(1-2): 115~122
    [28] A. Sharkway, C. Chen, Binglin Miao, et al.. Development of an Analog-to-Digital Converter Using Photonic Crystals. 2007’Conference on Lasers and Electro-Optics, Baltimore, MD, 2007, 1-2
    [29] Binglin Miao, Caihua Chen, Ahmed Sharkway, et al.. Two bit optical analog-to-digital converter based on photonic crystals. Opt. Express, 2006,14(17): 7966-7973
    [30]沈荣桂,李宝贞,阮丽真等.集成光学Mach-Zehnder型模数转换器.光学学报, 1992, 12(7): 652-656
    [31]洪佩智,马少杰,侯韶华等.光波导Fabry—Perot型电光模数转换器.光电子激光, 1994, 5(5): 263-266
    [32]章壮前,张洪明,傅鑫等.一种采用并行光强度调制器的模数转换方法.中国激光, 2008, 35(3): 378-382
    [33]彭越,张洪明,吴庆伟等.利用光纤挤压器实现的移相光模数转换器.中国激光, 2010, 37(3): 748~751
    [34] Q. W. Wu, H. M. Zhang, M. Y. Yao, et al.. All-optical analog-to-digital conversion using inherent multiwavelength phase shift in LiNbO3 phase modulator. IEEE Photon. Technol. Lett., 2008, 20(12): 1036-1038
    [35]张长命.铌酸锂波导电光A/D转换器单元技术研究.博士学位论文,成都,电子科技大学, 2005
    [36]刘茂桐,杨爱英,孙雨南.基于半导体光放大器四波混频原理的光采样.光学学报, 2008, 28(1): 151-158
    [37]张谦述,刘永智,杨亚培等.一种新型集成光学模数转换器设计. 2007中国仪器仪表与测控技术交流大会,成都,2007, 618-621
    [38]吴显理,李和平,廖进昆等.全光模数转换中的量化技术分析.激光与红外, 2009, 39(10): 1034-1039
    [39]吴显理,李和平,廖进昆等.利用高非线性光纤产生宽可调谐飞秒孤子脉冲的研究.光学学报, 2009, 29(s2): 248-251
    [40] Yong Liu, Qianshu Zhang, Heping Li, et al.. Photonic Analog-to-Digital Converter Based on Wavelength Sampling and Quantizing. the 15th Asia-Pacific Conference on Communications, Shanghai, 2009, 491-494
    [41] H. Ohta, N. Banjo, N.Yamada, et al.. Measuring eye diagram of 320Gbit/s optical signal by optical sampling using passively mode-locked fiber laser. Electron. Lett., 2001, 37(25): 1541-1542
    [42] J. Li, J. Hansryd, P. O. Hedekvist, et al.. 300-Gbit/seye-diagram measurement by optical sampling using fiber-basedparametric amplification. IEEE Photon. Technol. Lett., 2001, 13(9): 987-989
    [43] M.Shirane, Y. Hashimoto, H. Yamada, et al.. A compact optical sampling mearsurement system using mode-locked laser-diode modules. IEEE Photon. Technol. Lett., 2000, 12(11): 1537-1539
    [44] M. F. C. Stephens, M. Asghari, R. V. Penty, et al.. Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 1997, 9(4): 449-451
    [45] Y. Liu, M. T. Hill, E. Tangdiongga, et al.. Wavelength Conversion Using Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier. IEEE Photon. Technol. Lett., 2003, 15(1): 90-92
    [46] H. J. S. Dorren, D. Lenstra, Y. Liu, et al.. Nonlinear polarization rotation in semiconductor optical amplifiers: Theory and application to optical flip-flop memories. IEEE J. Quantum Electron., 2003, 39(1): 141-148
    [47] Y.Liu, M.T.Hill, H.de Waardt, et al.. All-optical flip-flop memory based on two coupled polarisation switches. Electron. Lett., 2002, 38(16): 904-906
    [48] Y. Liu, E. Tangdiongga, Z. Li, et al.. Error-Free 320-Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier. IEEE J. Lightwave Technol., 2007, 25(1): 103-108
    [49] T. Yamamoto, E. Yoshida and M. Nakazawa. Ultrafast nonlinear optical loop mirror for demultiplexing 640Gbit/s TDM signals. Electron. Lett., 1998, 34(10): 1013-1014
    [50] C. Schmidt, C. Schubert, S. Watanabe, et al.. 320Gbit/s all-optical eye diagram sampling using gain-transparent ultrafast-nonlinear interferometer. 28th European Conference on Optical Communication, Copenhagen, 2002, 1: 1-2
    [51] T. Nishitani, T. Konishi and K. Itoh. All-optical analog-to-digital conversion using optical delay line. IEEE Trans. Electron., 2007, E-90-C: 479-480
    [52] H. F. Taylor. An optical analog-to-digital converter-design and analysis. IEEE J. Quantum Electron., 1979, QE-15(4): 210~216
    [53] F. J. Leonberger,C. E. Woodward and D. L. Spears. Design and development of a high-speed electrooptic A/D converter. IEEE Trans. Circuits and syst., 1979, 26(12): 1125-1131
    [54] R. A. Beeker and F. J. Leonberger. 2-bit 1 Gsample/s electrooptic guided-wave analog-to-digital converter. IEEE J. Quantum Electron., 1982, QE-18(10): 1411-1413
    [55] F. J. Leonberger, C. E. Woodward and R. A. Beeker. 4-bit 828-megasample/s electrooptic guided-wave analog-to-digital converter. Appl. Phys. Lett., 1982, 40(7): 565-568
    [56] G. D. H. King and R. Cebulski. Analog-to-digital conversion using integrated electro-optic interferometers. Electron. Lett., 1982, 18(25): 1099-1100
    [57] C. L. Chang and C. S. Tsai. Electro-optic analog-to-digital converter using channel waveguide Fabry-Perot modulator array. Appl. Phys. Lett., 1983, 43(1): 22-24.
    [58] R. G. Walker, I. Bermion and A. C. Carter. Novel GaAs/AlGaAs guided-wave analog/digital converter. Electron. Lett., 1989, 25(21): 1443-1444
    [59] B. Jalali and Y. M. Xie. Optical folding-flash analog-to-digital converter with analog encoding. Opt. lett., 1995, 20(18): 1901-1903
    [60] K. Takizawa and M. Okada. Analog-to-digital converter: a new type using an electrooptic light modulator. Appl. Opt., 1979, 18(18):3148-3151
    [61] R. A. Becker, C. E. Woodward, F. J. Leonberger, et al.. Wideband electro-optic guided-wave analog-to-digital converters. Proc. IEEE, 1984, 72(7):802~819
    [62] M. Currie, T. R. Clark, and P. J. Matthews. Photonic analog-to-digital conversion by distributed phase modulation. IEEE Photonics Technol. Lett., 2000, 12(12): 1689-1691
    [63] Hao Chi and Jianping Yao. A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages. Opt. Express, 2008, 16(2): 567-572
    [64] C. Sarantors and N. Dagli. A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer. 2007 IEEE International Topical Meeting on Microwave Photonics, Victoria, BC, 2007, 58~61
    [65] I. A. Goncharenko, A. K. Esman, V. K. Kuleshov, et al.. Optical broadband analog-digital conversoion on the base of microring resonator. Opt. Commun., 2006, 257: 54-61
    [66] G. P. Agrawal. Nonlinear Fiber Optics. 4th ed. Academic Press, 2007
    [67] F. M. Mitshke and L. F. Mollenauer. Discovery of the soliton self-frequency shift. Opt. Lett., 1986, 11(10): 659-661
    [68] A. K. Atieh, P. Myslinski, J. Chrostowski, et al.. Measuring the Raman time constant (TR) for soliton pulses in standard single-mode fiber. J. Lightwave Technol., 1999, 17(2): 216~221
    [69] N. Nishizawa, T. Goto. Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers. IEEE Photon. Technol. Lett., 1999, 11(3): 325-327
    [70] Y. Matsuo, N. Nishizawa, M. Mori et al.. Characteristics of wavelength tunable femtosecond soliton pulse generation using femtosecond pump laser and polarization maintaining fiber. Opt. Rev., 2000, 7(4): 309-316
    [71] K. S. Abedin and F. Kubota. Widely tunable femotosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber. Opt. Lett., 2003, 28(19): 1760-1762
    [72] K. S. Abedin and F. Kubota. Wavelength tunable high-repetition-rate picosecond and femotosecond pulse sources based on highly nonlinear photonic crystal fiber. IEEE J. Sel. Top. Quantum Electron., 2004, 10(5): 1203-1210
    [73] J. C. Knight. Photonic crystal fibres. Nature, 2003, 424(6950): 847–851
    [74] B. R. Washburn, S. E. Ralph, P. A. Lacourt, et al.. Tunable near-infrared femtosecond soliton generation in photonic crystal fibres. Electron. Lett., 2001, 37(25): 1510–1512
    [75] K. S. Abedin, F. Kubota. Widely tunable femotosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber. Opt. Lett., 2003, 28(19): 1760~1762
    [76] I. G. Cormack, D. T. Reid, W. J. Wadsworth, et al.. Observation of soliton self-frequency shift in photonic crystal fibre. Electron. Lett., 2002, 38(4): 167–169
    [77] D. G. Ouzounov, F. R. Ahmad, D. Muller, et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301(5640): 1702–1704
    [78] A. Betoutne, A. Kudlinski, G. Bouwmans, et al.. Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers. Opt. Lett., 2009, 34(20): 3083-3085
    [79] J. V. Howe, J. H. Lee, S. Zhou, et al.. Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber. Opt. Lett.,2007, 32(4):340–342
    [80] J. H. Lee, J. V. Howe, C. Xu, et al.. Energetic soliton self-frequency shift below 1300 nm over a 240 nm range in a solid silica-based fiber. National Fiber Optic Engineers Conference, Anaheim, 2007, PDP38
    [81] X. Liu, C. Xu, W. H. Knox, et al.. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Opt. Lett., 2001, 26(6): 358–360
    [82] A. C. Judge, O. Bang, B. J. Eggleton, et al.. Optimization of the solitonself-frequency shift in a tapered photonic crystal fiber. J. Opt. Soc. Am. B, 2009,26(11): 2064-2071
    [83] A. C. Judge, O. Bang, B. J. Eggleton, et al.. Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber. J. Opt. Soc. Am. B, 2009, 26(11):2046-2071
    [84] B. R. Washiburn, S. E. Ralph, P. A. Lacourt, et al.. Femtosecond soliton generation in air-silica microstructure fibers. the 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Diego, 2001, 1: 306-307
    [85] R. E. Slusher, G. Lenz, J. Hodelin, et al.. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B, 2004, 21(6):1146-1155
    [86] R. Stegeman, L. Jankovic, H. Kim, et al.. Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. Opt. Express, 2003, 28(13): 1126-1128
    [87] V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, et al.. Tellurite photonic crystal fiber. Opt. Express, 2003, 11(20): 2641-2645
    [88] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, et al.. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express, 2003, 11(26): 3568-3573
    [89] H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, et al.. Bismuth glass holey fibers with high nonlinearity. Opt. Express, 2004, 12(21): 5082-5087
    [90] G. Stegeman, R. Stegeman, C. Rivero, et al.. New Glasses and Their Characterization for Raman Gain. the 7th International Conference on Transparent Optical Networks, Barcelona, Spain, 2005, 1: 9-12
    [91] F.K.Fatemi. Analysis of nonsdiabatically compressed pulses from dispersion-decreasing fiber. Opt. Lett., 2002, 27(18):1637~1639
    [92] A. J. Stentz, R. W. Boyd and A. F. Evans. Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber. Opt. Express, 1995, 20(17): 1770-1772
    [93] S. V. Chernikov and P. V Mamyshev. Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B, 1991, 8(8): 1633-1641
    [94] S. V. Chernikov, E. M. Dianov, D. J. Richardson, et al.. Soliton pulse compression in dispersion-decreasing fiber. Opt. Express, 1993, 18(7):476-478
    [95] A. Mostofi, H. Hatami-Hanza and P. L. Chu. Optimum Dispersion Profile for Compression of Fundamental Solitons in Dispersion Decreasing Fibers. IEEE J. Quantum Electron., 1997, 33(4): 620-628
    [96] K. R. Tamura and M. Nakazawa. 54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor. Opt. Express, 2001, 26(11):762-764
    [97]刘俭辉,倪文俊,丁永奎等.色散渐减光纤中的绝热脉冲压缩研究.半导体光电, 2004, 25(3): 231-234
    [98]吴再华,曹文华.色散渐减光纤及其应用.激光与红外, 2004, 34(6): 408-411
    [99] A. Mostofi, H. H. Hanza and P. L. Chu. Optimum dispersion pofile for compression of fundamental solitons in dispersion decreasing fibers. IEEE J. Quantum Electron., 1997, 33(4): 620-628
    [100] T. Hirooka, S. Ono, K. I. Hagiuda, et al.. Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression. Opt. Lett., 2005, 30(4): 364-366
    [101] D. Méchin, S. H. Im, V. I. Kruglov, et al.. Experimental demonstration of similariton pulse compression in a comblike dispersion-decreasing fiber amplifier. Opt. Express, 2006, 31(14): 2106-2108
    [102] C. Finot, B. Barviau1, G. Millot, et al. Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Opt. Express, 2007, 15(24):15824-15835
    [103] J. P. Gordon. Theory of the soliton self-frequency shift. Opt. Lett., 1986, 11(10): 662-664
    [104] K. J. Blow and D. Wood. Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron., 1989, 25(12):2665~2673
    [105] P. V. Mamyshev and S. V. Chernikov. Ultrashort-pulse propagation in optical fibers. J. Opt. Soc. Am. B, 1990, 15(19):1076-1078
    [106] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, et al.. Raman response function of silica-core fibers. J. Opt. Soc. Am. B, 1989, 6(6): 1159-1166
    [107] J. P. Gordon and H. A. Haus. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett., 1986, 11(10): 665-667
    [108] T. R. Taha and M. J. Ablowitz. Analytical and numerical aspects of certain nonlinear evolution equations. II. numerical, nonlinear Schr?dinger equation. J. Comput. Phys., 1984, 55(2): 203-230
    [109] J. W. Cooley and J. W. Tukey. An algorithm for machine calculation of complex Fourier series. Math. Comp., 1965, 19(90): 297-301.
    [110] O. V. Sinkin, R. Holzl?hner, J. Zweck, et al.. Optimization of the split-step Fourier method in modeling optical-fiber communications systems. J. Lightwave Technol., 2003, 21(1): 61-68
    [111] P. L. Nash. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schrodinger equation. Journal of Computational Physics, 2008, 227: 2073-2082
    [112] J. Hult. A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol., 2007, 25(12): 3770-3775
    [113] J. R. Costa, C. R. Paiva and A. M. Barbosa. Modified split-step Fourier method for the numerical simulation of soliton amplification in Erbium-doped fibers with forward-propagating noise. IEEE J. Quantum Electron., 2001, 37(1): 145-152
    [114] M. Y. Hamza and S. Tariq. Split step Fourier method based pulse propagation model for nonlinear fiber optics. ICEE '07, Lahore, April 2007(11-12): 1-5
    [115] M. Premaratne. Split-step spline method for modeling optical fiber communications systems. IEEE Photon. Technol. Lett., 2004, 16(5): 1304-1306
    [116] A. M. Gomilko, A. A. Gourjii, V. B. Katok, et al.. Investigation of pair optical propagation in dispersion managed fiber link with two numerical methods. ICTON 2001, 249-251
    [117] J. Santhanam, G. P. Agrawal, Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun., 2003, 222: 413-420
    [118] J. Santhanam, Applications of the moment method to optical communications systems: amplifier noise and timing jitter. New York: University of Rochester, 2004
    [119] D. A. Chestnut and J. R. Taylor. Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping. Opt. Lett., 2003, 28(24): 2512-2514
    [120] J. K. Lucek and K. Smith. All-optical signal regenerator. Opt. Lett., 1993, 18(15): 1226–1228
    [121] M. Kato, K. Fujiura, and T. Kurihara. Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,”Electron. Lett., 2004, 40(8): 381–382
    [122] T. Hori, N. Nishizawa, M. Yoshida, et al.. Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse. Electron. Lett., 2001, 37(17): 1077–1078
    [123] S. I. Oda and A. Maruta. All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation. Opt. Express, 2006, 14(17): 7895-7902
    [124] T. Kunihiro, T. Kanou, S. I. Oda, et al.. Soliton self-frequency shift based slow light in optical fiber up to 1600 delay–to-pulse-width ratio. 33rd European Conference and Exhibition of Optical Communication, Berlin, 2007, 822-823
    [125] J. K. Lucek and K. J. Blow. Optical-intensity dependent switching using soliton self-frequency. Electron. Lett., 1991, 27(10): 882-884
    [126] N. Starodumov. Nonlinear switching of optical pulses through stimulated Raman scattering: self-scattering of solitons in optical fibers. Quantum Electron., 1993, 23(5): 432-434
    [127] H. HatamiHanza, J. Hong, A. Atieh, et al.. Demonstration of all-optical demultiplexing of amultilevel soliton signal employing soliton decomposition and self-frequency shift. IEEE Photon. Technol. Lett., 1997, 9(6): 833–835
    [128] N. Nishizawa and T. Goto. Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength. Opt. Express, 2003, 11(4): 359–365
    [129] J. H. Lee, J. V. Howe, C. Xu, et al.. Soliton Self-Frequency Shift: Experimental Demonstrations and Applications. IEEE J. Sel. Top. Quantum. Electron., 2008, 14(3): 713-723
    [130] N. Nishizawa, Y. Ito, and T. Goto. Wavelength-tunable femtosecond soliton pulse generation for wavelengths of 0.78–1.0μm using photonic crystal fibers and a ultrashort fiber laser. Jpn. J. Appl. Phys., 2003, 42: 449–452
    [131] H. Lim, J. Buckley, A. Chong, et al.. Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 mm. Electron. Lett., 2004, 40(24): 1523–1525
    [132] N. Nishizawa, R. Okamura, and T. Goto. Widely wavelength tunable ultrashort soliton pulse and anti-stokes pulse generation for wavelengths of 1.32–1.75μm. Jpn. J. Appl. Phys., 2000, 39: L409–L411
    [133] N. Nishizawa and T. Goto. Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers. IEEE J. Sel. Topics Quantum Electron., 2001, 7(4): 518–524
    [134] M. Kato. Wavelength-tunable multicolor Raman soliton generation using an ellipse polarized pump pulse and highly birefringent optical fibers. J. Lightwave Technol., 2006, 24(2): 805–809
    [135] N. Nishizawa, R. Okamura, and T. Goto. Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers. IEEE Photon. Technol. Lett., 1999, 11(4): 421–423
    [136] N. Nishizawa and T. Goto. Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers. Opt. Express, 2002, 10(5): 256–261
    [137] S. T. Sanders. Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy. Appl. Phys. B, 2002, 75: 799–802
    [138] J. W. Walewski, M. R. Borden, and S. T. Sanders. Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy. Appl. Phys. B, 2004, 79: 937–940
    [139] J. K. Ranka, R. S. Windeler, and A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000, 25(1): 25–27
    [140] C. L. Hagen, J. W. Walewski, and S. T. Sanders. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Photon. Technol. Lett., 2006, 18(1): 91–93
    [141] Y. Takushima, F. Futami and K. Kikuchi. Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source. IEEE Photon. Technol. Lett., 1998, 10(11): 1560-1562
    [142] J. M. Dudley and S. Coen. Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers. IEEE J. Sel. Top. in Quantum Electron., 2002, 8(3): 651-659
    [143] K. Sakamaki, M. Nakao, M. Naganuma, et al.. Soliton induced supercontinuum generation in photonic crystal fiber. IEEE J. Sel. Top. Quantum Electron., 2004, 10(5): 876-884 RSFS
    [144] R. H. Stolen and C. Lin. Self-phase-modulation in silica optical fibers. Phys. Rev., 1978, A 17(4): 1448~1453
    [145] M. Oberthaler and R. A. Hopfel. Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers. Appl. Phys. Lett., 1993, 63(8):1017~1019
    [146] S. A. Planas, N. I. Pires Manus, C. H. Brito Cruz, et al.. Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett., 1993, 18(9):699~701
    [147] B. R. Washburn, J. A. Buck and S. E. Ralph. Transform-limited spectral compression due to self-phase modulation in fibers. Opt. Lett., 2000, 25(7):445~447
    [148] S. Shen, C.-C. Chang, H. P. Sardesai, et al.. Effects of self-phase modulation on sub-500fs pulse transmission over dispersion compensated fiber links. J. Lightwave Technol., 1999, 17(3):452~461,
    [149] L. K. Mouradian. Applications of spectral compression-temporal lensing to signal analysis-synthesis problems in ultrafast optics. the 4th International Conference on Advanced Optoelectronics and Lasers, Crimea, 2008, 143-145
    [150] M. Rusua and O. G. Okhotnikov. All-fiber picosecond laser source based on nonlinear spectral compression. Appl. Phys. Lett., 2006, 89(9): 091118-091118(3)
    [151] E. R. Andresen, J. Th?gersen and S. R. Keiding. Spectral compression of femtosecond pulses in photonic crystal fibers. Opt. Lett., 2005, 30(15): 2025-2027
    [152] A. B. Fedotov, A. A. Voronin, I. V. Fedotov, et al.. Spectral compression of frequency-shifting solitons in a photonic-crystal fiber. Opt. Lett., 2009, 34(5): 662-664
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.