生活垃圾填埋场渗滤液“三级垃圾填料床+臭氧法+SBR法”组合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国垃圾渗滤液具有污染物浓度高、水质和水量变化大的特点。如果这些垃圾渗滤液未得到适当的处理,那么将会对周围环境(特别是对水环境)产生重大污染。而且,随着垃圾填埋时间的延长,垃圾渗滤液中所含的难生化降解的有机物逐渐增多,可生化降解性很差(B/C值约等于0.1),如果直接采用生物传统工艺来处理这类废水难以收到预期的效果。
     本研究的研究对象是昆明东郊垃圾填埋场的收集的垃圾渗滤液,实验中采用的处理工艺为“三级垃圾填料床+臭氧氧化+生物法”工艺;研究过程中不仅研究了各工艺单元的最佳运行参数,而且还探讨了三级垃圾填料床和臭氧氧化的特征表征和污染物的降解机理。
     研究中使用的垃圾渗滤液具有老龄化(通常是指垃圾的填埋时间超过10年)渗滤液的特征,其水质指标为:COD为5000~1100mg/L; BOD为440~830mg/L; NH3-N为900~1200mg/L; pH:7.4~8.6。对垃圾填料床、臭氧氧化法以及生物法三种工艺单元分别进行研究,得出了各工艺单元的最优运行参数和最佳处理效果。
     (1)经粉煤灰陶粒优化的三级垃圾填料床处理后,垃圾渗滤液出水中的COD、BOD.NH3jN和色度的去除率分别达到83.9%、99.9%、97%和91.6%。由此可知,三级垃圾填料床能极大地降低高浓度的难降解有机物;垃圾渗滤液的颜色从黑褐色变为浅黄色;原水中BOD5/COD接近于零,这表明垃圾填料床能高效去除率垃圾渗滤液中的污染物;但经垃圾填料床处理后的垃圾渗滤液很难直接再通过生物法处理去除其中的有机污染物。
     (2)用臭氧法深度处理垃圾填料床处理后垃圾渗滤液的出水,当臭氧浓度为262mg/L时,废液中的COD浓度从318mg/L降至179mg/L;色度从56度降低为3.15度;但是BOD5浓度却从6mg/L升高到84mg/L。与此同时,BOD5/COD值则升至0.47,极大地提高了垃圾渗滤液出水的可生化性;色度的去除也得到了明显的提高。臭氧实验表明,臭氧氧化不仅能有效降低垃圾渗滤液中的COD浓度、色度,并有效提高其BOD浓度,从而在一定程度上提高了其可生化性。
     (3)当臭氧浓度为235mg/L时,后续生物处理出水COD浓度为92mg/L;当臭氧浓度调节至262mg/L时,生物处理出水中COD浓度则继续降低为75mg/L,完全满足新国标垃圾渗滤液排放标准(GB16889-2008)。
     (4)采用经处理后的锯末强化的SBR法处理臭氧法处理后的尾水。试验得出如下结果:①实际出水COD浓度比理论计算值COD浓度高,这表明臭氧处理后的垃圾渗滤液中仍存在着能降低生物处理效率的有毒性物质;②当TN/BOD>1,活性污泥的生物硝化过程可能会影响COD的去除;而当NH3-N的浓度大于50mg/L时,生物法去除COD的效果将迅速降低;③当磷的浓度从0mg/L升高至2mg/L时,出水COD浓度变化范围为81±3mg/L。因此,磷源不是影响出水COD浓度的限制性因素。④碳源的增加可有效增强微生物的活性,促使一些非降解物质被微生物吸附而浓度逐渐降低。经生物处理后的垃圾渗滤液中仍含有不能被活性污泥降解、吸附的污染物。
     上述结果表明:垃圾填料床能有效地降解渗滤液中所含有的难降解有机污染物、NH3-N及色度;而臭氧氧化则在去除COD和色度的同时,提高了BOD浓度,从而在一定程度上提高了渗滤液的可生化性,为后续的SBR法处理创造有利条件;“三级垃圾填料床+臭氧氧化+生物法”组合工艺的最终处理出水水质指标可达到新的国家排放标准GB16889-2008的排放要求。因此,采用组合工艺处理老龄垃圾填埋场渗滤液对实际工程应用具有积极的借鉴意义。
There are some high concentration pollutants in the landfill leachate. And water quality and quantity are changed frequently. It will cause serious pollution to the surrounding environment if it is not treated properly. Moreover, the landfill leachate easily appears the aged characteristics:refractory organics is more than before, and the biodegradability is very poor (BOD/COD=0.1). It is difficult that this kind of wastewater is efficiently treated with the traditional landfill leachate treatment technology.
     In this study, Landfill leachate from Kunming Donjiao landfill leachate is experimented by the " three-phase refuse filler bed+ozone oxidation method and activated sludge treatment" process; During the experiment, the treatment effect and the influence factors ofthe each process unit are not only studied, but also the treatment effect and main the influence factors of the combination process are studied.The main results are as follows:
     There are the aged characteristics(landfill time is more than10years) in the leachate from Shanghai Laogang landfill. The water quality indicators are as follows:COD:5000-110000mg/L, BOD:440-830mg/L, NH3-N:900-1200mg/L, pH:7.4-8.6. The optimum operation parameters and the best effect are studied in the process of the refuse filler bed, ozone oxidation and biological methodand the joint process.
     (1) The removal rate of COD、BOD5、NH3-N, and E. coli were83.9%、99.9%、97%and91.6%. When the landfill leachate was treated by three level refused filling bed. Through three-phase garbage packed bed, high concentration of refractory organics was greatly reduced; wastewater in the entrance is dark brown, and the effluent are light yellow in color; BOD5/COD is close to zero, which indicates that the packed garbage bed can efficiently remove pollutants; but it is very difficult to directly remove the organic pollutants from landfill leachateby biological treatment once more after the refuse filler bed treament.
     (2) The effluent was treated by ozone method after the refuse filler bed treatment.when the ozone concentration is262mg/L, The rate of CODwas reduced from318mg/L to179mg/L; chroma was reduced from56degrees to3.15degrees; but the BOD5concentration was increased from the original6mg/L to84mg/L. Therefore, the rate of BOD5/COD is increased to0.5; The biodegradability of the landfill leachate is improved greatly. It is showed that the ozone oxidation can not only decrease the COD concentration and chroma in the landfill leachate greatly, but also improve the BOD concentration.So the biodegradability is improved effectively.
     (3) When the ozone concentration is235mg/L, the COD concentration of the effluent treated by activated sludge process was92mg/L; when the ozone concentrationwas increased to262mg/L, the COD concentration was75mg/L, coming up the newest emission standard ofthe landfill leachate (GB16889-2008).
     (4)The effluent was treated by activated sludge process after ozone oxidation. Test results are as follows:①In addition, the COD concentration ofthe effluent is higher than that of theory. It indicates that there are still some toxic substances that reduce the efficiency of biological treatment of leachate after ozone oxidation.②When TN/BOD>1, the nitrification process may have an effect on COD removal; When the NH3-N concentration exceeds50mg/L, the removal rate of the COD decreases rapidly;③The COD concentration of the effluent was81+3mg/L when the phosphorus concentration changed between0to2(mg/L). Therefore, the phosphorus source is not the key factor which affects the COD concentration of the effluent.④The carbon source increased can enhance microbial activity, thereby promoting the microbial adsorption to some non-degradable material. The final effluent still contained some pollutants that could not be degraded or adsorpted by activated sludge.
     It is showed that: The garbade packed bed can effectively degrade the refractory organic pollutants, NH3-N and chroma; The COD concentration and chroma was reduced and the BOD concentration is improved. So the biodegradability was increased to a certain exten after the wastewater is treated by the ozone oxidation; the final effluent which was treated by the "three refuse filler bed+ozone oxidation method and biological" combined process could meet the newest national discharge standard (GB16889-2008). Therefore, it is significant that landfill leachate is treated by the combined process for practical engineering application.
引文
[1]T. Norbu, C. Visvanathan, B. Basnayake, Pretreatment of municipal solid waste prior to landfilling [J].Waste Manag.2005(25):997-1003
    [2]D. Kulikowska, E. Klimiuk, The effect of landfill age on municipal leachate composition [J]. Bioresour Technol,2008(99):5981-5985
    [3]S. Renou, J.G. Givaudan, S. Poulain et al., Landfill leachate treatment: Review and opportunity [J]. Hazard. Mater.2008150(15):468-493
    [4]Y. C. Zhao, H. Li, J. Wu et al., Treatment of leachate by aged-refuse-based biofilter[J]. Environ. Eng. (2002)(128):662-668
    [5]Y.C. Zhao, Z.Y. Lou, Y.L. Guo et al., Treatment of sewage using an aged-refuse-based bioreactor[J]. Environ. Manage. 2007 (82):32-38
    [6]C. Tizaoui, L. Bouselmi, L. Mansouri et al., Landfill leachate treatment with ozone and ozone/ hydrogen peroxide systems[J]. Hazard. Mater. 2007(140):316-324
    [7]J.J. Wu, C.C. Wu, H.W. Ma et al., Treatment of landfill leachate by ozone-based advanced oxidation process[J]. Chemosphere. 2004 (54):997-1003
    [8]Y.N. Lim, M.G Shaaban, C.Y. Yin, Treatment of landfill leachate using palm shell-activated carbon column: Axial dispersion modeling and treatment profile, Chem. Eng[J].2009 (146):86-89
    [9]T.A. Peters, Purification of landfill leachate with membrane filtration[J]. Filtration. Sep.1998 (35) 33-36
    [10]P.B. Moraes, R. Bertazzoli, Electrodegradation of landfill leachate in a flow electrochemical reactor[J]. Chemosphere. 2005 (58):41-46
    [11]D.M. Bila, A.F. Montalvao, A.C. Silva et al., Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement[J]. Hazard. Mater.2005 (117) 235-242
    [12]T. Poznyak, GL. Bautista, I. Chairez et al., Decomposition of toxic pollutants in landfill leachate by ozone after coagulation treatment[J]. Hazard. Mater.2008 (152) 1108-1114
    [13]Y.M. Lei, Z.M. Shen, R.H. Huang et al., Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation[J]. Wat. Res. 2007 (41) 2417-2426
    [14]W.Y. Ahn, M. S. Kang, S.K. Yim et al., Advanced landfill leachate treatment using an integrated membrane process[J]. Desalination.2002 (149) 109-114
    [15]赵珊,王王静,池勇志等.光催化氧化法处理垃圾渗滤液特性研究[J].天津城市建设学院学报,2006(1):43-46
    [16]高艳娇,黄继国,聂广正等. Fenton氧化法深度处理垃圾渗滤液工业用水与废水[J].2005(6):39-41
    [17]黄报远,金腊华,卢显妍,等.臭氧化对垃圾填埋场后期渗滤液的预处理研究[J].环境污染治理技术与设备,2006,7(4):103-106
    [18]N. D. Berge, D.R. Reinhart, J. Dietz et al., In situ ammonia removal in bioreactor landfill leachate[J]. Waste. Manag. 2006 (26):334-343
    [19]A. C. Silva, M. Dezotti, G.L. S. Jr, Treatment and detoxification of a sanitary landfill leachate[J]. Chemosphere.2004 (55):207-214
    [20]Y.Z.Peng,S.J. Zhang, W. Zeng et al.,Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate[J]. Wat. Res. 2008 (42):883-892
    [21]叶少帆,吴志超,王志伟等,Fenton氧化—活性炭吸附协同深度处理垃圾渗滤液的研究[J].环境工程学报,2010(6):1363-1367
    [22]殷琨,秦俊芳等.UASB/Orbal氧化沟工艺处理垃圾渗滤液[J].中国给水排水,2006(6):74-77
    [23]刘毅梁,熊向阳,康建雄等.吹脱/厌氧/氧化沟/稳定塘工艺处理城市垃圾渗滤液[J].市政技术,2006(1):18-21
    [24]黄晓军,孟了等.MBR-NF工艺处理垃圾渗滤液中试研究[J].水处理技术,2011(4):115-117
    [25]梁军波,杨开,张大义等.用MBR-PAC方法处理垃圾渗滤液的研究[J].环境科学与技术,2006(6):93-94
    [26]陈斌.回灌法在垃圾渗滤液处理中的应用前景[J].福建化工,2000(3):30-32转26
    [27]卢成洪,徐迪民,回灌法处理城市垃圾填埋场渗沥液[J].上海环境科学.1997,16(1):3840
    [28]周益洪,周恭明,梅亚青.人工湿地处理垃圾渗滤液[J].环境卫生工程,2005(3):10-13
    [29]Tjasa Bulc, et al. The use of constructed wetland for landfill leachate treatment[J]. Wat Sci Tech, 1997,35(5):301-306
    [30]吴军.稳定化垃圾生物反应床处理老港填埋场渗滤液中试研究[D].上海,同济大学,2002:32-86
    [31]Azevedo B D,Mavinic D S, et al.The effect of ammonia loading and operating temperature on nitrification and denitrification of a high ammonia landfill leachate Canadian[J]. Journal of Civil Engineering, 1995,22(3):524-534
    [32]Shiskowski D M, Mavinic D S. Biological treatment of high ammonia landfill leachate using predenitrification and pre/post denitrification processes[A].4th Annual Environmental Engineering Specialty Conference, Canadian Society for Civil Engineering, Edmonton, Alberta,1996,26(12): 1523-1530
    [33]Shiskowski D M, Mavinic D S. Biological treatment of high ammonia leachate,influence of external carbon during initial startup[J]. Wat Res, 1998, 32(8):2533-2541
    [34]贾玉鹤,李晶等.磷酸铵镁沉淀法去除垃圾渗滤液中氨氮的实验研究[J].环境工程学报,2007(8):74-77
    [35]潘终胜,赵由才.矿化垃圾反应床处理渗滤液的工程应用[J].中国给水排水,2006(3):58-61
    [36]黄仁华,石磊,赵由才.矿化垃圾生物反应床处理渗滤液的示范工程研究[D].2006(6):1-6
    [37]许正,毛本将,君科.臭氧氧化法处理印染废水[J].四川环境,1999,18(1):13-15
    [38]储金宇,吴春笃,陈万金.臭氧技术及应用[M].北京:化学工业出版社.2002:247-249
    [39]阳立平,李子燕,宁平.臭氧氧化降解高浓度苯酚废水的研究[J].四川化工,2004,7(4):11-13.
    [40]Soung Chang, Chang.Mo Chung,Seung—Ho Han.Treatment of oily wastewater by ultrafiltration and ozone[J]. Desalination, 2001(133):225-232
    [41]沈小星,陈哲铭,方士,姚铭,王凯雄.老龄垃圾渗滤液混凝-催化臭氧氧化工艺研究[J].浙江大学学报(农业与生命科学版),2006,32(4):449-454
    [42]傅平青等.混凝臭氧氧化预处理垃圾渗滤液的实验研究[J].环境科学与技术,2002,25(6):26-28.
    [43]Monie-Ramirez, M T Orta de Velasquez. Removal and transformation of recalcitrant organic matter from stabilized saline landfil leaehates by coagulation—ozonation coupling processes[J].Water research, 2004,38.2358-2366
    [44]于德淼,马军.臭氧高级氧化与BAF联合污水深度处理工艺比较与研究[D].哈尔滨,哈尔滨工业大学,2006:32-86
    [45]汪晓军,林德贤,顾晓扬等.臭氧一曝气生物滤池处理酸性玫瑰红染料废水[J].环境污染治理技术与设备,2006(7):44-46
    [46]王树涛,马军,田海等.臭氧预氧化/曝气生物滤池污水深度处理特性研究[J].现代化工,2006,26(11):32-36
    [47]杨志华.臭氧氧化法处理染料中间体1-氨基葸醌和DSD酸生产废水[J].化工环保,1994(5):267-270.
    [48]邵刚.膜法水处理技术及工程实例[M].第1版.北京:化学工业出版社.2002.
    [49]Catalkaya E C, Kargi F. Degradation and mineralization of simazine in aqueous solution by ozone /hydrogen peroxide advanced oxidation[J] Journal of Environmental Engineering-ASCE, 2009, 135(12):1357-1364
    [50]孙志军,张璐,顾铮.预处理+生化+膜+臭氧工艺处理垃圾焚烧厂渗滤液[J].工业安全与环保.2010,36(6):48-50
    [51]郑可,周少奇,沙爽等.臭氧氧化反渗透浓缩垃圾渗滤液动力学[J].环境科学.2011,32(10):2966-2970
    [52]刘军,王珂,贾瑞宝,等.臭氧—活性炭工艺对饮用水中邻苯二甲酸酯的去除[J].环境科学,2003,24(4):77-80
    [53]李璇,呂锡武,朱光灿.臭氧-生物活性炭工艺处理黄浦江微污染原水的中试研究[J].水处理技术,2007,33(11):53-56
    [54]姚宏,马放,田盛等.臭氧-固定化生物活性炭滤池深度处理石化废水的试验研究[J].环境污染治理技术与设备,2005,6(5):83-86
    [55]杨基先,王晨,马放等.臭氧—固定化生物活性炭工艺深度处理饮用水[J].中国给水排水,2008,24(13):106-108
    [56]R Vahala, T Ala-Peijari, J Rintala, et al. Evaluating ozone dose for AOC removal in two-step GAC filters [J]. Water Science and Technology, 1998,37(9):113-120
    [57]Schroder H Fr. Characterization and monitoring of persistent toxic organics in the aquatic environment [J]. Water Science and Technology, 1998,38(7):151-158
    [58]Peter A Barratt, Arne Baumgartl,Neil Hannay,Manfred Vetter,Feng xiong.Chemox TM:advanced waste water treatment with impinging zone reactor[J].Water Science Technology, 1997, 35(4):347-352
    [59]王琳,孙盛成.深度氧化技术(AOP)及其在垃圾渗滤液处理中的应用[J].哈尔滨建筑大学学报,1998,31(2):63-66
    [60]Mina Marry Mitani. Applications of a microporous diffuser reactor system for MTBE oxidation using ozone and ozone-hydrogen peroxide [D]. Santa Barbara:University of California, 2002:31-92
    [61]A Wenzer,A Gahr,R Niessner. TOC-removal and degradation of pol-lutants in landfill leachate using a thin-film photoreactor[J]. Waterresearch,1999,33(4):937-946
    [62]卢铭,李建明,陈志等.垃圾渗滤液的臭氧处理[J].四川环境.2005,25(6):40-44转49
    [63]谭娟,于衍真,冯岩等.臭氧预氧化在废水处理中的研究进展[J].环保与安全工程.2008,36(1):39-44
    [64]陈石,王克虹.生活垃圾填埋场渗滤液处理中试研究[J].给水排水,2000,26(10):15-18
    [65]张王军,王国生.序批式活性污泥法处理城市垃圾填埋场渗滤液的试验研究[J].湖南大学学报.1995,22(3):115-120
    [66]廖琳琳,孟了,陈石,薛南冬.影响吹脱塔对垃圾渗滤液氨吹脱效率因素研究[J].工业安全与环保,2005,31(6):29-31
    [67]胡勤海,俞凯觎.吹脱-SBR-吸附混凝法处理垃圾填埋场渗滤液[J].环境污染与防治.2000,22(3):21-23
    [68]王小虎,胡春莲等.SBR法处理垃圾渗滤液试验研究.环境卫生工程[J].2000,8(4):147-150
    [69]孙召强,杨宏毅等.CASS工艺处理垃圾渗滤液工程设计实例[J].给水排水.2002,28(1):20-21
    [70]赵宗升,刘鸿亮等.A20与混凝沉淀法处理垃圾渗滤液研究[J].中国给排水.2001,17(11):13-16
    [71]金永麒.阿苏卫垃圾填埋场渗滤液处理中活性污泥的驯化与调试[J].环境科学与技术.2001,2:35-36
    [72]何若,沈东升,方程冉.生物反应器填埋场系统的特性研究[J].环境科学学报.2001,21(6):763-767
    [73]陈姑.垃圾填埋场渗滤液处理工艺及试验验证[J].给水排水.1999,25(5):18-21
    [74]胡慧青,周启星.天子岭垃圾填埋场渗滤液的治理及其工艺改进[J].1998,11(1):62-64
    [75]吴学龙,蒋建国等.粪渣污泥泥上清液和填埋场渗滤液混合处理工程分析[J].新疆环境保护.2000,22(2):78-84
    [76]沈耀良,赵丹等.厌氧好氧法处理渗滤液与城市污水混合废水的可行性[J].污染防治技术.2000,13(2):63-67
    [77]沈耀良,王宝贞等.城市垃圾填埋场渗滤液处理方案[刀.污染防治技术.2000,13(1):17-20
    [78]Zhao Tiantao, Zhang Lijie, Quan Xu-un, et al. Study on adsorption and bio—degradability of aged—refuse—based bioreactor[J]. Environmental Engineering,2007, 25(6):34-36
    [79]苏艳萍,刘丹,张爱萍,等.准好氧矿化垃圾处理渗滤液的工艺参数研究[J].四川环境,2008,27(2):35-38
    [80]石磊.矿化垃圾生物反应床处理填埋场渗滤液的工艺与机理研[D].上海:同济大学,2005:34-86
    [81]赵由才,柴晓利,牛冬杰.矿化垃圾基本特性研究[J].同济大学学报,2006,34(10):1361-1363
    [82]郭亚丽,赵由才.生活垃圾填埋场陈化垃圾基本特性及再利用[J].再生资源研究,2004,(4):12-15
    [83]郭亚丽,赵由才,徐迪民.上海老港生活垃圾填埋场陈垃圾的基本特性研究[J].上海环境科学,2002,21(11):669-671
    [84]秦哲,徐高田,赵军等.填埋场矿化垃圾生物反应床在废水处理中的应用[J].环境科学与管理.2008,33(7):104-107
    [85]杨颖.臭氧综述[J].攀枝花大学学报.2002,9(2):54-86
    [86]Philip C.S. Assessing ozonation research needs in water treatment[J]. Am Water Works Assoc, 1990, 82(10):512-520
    [87]储金宇,吴春笃,陈万金.臭氧技术及应用[M].北京:化学工业出版社,2002:247-249
    [88]徐新华.赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版社,2003:232-290
    [89]钟理等.臭氧氧化降解苯酚的动力学研究[J].中国给水排水,2002,18(9):8-11
    [90]江举辉.臭氧协同产生OH-的高级氧化过程研究进展及影响因素的探讨[J].工业安全与环保,2001,27(2):16-20
    [91]马军.O3/H2O2系统对水中二苯甲酮的去除效能及其机理探讨[J].黑龙江大学自然科学学报,2003,20(1):86-91
    [92]吴耀国.O3、O3/H2O2降解TNT的实验研究.西北工业大学学报,2005,23,(1):129-133
    [93]危想平,肖鹏.活性炭-臭氧处理印染废水试验.印染,2004(20):5-7
    [94]赵朝成,张英等.超声/臭氧氧化处理含酚废水实验研究.油气田环境保护,2001,11(3):26-29
    [95]陈志伟,汪晓军,许金花.臭氧催化氧化—曝气生物滤池工艺深度处理食品添加剂废水[J].净化技术,2008,27(5):40-43
    [96]苏金钰,田学达.活性炭负载Ti02催化臭氧化去除水中酚的研究[J].湖南环境生物职业技术学院学报,2004,10(4):311-315
    [97]胡军,周集体,张爱丽,等.光催化-臭氧联用技术降解苯胺研究[J].大连理工大学学报,2005,45(1):26-31
    [98]VittorioR., Elena S., Claudia L. B.,et al. Sono-photo-catalytic degradation of 2-chlorophenolinwater: Kinetic and energetic comparison with other techniques[J]. Ultrasonics Sonochemistry, 2001,8(3): 251-258
    [99]席彩文,刘彬彬.臭氧氧化法处理难降解有机废水[J].工业安全与环保,2005,31(11):15-17
    [100]Chedly Tizaoui. Landfill leachate treatment with ozone and ozone/hydrogen Peroxide systems[J]. Journal of Hazardous Materials, 2007,140(1):316-324
    [101]S. Liakou, M. Kornaros, G. Lyberatos. Pretreatment of azo dyes using ozone[J]. Wat. Sci. Tech., 1997,36(23):155-163
    [102]H.-J.Oeller, I. Demel, G. Weinberger. Reduction in residual COD in biologically treated paper mill effluents by means of combined ozone and ozone/UV reactor stages [J]. Wat. Sci. Tech., 1997,35 (2-3):269-276
    [103]代莎莎,刘建广,宋武昌等.臭氧氧化法在深度处理难降解有机废水中的应用[J].水科学与工程技术,2007(2):24-26
    [104]T. Poznyak, G.L. Bautista, I. Chairez et al., Decomposition of toxic pollutants in landfill leachate by ozone after coagulation treatment[J]. Hazard. Mater.152(2008) 1108-1114
    [105]D.M. Bila, A.F. Montalvao, A.C. Silva et al., Ozonation of a landfill leachate:evaluation of toxicity removal and biodegradability improvement[J]. Hazard. Mater.117(2005) 235-242
    [106]Y.M. Lei, Z.M. Shen, R.H. Huang et al., Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation[J]. Wat. Res.41(2007) 2417-2426
    [107]W.Y. Ahn, M. S. Kang, S.K. Yim et al., Advanced landfill leachate treatment using an integrated membrane process[J]. Desalination.149(2002) 109-114
    [108]Bohler M, Siegrist H. Partial ozonation of activated sludge to reduce excess sludge,improve denitrification and control scumming and bulking [J]. Water Sci Tech-nol, 2004,49 (10):41-49
    [109]Gotvajn A Z, Derco J, Tisler T, et al.Removal of organics from different types of landfill leachate by ozonation[J]. Water Science and Technology,2009,60(3):597-603
    [110]H.A. Aziz, S. A, M.N. Adlan et al., Colour removal from landfill leachate by coagulation and flocculation processes[J]. Bioresour. Technol.2007 (98):218-210
    [111]N. D. Berge, D.R. Reinhart, J. Dietz et al., In situ ammonia removal in bioreactor landfill leachate[J]. Waste. Manag.26(2006) 334-343
    [112]A. C. Silva, M. Dezotti, G.L. S. Jr, Treatment and detoxification of a sanitary landfill leachate[J]. Chemosphere.55(2004) 207-214
    [113]Y.Z. Peng, S.J. Zhang, W. Zeng et al.Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate[J]. Wat. Res.42(2008) 883-892
    [114]J. Im, H. Woo, M. Choi et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system[J]. Wat. Res.35(2001) 2403-2410
    [115]庄维健.城市生活垃圾综合处理新工艺[J].苏州市市政工,2001(1):21-24
    [116]屈超蜀等.城市生活垃圾处理工程[J].重庆,重庆大学出版社,1994.4:8-10
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.