污水污泥热解特性与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水处理过程中会产生大量污泥,这些污泥含水率很高,且含有大量有机物、金属盐、病原微生物和寄生虫卵等,污泥性质不稳定且容易腐败。如果污泥不能采用合理的技术进行安全处理处置,会引起周围环境的二次污染。污泥也可被看作为一种资源,如果将污泥进行热解处理,资源化利用污泥热解三相产物,既可以解决污泥污染问题,同时实现了废物再生利用。
     本论文中研究了回收污泥中的铁盐和铝盐并作为混凝剂回用于污水化学一级强化处理。利用小试规模污泥序批式热解和连续式热解两种反应装置,研究污泥热解三相产物质量平衡,分析各种元素在热解过程中的迁移规律。测定不同温度条件下污泥热解三相产物热值和反应热,建立污泥热解能量平衡。定量分析污泥中有机物主要成分,结合各种成分热解过程中变化规律分析污泥热解机理,并利用表观动力学对污泥热解反应进行分段拟合。研发污泥热解设备开展工艺验证,对污泥热解工艺进行经济评价。
     污泥中铁盐回收最佳工艺条件pH值为1.5、搅拌时间60min,铝盐回收最佳工艺条件为pH值2.5、搅拌时间60min,回收率分别为79.2%和83.5%,污泥减量率为50.85%和35.51%。多次循环回收会导致铁盐或铝盐回收率下降,分解由83.78%和84.51%降低至70.06%和78.43%。利用污泥中回收的铁盐或铝盐处理污水,对浊度的去除效果接近或者略好于新鲜铁盐或铝盐对浊度的去除效果,出水UV254值略大于新鲜铁盐或铝盐出水的UV254值,对CODCr和SCODCr的去除率与使用新鲜的铁盐或铝盐处理效果没有明显的波动,对总磷去除率均高于97.00%,对色度的去除率由51.00%降低到41.00%。
     污泥热解过程中影响热解产物产率的主要因素是热解温度,热解液体和气体产物产率随热解温度升高而升高,热解升温速率和热解时间影响不明显。污泥中碳、氢、氧、氮和硫元素向气体产物中迁移量随热解温度升高而增加。污泥连续式热解工艺中污泥热解反应深度高于序批式热解工艺,在800℃以上热解温度下,更多的碳、氧、氮元素由污泥中迁移出去,但硫元素正相反,原因是污泥连续式热解工艺中热解温度高于800℃下硫元素可以与其他元素发生反应被固定在热解固体产物中,污泥连续式热解工艺中污泥中除碳、氢、氧、氮和硫元素外的其他元素含量减少幅度大于序批式热解,原因是连续式污泥热解工艺反应条件更利于这些元素由污泥向热解气体产物中迁移。
     低热解温度下热值明显降低。热解液体产物在450-600℃热解温度下热值达到很高水平,液体产物热值最大值为26433kJ/kg,热解液体产物能源化利用价值在600℃时达到最大。污泥序批式热解工艺在700-800℃温度段获得的热解气体产物热值最高。两种热解工艺分别在各自最优参数下从热解液、气体产物中可回收能量占污泥含有的化学能的77.50%左右。随着污泥热解温度上升,热解反应呈现先吸热后放热的规律,反应热由吸热转变为放热的温度点为588.56℃,整个热解过程反应热盈亏转换点为809.56℃,采用不同热解反应温度条件,反应热最大吸热量仅为637.24J/g,仅占污泥自身化学能的3.94%,由此可见,污泥热解能源化利用工艺是高效低耗的。
     污泥中主要有机物成分中蛋白质类、脂类、多糖类和以腐殖质为主的其他有机物分别占污泥质量的29.78%、16.62%、11.08%和11.77%。在25-180℃温度段内,主要是水分、易挥发有机物、碳氧化合物、氮和硫元素的氢化物气化。当热解温度超过240℃时,污泥中蛋白质类、脂类和多糖类开始热解。随着热解温度超过400℃,二次热解反应开始出现,污泥热解气体产物产率迅速升高,当热解温度达到428℃时,污泥中多糖类物质热解已经基本完成,464℃脂类物质气化完成,538℃蛋白质类物质热解完成,热解温度高于538℃后的污泥热失重主要由于腐殖质类物质热解导致。表观动力学分析表明,污泥热解过程中在148-220℃温度段时符合一级动力学模型,在220-475℃符合二级动力学模型,在475-630℃温度段时符合一级动力学模型。
     污泥热解工艺研究结果表明污泥热解产物产率和元素组成与小试规模相近,较高的热解温度下因为热辐射导致的能耗会增加,经济分析结果表明,污泥热解产物具有较高的利用价值,污泥热解资源化利用工艺具有优良的效益产出,如果作为一个项目进行建设,具有投资基金回收周期短,回报率高的优点。
A significant amount of sludge is generated in wastewater treatment processes.There are a variety of constituents, such as organic matter, metals, pathogens,parasitic ovum and etc. making it unstable and prone to turn septic. Hence, wastewatersludge can be the source of secondary contamination of surrounding environmentwithout proper handling and treatment. On the other hand, sludge can be a sort ofresource after certain types of pretreatment, e.g. heat pyrolysis. The reclamation ofwastewater sludge pyrolysis products can minimize the threat to environment as atype of waste recycle and reuse.
     In this study, coagulants, e.g. ferric and aluminum salts recycled from biosolidsare examined for chemical enhanced primary wastewater treatment. Mass balance ofsludge thermal hydrolysis products in three phases are studied with lab-scale batchfeed and continuous thermal hydrolysis reactors, fate and transport of all kinds ofelements are also evaluated. Energy balance of thermal hydrolysis is established bymeasuring heat value and reaction heat at different temperatures. Mechanism study isconducted to all kinds of constituents in biosolids in the thermal hydrolysis process.Fitting of individual section in thermal hydrolysis reactions is conducted by apparentkinetics. Industrial scale equipments are developed, economical analysis is conducted.
     The optimal condition for ferric salt in chemical enhanced primary wastewatertreatment is: pH at1.5, stirring time at60min. For aluminum salt, the optimalcondition is: pH at2.5, stirring time at60min. Recovery rate are79.2%and83.5%respectively, biosolid reduction rate are50.85%and35.51%. Multiple stage recoveryrates get reduced from83.78%an84.51%to70.06%and78.43%, respectively. Theperformance of reclaimed ferric and aluminum salts are close to or better than regularsalts on turbidity removal. The UV254transmittance of reclaimed salts treatedwastewater is slightly better than regular ones, COD and SCOD removal rates aresimilar to regular ones, total phosphorous removal rate is always higher than97%,color removal rate reduces from51%to41%.
     The main factor in the sludge pyrolysis process is temperature, production ratesof pyrolysis liquid and gaseous products are proportional to temperature. Temperatureincreasing rate and time are not strong factors. Higher temperature is beneficial formass transfer to gaseous phase of a variety of elements, such as carbon, hydrogen,oxygen, nitrogen and sulfur. Continuous process gives better pyrolysis extent thanbatch feed process, at high temperature, more carbon, nitrogen and oxygen aretransferred from sludge to other phases, less sulfur gets transferred because sulfurgets involved in reactions that immobilize it in the solid phase. Reduction rate otherelements is slightly higher in continuous process, the reason is gaseous product generation rate is higher in continuous process, micro particles in aerosol are takenaway by gaseous products.
     Combustion heat of pyrolysis products reduce significantly with pyrolysistemperature. Combustion heat of liquid products hydrolyzed under450-600℃canreach as high as26433kJ/kg. Optimal temperature of liquid pyrolysis productsutilization is600℃. Highest combustion heat of gaseous pyrolysis products isachieved at temperature of700-800℃. Aiming at energy utilization, batch feedreactors are suitable for high combustion heat biofuel in liquid, continuous flowreactors are suitable for biogas. The two types of pyrolysis processes can achieve77.50%energy recovery in terms of chemical energy under optimal conditions fromeither liquid or gaseous pyrolysis products. With the pyrolysis temperature increases,the reaction absorbs then releases energy, the turning point of energy absorb-releaseis588.56℃, and the turning point of energy lose-gain is809.56℃. Under differenttemperatures, the maximum energy absorbed is as low as637.24J/g, only3.94%ofsludge chemical energy. Hence, the pyrolysis of sludge is energy positive.
     Protein, lipid, polysaccharides, and humic substances in wastewater sludgeaccount for29.78%,16.62%,11.08%and11.77%, respectively. Within25-180℃, itis mainly gasification of moisture, volatile organics, carbonhydrate and sulfur hydride.When temperature is higher than240℃, protein, liquid and polysaccharides start topyrolysis. When temperature goes up to400℃, secondary pyrolysis happens,gasification rate increases immediately. In wastewater sludge, pyrolysis ofpolysaccharides ends at428℃, lipids gasification ends at464℃, pyrolysis of proteinfinishes at538℃.In apparent kinetics, the pyrolysis reaction fits first order intemperature range of148-220℃, second order in220-475℃and first order in475-630℃.
     Sludge pyrolysis products generation rate and elemental composition is similarto lab scale. Energy cost can be higher because of heat radiation under hightemperature. As shown in economic analysis, sludge pyrolysis process as resourcereclamation has excellent benefit output, it has multiple advantages, such as shortpay-off period, high rate of capital return, etc.
引文
[1] Degremont E. Manual Técnico del Agua. Bilbao,1979.
    [2] Council Directive1999/30/EEC of22April1999relating to waste incineration.
    [3] Problems around sewage sludge. European comission. Official Publication of theEuropean Communities,1999.
    [4] Fonts I., Azuara M., Gea G., et al. Study of the pyrolysis liquids obtainedfromdifferent sewage sludge[J]. J Anal Appl Pyrolysis2009,85:184-191.
    [5] Metcalf, Eddy. Wastewater engineering—treatment, disposal and reuse.3rded.McGraw Hill,1991:83-86.
    [6] Chishti S. S., Nazrul Hasnain S., Altaf Khan M.. Studies on the Recovery of SludgeProtein[J]. Water Research,1992,26(2):241-248.
    [7] Hwang J., Zhang L., Seo S., et al. Protein recovery from excess sludge for its use asanimal feed[J]. Bioresource Technology,2008,99(18):8949-8954.
    [8]汪常青,梁浩,李亚东等.利用剩余污泥制备泡沫灭火剂的试验研究[J].中国给水排水,2006,22(9):38-42.
    [9] Y. Liu, M. C. Lam, H. P. Fang. Adsorption of Heavy Metals by EPS of ActivatedSludge[J]. Water Science and Technology.2001,43(6):59-66.
    [10]郭杰,曾光明,张盼月等.结晶法磷回收工艺在污水处理中的[J].应用水处理技术,2006,32(10):1-4.
    [11] Jaffer Y., Clark A. T., Pearce P., et al. Potential phosphorus recovery by struviteformation[J]. Water Researeh,2002,36:1834-1842.
    [12] Bartistoni P., Paci B., Fatone F., et al. Phosphorus removal from anaerobicsupernatants: start-up and steady-state conditions of a fluidized bed reactor full-scale plant[J]. Industrial&Engineering Chemistry Research,2006,45(2):663-669.
    [13] Munch E. V., Barr K.. Controlled struvite crystallization for removing phosphorusfrom anaerobic digester sidestreams[J]. Water Research,2001,35(1):151-159.
    [14]王嘉麟,吴芳云,吕荣砌.从含油污泥中回收油技术的研究[J].油气田环境保护,1996,6(3):3-5.
    [15]祝万鹏.溶剂萃取法回收电镀污泥中的有价金属[J].给水排水,1995,(12):16-18.
    [16]张冠东.从氨浸电镀污泥产物中氢还原分离铜、镍、锌的研究[J].化工进展,1996,17(3):214-219.
    [17]陈凡植.电镀污泥的综合利用实验研究[J].化工进展,2001,(7):25-28.
    [18]平闪正腾,吉野善弥.污泥处理工程学[M].上海:华东化工学院出版社,2000.
    [19]李媛.德国斯图加特市污水处理厂污泥焚烧工艺[J].中国环保产业,2004,05:35-37.
    [20]李媛.斯图加特市污水处理厂污泥焚烧工艺[J].节能与环保,2004,07:16-18.
    [21]雷菊霞.德国污泥处置技术的分析与研究[J].宁夏工程技术,2005,4(4):389-392.
    [22] McIlveen-Wright D. R., Huang Y., Rezvani S., et al. A technical and environmentalanalysis of co-combustion of coal and biomass in fluidised bed technologies[J].Fuel,2007(86):203-204.
    [23] Fonts I., Azuara M., Gea G., Murillo M. B.. Study of the pyrolysis liquids obtainedfrom different sewage sludge[J]. J Anal Appl Pyrolysis,2009,85:184-191.
    [24] Shen L., Zhang D. K.. An experimental study of oil recovery from sewage sludge bylow-temperature pyrolysis in a fluidised-bed[J]. Fuel,2003,82:465-472.
    [25] Dominguez A., Menendez J. A., Inguanzo M., et al. Gaseous chromatographic-massspectrometric study of the oil fractions produced by microwave-assisted pyrolysisof different sewage sludges[J]. J Chromatogr A,2003,1012:193-206.
    [26] Park E. S., Kang B. S., Kim J. S.. Recovery of oils with high caloric value and lowcontaminant content by pyrolysis of digested and dried sewage sludge containingpolymer flocculants[J]. Energy Fuels,2008,22:1335-1340.
    [27] Fonts I., Juan A., Gea G., et al. Sewage sludge pyrolysis in a fluidized bed.2.Influence of operating conditions on some physicochemical properties of the liquidproduct[J]. Ind Eng Chem Res,2009,48:2179-2187.
    [28] Pokorna E., Postelmans N., Jenicek P., et al. Study of bio-oils and solids from flashpyrolysis of sewage sludges[J]. Fuel,2009,88:1344-1350.
    [29] Sánchez M. E., Lindao E., Margaleff D., et al. Bio-fuels and biochar production frompyrolysis of sewage sludge[J]. J Residual Sci Technol,2009,6:35-42.
    [30] Gil-Lalaguna N., Fonts I., Gea G., et al. Reduction of water content in sewage sludgepyrolysis liquid by selective online condensation of the vapors[J]. Energy Fuels,2010,24:6555-6564.
    [31] A. Fakhru’l-Razi, A. H. Molla. Enhancement of Bioseparation and Dewaterabilityof Domestic Wastewater Sludge by Fungal Treated Dewatered Sludge[J]. Journal ofHazardous Materials.2007,147(1-2):350-356
    [32]唐军,张增强.污泥堆肥用于城市绿化的现状及前景[J].节能与环保.2009,7:33-34.
    [33] M. Escudey, J. E. F rster, J. P. Becerra, et al. Disposal of Domestic Sludge andSludge Ash on Volcanic Soils. Journal of Hazardous Materials[J].2007,139(3),31:550-555.
    [34] F. Laturnus, K. von Arnold, C. Gron. Organic Contaminants from Sewage SludgeApplied to Agricultural Soils–False Alarm Regarding Possible Problems for FoodSafety?[J] Environmental Science and Pollution Research.2007,14(1):53–60.
    [35]王昭君,闫洪坤.我国城市污水处理厂污泥处理工艺及现状[J].辽宁工程技术大学学报(自然科学版).2009,28(增刊):119-121.
    [36] Commission of European Communities. Council Directive91/271/EEC of21March1991concerning urban waste-water treatment (amended by the98/15/EC of27February1998).
    [37]刘烨,田一梅,从月宾.污泥处置与资源化新技术探讨[J].四川环境.2004,23(6):54-57.
    [38]唐小辉,赵力.污泥处置国内外进展[J].环境科学与管理.2005,30(3):68-70,90.
    [39]曾祥文,王海霞.我国污水处理厂污泥处置的回顾与展望[J].工业安全与保.2007,33(7):20-22.
    [40]曹国凭,林伟,李文洁.城市污泥的处理方法及填埋技术的应用[J].水利科技与经济.2006,12(11):758-761.
    [41]张华,赵由才,黄仁华.不同性质污泥在模拟填埋场中的稳定化进程研究[J].环境科学学报.2009,29(10):2103-2109.
    [42]谈勇,杨伟宏.污泥填埋对邻近水域水质的影响研究[J].滁州学院学报.2009,11(1),48-52.
    [43]《中国污泥处理处置市场分析报告2011版》[M].中国水网.2011.
    [44]杨晓奕,蒋展鹏.湿式氧化处理剩余污泥的研究[J].给水排水.2003,29(7):50-54.
    [45] J. Werther, T. Ogada. Sewage Sludge Combustion[J]. Progress Energy Combust Sci.1999,25:55-116.
    [46]唐小辉,赵力.污泥处置国内外进展[J].环境科学与管理.2005,30(3):68-70,90.
    [47]苏丹,王鑫,刘一威.三种典型的污泥发电工艺[J].环境保护科学.2009,35(1):54-57.
    [48] Shibata S.. Procede de fabrication dune huille combustible a partir de boue digeree,French Patent[P].838,063.1939.
    [49] Bayer B., Kutubuddin M.. Process of the International Recycling Congress[J], Berlin.EF Verlag.1987:314-318.
    [50] Campbell H. W., Dirkzwager A. H.. Sewage Sludge Treatment and Use[M]. London.Elsevier Applied Science,1989:536.
    [51] Lutz H., Romeiro G. A., Damasceno R. N., et al. Low temperature conversion ofsome Brazilian municipal and industrial sludges[J]. Bioresourec Technology,2000,74(2):103-107.
    [52] Inguanzo M., Dominguez A., Menendez J. A., et al. On the pyrolysis of sewagesludge: the influence of Pyrolysis conditions on solid, liquid and gaseousfractions[J]. Journal of Analytical and Applied Pyrolysis,2002,63(l):209-222.
    [53] Sanchez M. E., Menendez J. A., Dominguez A., et al. Effect of Pyrolysis temperatureon the composition of the oils obtained from sewage sludge[J]. Biomass&Bioenergy,2009,33(6-7):933-940.
    [54] Casajus C., Abrego J., Marias F., et al. Product distribution and kinetic scheme forthe fixed bed thermal decomposition of sewage sludge[J]. Chemical EngineeringJoumal,2009,145(3):412-419.
    [55]何品晶,顾国维,邵立明,李国建.污水污泥低温热解处理技术研究[J].中国环境科学.1996,16(4):254-257.
    [56]李海英.生物污泥热解资源化技术研究[D].天津:天津大学,2006.
    [57]李海英,张书廷,赵新华.城市污水污泥热解温度对产物分布的影响[J].太阳能学报,2006,27(8):835-840.
    [58]邵敬爱.城市污水污泥热解试验与模型研究[D].武汉:华中科技大学,2008.
    [59]林宗虎,魏敦裕,安恩科等.循环流化床锅炉[M].北京:化学工业出版社,2004.
    [60] Schmidt H., Kaminsky W.. Pyrolysis of oil sludge in a fluidized bed reaetor[J].Chemosphere,2001,45(3):285-290.
    [61]贾相如,金保升,李睿.污水污泥在流化床中快速热解制油[J].燃烧科学与技术,2009,15(06):528-534.
    [62]贾相如,金保升,李睿.温度对污水污泥流化床热解油成分影响的GC-MS分析[J].热能动力工程,2009,24(5):656-660.
    [63] K. Raunkjaer, T. Hvitvedjacobsen, P. H. Nielsen. Measurement of Pools of Protein,Polysaccharide and Lipid in Domestic Waste-water[J]. Water Research.1994,28(2):251-262.
    [64] C. Sophonsiri, E. Morgenroth. Chemical Composition Associated with DifferentParticle Size Fractions in Municipal, Industrial, and Agricultural Wastewaters[J].Chemosphere.2004,55(5):691-703.
    [65]姜应和,张发根.化学污泥中铝盐混凝剂的回用[J].环境科学与技术.2003,26(1):38-39.
    [66]黄圣皓,陈建隆,康世芳,吴志超.铝盐污泥酸化与混凝剂之回收[J].2005,第二届海峡两岸饮用水安全控制技术及管理研讨会,378-381.
    [67]刘辉,张玉先.自来水厂污泥处置与综合利用[J].给水排水.2001,27(11):15-17.
    [68]费庆志,许芝.混凝剂循环使用及化学混凝处理乳化废液的研究[J].环境污染治理技术与设备.2004,5(4):70-72.
    [69]周恩红,刘中京,刘德启,张静.酸处理化学污泥溶出铝盐影响因素研究[J].中外能源.2007,(12):100-102.
    [70] Mark M., Bishop. Testing of Alum Recovery for Solids Reduction and Reuse[J].Research and Technology. June,1987:76-83.
    [71] George P. Fulyon. Recover Alum to Reduce Waste-Disposal Costs[J]. AWWA.January,1974:312-318.
    [72] M. S. E. Abdo, K. T. Ewida, Y. M. Youssef. Recovery of Alum from Wasted SludgeProduced from Water Treatment Plants[J]. J of Enviromental Science Health2000A28(6):1205-1216.
    [73] Ben H., H. Chen, Paul H. King, and Clifford W. Randall. Alum Recovery fromRepresentative Water-Treatment-Plant Sludges[J]. Jour. AWWA,1976,68(4):204.
    [74] Chi-Wang Li, Jr-Lin Lin, Shyh-Fang Kang, Chung-Lin Liang. Acidification andalkalization of textile chemical sludge[J]. Separation and Purification Technology.2005,(42):31-37.
    [75] Kim Y., Parker W.. A technical and economic evaluation of the pyrolysis of sewagesludge for the production of bio-oil[J]. Bioresource Technology,2008,99(5):1409-1416.
    [76] Shen L., Zhang D. K.. An experimental study of oil recovery from sewage sludge bylow-temperature pyrolysis in a fluidised-bed[J]. Fuel,2003,82(4):465-472.
    [77]李海英,张书廷,赵新华.城市污水污泥热解温度对产物分布的影响[J].太阳能学报,2006,27(8):835-840.
    [78] Thipkhunthod P., Meeyoo V., Rangsunvigit P., et al. Pyrolytic characteristics ofsewage sludge[J]. Chemosphere,2006,64(6):955-962.
    [79] Dominguez A., Menendez J. A., Pis J. J.. Hydrogen rich fuel gaseous productionfrom the pyrolysis of wet sewage sludge at high temperature[J]. Journal ofAnalytical and Applied Pyrolysis,2006,77(2):127-132.
    [80] Donald A. Hoffman, Richard A. Fitz. Batch Retort Pyrolysis of Solid MunicipalWastes[J]. Environmental Science and Technology,1968,11(2):1023-1026.
    [81] Evita Agrafioti, George Bouras, Dimitrios Kalderis, Evan Diamadopoulos. Biocharproduction by sewage sludge pyrolysis[J]. Journal of Analytical and AppliedPyrolysis,2013,101:72-78.
    [82] Tamer Karayildirim, Jale Yanik, Mithat Yuksel, Henning Bockhorn. Characterisationof products from pyrolysis of waste sludges[J]. FUEL,2006,85:1498-1508.
    [83] I H Hwang, Y Ouchi, T Matsuto. Characteristics of leachate from pyrolysis residueof sewage sludge. Chemosphere[J],2007,68:1913-1919.
    [84] Huanliang Lu, Weihua Zhang, Shizhong Wang, et al. Characterization of sewagesludge-derived biochars from different feedstocks and pyrolysis temperatures[J].Journal of Analytical and Applied Pyrolysis,2013,102:137-143.
    [85] Wu Xia, Xie Li-ping, Li Xin-yu, et al. Effect of wastewater treatment processes onthe pyrolysis properties of the pyrolysis tars from sewage sludges[J]. Journal ofThermal Science,2011,20(2):167-172.
    [86] A. Ji, S. Zhang, X. Lu, et al. Character and Composition Analysis of DistillingFractions from Sewage Sludge Pyrolysis Oil[J]. Energy Sources, Part A: Recovery,Utilization, and Environmental Effects,35(3):290-297.
    [87] Jing-Pei Cao, Xiao-Yan Zhao, Kayoko Morishita, et al. Fractionation andidentification of organic nitrogen species from bio-oil produced by fast pyrolysis ofsewage sludge[J]. Bioresource Technology.2010,101:7648-7652.
    [88] M. Villalba, A. Silva, C. Tagliati, et al. Acute systemic toxicological and mutagenicevaluations of a proteolytic fraction from latex of Carica candamarcensis[J].Abstracts/Toxicology Letters,2010,196S: S37-S351.
    [89] Trung Ngoc Trinh, Peter Arendt Jensen, Kim Dam-Johansen, et al. Influence of thePyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and CharProperties[J]. Energy Fuels,2013,27:1419-1427.
    [90] I. Fonts, E. Kuoppala, and A. Oasmaa. Physicochemical Properties of Product Liquidfrom Pyrolysis of Sewage Sludge[J]. Energy Fuels,2009,23:4121-4128.
    [91] Young Nam Chun, Dae Won, Ji and Kunio Yoshikawa. Pyrolysis andgaseousification characterization of sewage sludge for high quality gaseous and charproduction[J]. Journal of Mechanical Science and Technology,2013,27(1):263-272.
    [92] E. Pokorna, N. Postelmans, P. Jenicek. Study of bio-oils and solids from flashpyrolysis of sewage sludges[J]. Fuel,2009,88:1344-1350.
    [93] Kim Y., Parker W.. A technical and economic evaluation of the pyrolysis of sewagesludge for the production of bio-oil[J]. Bioresource Technology,2008,99(5):1409-1416.
    [94] Fu-Jun Tian, Bao-Qing Li, Yong Chen, Chun-Zhu Li. Formation of NOx precursorsduring the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge[J].Fuel,2002:2202-2208.
    [95] UreA.M., Quevauviller P.H., Muntau H., etal. Speciation of heavy metals in soilsand sediments. An account of the improvement and harmonization of extractiontechniques undertaken under the auspices of the BCR of the Commission ofEuropean Communities[J]. Int. J. Environ. Anal. Chem,1993,51(1-40):135-151.
    [96] KistlerR. C., Widmer E., Brunner P. H.. Behavior of chromium, niekel, copper, zine,cadmium, mercury, and lead during the Pyrolysis of sewage sludge[J].Environ.Sci.Technol,1987,21(7):704-708.
    [97] Bibak A., Cobalt. Copper and manganese adsorption by aluminum and iron oxidesand humic acid[J]. Commun. Soil Sci. Plant Anal,1994,25(5):3229-3239.
    [98] Walter I., Cuevas G.. Chemical fractionation of heavy metals in soil amended withrepeated sewage sludge application[J]. Science of Total Environmental,1995,226(11):113-119.
    [99]张俊民,蔡凤岐,何同康.中国的土壤[M].第一版.北京:商务印书馆,1996.
    [100]Weisz M., polyak K., Hlavay J.. Fractionation of elements in sediment samplescollected in rivers and harbors at Lake Balaton and its catchment area[J].Microchem. J.,2000,67(l-3):207-217.
    [101]Tuzen M.. Determination of trace metals in the River Yesilirmak sediments in Tokat,Turkey using sequential extraction Procedure[J]. Microchem.J.2003,74(l):105-110.
    [102]Kazi T. G., Jamali M. K., Kazi G. H., et al. Evaluating the mobility of toxic metalsin untreated industrial wastewater sludge using a BCR sequential extractionprocedure and a leaching test[J]. Anal. Bioanal. Chem,2005,383(2):297-304.
    [103]郭汉贤,应用化工动力学[M].北京:化学工业出版社,2003,128-129.
    [104]陈俊武.催化裂化工艺与工程[M].北京:中国石化出版社,2005.915-918.
    [105]DumPelmann R., Rieharz W., Stammbach M. R.. Kinetic-studies of the Pyrolysis ofsewage-sludge by TGA and comparison with fluidized-beds[J]. Canadian Journal ofChemical Engineering,1991,69(4):953-963.
    [106]李传统.新能源与可再生能源技术[M].南京:东南大学出版社,2005.
    [107]谭洪.生物质热裂解机理试验研究[D].杭州:浙江大学,2005.
    [108]刘军.有机化学[M].武汉:武汉理工大学出版社,2009.
    [109]Jegers H. E., Klein M. T.. Primary and secondary lignin Pyrolysis reactionpathways[J]. Industrial&Engineering Chemistry process Design and Development,1985,24(1):173-183.
    [110]Adrian M.. Cunliffe, Paul T.. Williams. Composition of oils derived from the batchPyrolysis of tyres[J]. Journal of Analytical and Applied Pyrolysis,1998,(44):131-152.
    [111]Font R., Fullana A., Conesa J. Kinetic models for the pyrolysis and combustion oftwo types of sewage sludge[J]. J. Anal. Appl. Pyrolysis,2005,74(1-2):429-438.
    [112]Conesa J.A., Marcilla A., Prats D., et al. Kinetic study of the pyrolysis of sewagesludge[J]. Waste Management and Research,1997,15(3):293-305.
    [113]Scott S.A., Dennis J.S., Davidson J.F., et al. Thermogravimetric measurements ofthe kinetics of pyrolysis of dried sewage sludge[J]. Fuel,2006,85(9):1248-1253.
    [114]Coats A.W., Redfern J.P. Kinetic parameters from thermo gravimetric data[J].Nature,1964,201:68-69.
    [115]A.F. Roberts. A review of kinetics data for the pyrolysis of wood. and relatedsubstances[J]. Combust and Flame,1970,14(3):261-272.
    [116]K.-S. Lin, H.P. Wang, S.H. Liu, et.al. Pyrolysis kinetics of refuse-derived fuel[J].Fuel Processing Technology,1999,60(2):103-110.
    [117]L. S rum, M.G. Gr nli and J.E. Hustad. Pyrolysis Characteristics and Kinetics ofMunicipal Solid Wastes[J]. Fuel.2002,80(9):1217-1227.
    [118]蒋旭光,池涌,严建华等.污泥的热解动力学特性研究[J].环境科学学报,1999,19(2):221-224.
    [119]解强,吴国光.垃圾衍生燃料(RDF)热解特性的研究[J].苏州科技学院学报(工程技术版),2003,16(1):16-21.
    [120]金保升,董长青等.废物衍生燃料(RDF)热解特性及其动力学研究[J].热能动力工程,2001,16(7):367-373.
    [121]J. A. Conesa1, A. Marcilla, D. Prats, et.al.. Kinetic study of the pyrolysis of sewagesludge[J]. Waste Management&Research,1997,15(3):293-305.
    [122]R. Font, A. Fullana, J. A., Conesa, et.al.. Analysis of the pyrolysis and combustionof different sewage sludges by TG[J]. Journal of Analytical and Applied Pyrolysis,2001,58-59(1):927-941.
    [123]R. Font, A. Fullana, J. Conesa. Kinetic models for the pyrolysis and combustion oftwo types of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):429-438.
    [124]D. L. Urban, M.J. Antal. Study of the kinetics of sewage sludge pyrolysis using DSCand TGA[J]. Fuel,1982,61(9):799-806.
    [125]L. F. Calvo, M. Otero, B. M. Jenkins, et al.. Heating process characteristics andkinetics of sewage sludge in different atmospheres[J]. Thermo chemical Acta,2004,409(2):127-135.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.