甜橙果实抗氧化特性及水杨酸对其影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘果实中含有多种抗氧化作用与保健功效的活性成分,是人们摄取V_C和类黄酮等抗氧化物质的重要来源之一。因此,开发和利用柑橘中抗氧化活性物质已成为当前研究的热点问题之一。了解果实成熟和衰老过程中抗氧化活性物质含量的变化规律及寻求适宜的贮藏方式对合理开发利用这些成分显得很有必要。本研究以红肉脐橙(Citrus sinensis cv.Cara cara)、纽荷尔脐橙(C.sinensis cv.Newhall)和脐血橙(C.sinensis cv.Sanguine)为试材,研究了果实发育过程中抗氧化酶系统和非酶系统的变化规律,并在此基础上以红肉脐橙为材料,采用水杨酸(SA)采前处理,探讨了SA处理对果实贮藏期果肉抗氧化品质的影响。通过以上试验,以期为柑橘品质形成和功能产品的开发提供理论依据。其主要研究内容与结果如下:
     (1)甜橙果实发育过程中活性氧含量及抗氧化酶活性变化规律。红肉脐橙、纽荷尔脐橙和脐血橙果肉和果皮H_2O_2和MDA的含量、O_2~-产生速率均在果实生长发育过程中不断增加,大部分生长发育期以纽荷尔脐橙果实最高,脐血橙最低。在抗氧化酶方面,3个脐橙品种相同组织酶活性的变化趋势基本相同,果肉中抗氧化酶CAT、SOD、G-POD、AsA-POD和DHAR在发育初期(6月15日)活性最高,果实采收时(12月15日)活性最低;果皮中G-POD、GR和AsA-POD活性随着果实发育呈下降的趋势,SOD和CAT活性呈“V”型变化,DHAR呈双峰型变化。抗氧化酶活性在大部分生长发育期以红肉脐橙最高,纽荷尔脐橙最低,同一品种不同组织之间,果皮中酶活性高于果肉。
     (2)甜橙果实发育过程中抗氧化物质的变化规律及抗氧化活性的评价。甜橙果肉中FRAP值、清除H_2O_2能力和清除O_2~-能力与GSH、总酚和类黄酮含量变化趋势相同,均呈“人”型变化,分析发现,FRAP值、清除H_2O_2能力和清除O_2~-能力与GSH、总酚和类黄酮均呈显著或极显著正相关,但AsA与FRAP不存在显著相关性(p>0.05);而果皮AsA、GSH、总酚、类黄酮含量、FRAP值以及清除H_2O_2和O_2~-能力均在果实发育初期出现最大值,且在果实发育过程中不断降低,分析发现,所有抗氧化成分与FRAP值以及清除H_2O_2和O_2~-能力均呈极显著正相关。其中,红肉脐橙抗氧化成分含量以及体外抗氧化活性均显著高于纽荷尔脐橙,而同一品种不同组织之间,果皮抗氧化成分含量和体外抗氧化活性远远高于果肉。由此表明,柑橘生产中疏果或生理落果时废弃的幼果以及柑橘果皮中抗氧化物质含量丰富,是天然保健物质的很好来源,特别是红肉脐橙可作为开发抗氧化物质的优良品种。
     (3)不同浓度SA采前处理对红肉脐橙果实采收和贮藏期糖酸含量的影响。采前不同浓度SA处理增加了果实采收时葡萄糖和果糖含量,其中以1.0 mmol/L SA处理增加效果明显,而对蔗糖含量的影响依处理浓度的不同而不同,如0.25 mmol/L SA处理蔗糖含量提高3.55%,1.0 mmol/L SA处理蔗糖含量降低2.35%;采前低浓度SA处理对果实采收时柠檬酸和苹果酸含量没有显著影响,但1.0 mmol/L SA处理能显著提高苹果酸含量,而2.0 mmol/L SA处理不利于柠檬酸含量的积累;在果实采收时,可溶性固形物和可溶性总糖含量不受采前SA处理的影响,而可滴定酸和可溶性蛋白含量经SA处理后显著降低,降低的程度随处理浓度的增加而增加。在贮藏过程中,蔗糖含量呈下降趋势,采前低浓度SA处理可一定程度缓解蔗糖含量下降,贮藏105 d后0.25 mmol/L SA处理蔗糖含量最高;葡萄糖和果糖含量均呈双峰型变化,SA处理显著提高了果实在贮藏过程中葡萄糖和果糖的含量,以2.0mmol/LSA处理含量最高;采前SA处理还抑制了柠檬酸和苹果酸在果实贮藏过程中的下降,其中对柠檬酸的抑制效果随浓度的增加而降低,而对苹果酸的抑制效果随浓度的增加而增强。
     (4)不同浓度SA采前处理对红肉脐橙果实贮藏期抗氧化成分及活性的影响。采前不同浓度SA处理增加了果实采收时抗氧化成分(番茄红素、β-胡萝卜素、AsA、GSH、总酚和类黄酮)含量和体外抗氧化活性(FRAP值),处理浓度越高作用越明显。果实贮藏以后,番茄红素、β-胡萝卜素、AsA和GSH含量持续下降,而总酚和类黄酮含量呈上升变化趋势,采前SA处理能显著增加果实贮藏期间上述抗氧化成分的含量,以2.0 mmol/L SA处理的效果最好;体外抗氧化活性先增加后降低,最大值出现在贮藏45 d,相当于采收时的1.41~1.80倍,贮藏结束时(105 d),1.0和2.0 mmol/L SA处理的果实体外抗氧化活性显著高于对照,分别达到1.28和1.23倍。
     (5)贮藏温度和SA对红肉脐橙果实抗氧化成分及活性的互作效应。采前采用2.0 mmol/L SA和清水对大棚盆栽红肉脐橙果实进行喷施,待果实成熟采收后进行低温(6℃)和室温(20℃)贮藏试验,研究贮藏温度和采前SA对红肉脐橙果肉抗氧化特性的影响及两者相互影响的关系。结果表明,采前SA处理显著提高了果实采收时SOD、GR和DHAR活性以及AsA、番茄红素、β-胡萝卜素、总酚和类黄酮的含量,同时也显著提高了果实体外抗氧化活性(FRAP值),但对CAT和AsA-POD活性以及DHAsA、GSH和GSSG含量无显著影响。采前SA处理和采后低温贮藏均能提高贮藏期果实AsA、GSH、番茄红素、β-胡萝卜素、总酚和类黄酮的含量和FRAP值,两者相互促进,由此可以说明,采前SA处理结合低温贮藏的方式可以维持较高的营养保健价值;另一方面,采前SA处理虽然也能提高果实贮藏期SOD、GR、AsA-POD和DHAR活性,但低温贮藏对它们有抑制作用,两者相互抑制。分析发现,贮藏温度和采前SA处理对CAT、AsA-POD、DHAsA和GSSG的影响在整个贮藏期均不存在交互作用,而对其它成分的影响在部分贮藏期达到显著和极显著的交互作用。
Citrus contain high levels of antioxidant and hygienical components, and are rich sources of Vc, flavonoids and other antioxidants which can be ingested by people. Thus, it has been focus to open out and utilize the antioxidants of citrus. To open out and utilize the antioxidants in reason, it is necessary to know the change of their content during fruit maturation and senescence, and to seek appropriate storage technique. This study is to evaluate the change of enzyme and non-enzyme antioxidants in 'Cara cara' navel orange(Citrus sinensis cv. Cara cara), 'Newhall' navel orange(C. sinensis cv. Newhall), and 'Sanguine' orange(C. sinensis cv. Sanguine), and to estimate the effect of salicylic acid (SA) preharvest treatment on antioxidant quality of 'Cara cara' navel orange pulps during the storage. The main contents and results in the present study are as follows:
     (1) The changes of active oxygen species(AOS) contents and antioxidant enzymes activities during the orange fruit development
     The contents of hydrogen peroxide, superoxide anion radical and malondialdehyde in the pulps and peels in three cultivars of sweet orange('Cara cara' navel orange, 'Newhall' navel orange, and 'Sanguine' orange) increased throughout fruit ripening. In the most of developing stage, the 'Newhall' navel orange contained the highest levels, whereas the 'Sanguine' orange had the lowest contents. The tendencies of changes in enzyme activities were resembled in the same tissue of the three cultivars of sweet orange. In the pulps, the highest activities of catalase(CAT), superoxide dismutase(SOD), guaiacol peroxidase(G-POD), ascorbate peroxidase(AsA-POD) and dehydroascorbate reductase (DHAR) were detected at the initial stage(June 15), and the lowest activities were found at harvest stage(December 15). In the peels, the activities of glutathione reductase(GR), G-POD and AsA-POD decreased along with fruit ripening, but the tendencies of changes in SOD and CAT activities were V-shaped curves and DHAR was double-peaked curve. In the most of developing stage, the highest activity of antioxidant enzymes was found in 'Cara cara' navel orange and the lowest level was present in 'Newhall' navel orange. In addition, the activities of all enzymes in peels were significant higher than pulps in the same cultivar.
     (2) The changes of antioxidant components during the orange fruit development and estimate in antioxidant capability
     In pulps, the tendencies of change in the glutathione(GSH), total phenolics and flavonoids contents, together with ferric reducing/antioxidant power(FRAP) value, O_2 (?) scavenging capacity and H_2O_2-scavenging capacity, were∧-shaped curves. There were significantly positive correlations between antioxidant capability(FRAP value, O_2 (?) scavenging capacity and H_2O_2-scavenging capacity) and antioxidant component(GSH, total phenolics and flavonoids) contents. However, there was no significantly positive correlation between AsA contents and antioxidant capability(p>0.05). In peels, the contents of AsA, GSH, total phenolics, flavonoids, FRAP, O_2 (?) scavenging capacity and H_2O_2-scavenging capacity constantly descended during orange fruit development, and the max values of them were shown at the initial stage of fruit growth. The significantly positive correlations existed between all of antioxidant components and FRAP value, O_2 (?) scavenging capacity or H_2O_2-scavenging capacity. The all antioxidant components contents and FRAP value in 'Cara cara' navel orange were higher than those in 'Newhall' navel orange. The contents of all antioxidant components in peels were significant higher than pulps in the same cultivar. Thus it can be seen, the young fruits which were discarded in fruit thinning and physiological drop and peels were good sources of natural antioxidants. Especially, 'Cara cara' navel orange may be an excellent variety to develop antioxidant and hygienical components.
     (3) The effect of SA-preharvest-treatment with different concentration on sugar and organic acid content in 'Cara cara' navel orange during harvest and storage period
     SA-preharvest-treatment significantly increased contents of glucose and fructose at the fruit harvest stage and 1.0 mmol/L SA showing the best result compared with other concentrations. However, the effect of SA-preharvest-treatment on sucrose varied with different concentrations. For example, the content of sucrose increased by 3.55%when the concentration of SA was 0.25 mmol/L, and it decreased by 2.35%when the concentration of SA was 1.0 mmol/L. On the other hand, there was no effect on citric acid and malic acid when the concentration of SA was lower, but SA-preharvest-treatment with 1.0 mmol/L significantly increased malic acid content and 2.0 mmol/L SA makes against accumulating in citric acid. In comparison with control fruit, the content of total soluble solid and total soluble sugar in SA-preharvest-treatment fruit had no difference when the fruit harvested, but there was significant decrease in content of titratable acid and soluble protein and the decrease degree was considerably enhanced by increasing SA supply. During the fruit storage, the content of sucrose decreased and SA-preharvest-treatment could hold it back. At the end of storage, the fruit with 0.25 mmol/L SA treated had the highest sucrose content. However, the tendencies of glucose and fructose were double-peaked curves, and SA-preharvest-treatment significantly increased their contents, furthermore, the fruit with 2.0 mmol/L SA treated had the highest glucose and fructose contents. One the other hand, SA-preharvest-treatment could slower the decrease in citric acid and malic acid in the fruit during storage. To citric acid, the restraining effectiveness was considerably decreased by increasing SA supply, but the opposition was found on malic acid.
     (4) The effect of SA-preharvest-treatment with different concentration on antioxidant components content and capability in 'Cara cara' navel orange during harvest and storage period
     SA-preharvest-treatment significantly increased antioxidant components(lycopene,β-carotene, AsA, GSH, total phenolics and flavonoids) content and antioxidant capability (FRAP value) at the fruit harvest stage and the increase degree was considerably enhanced by increasing SA supply. The contents of lycopene,β-carotene, AsA, GSH decreased with fruit storage, whereas total phenolics and flavonoids constantly increased. At the same time, SA-preharvest-treatment also significantly increased antioxidant components content during the fruit storage period and the best concentration of SA was 2.0 mmol/L. The antioxidant capability enhanced at first and then decreased, and at the 45 d of storage, it reached the peak which was 1.41~1.80 times than that in harvest stage. At the end of storage (105 d), the FRAP value in fruit with 1.0 or 2.0 mmol/L SA was significant higher than that in control fruit, reached 1.28 and 1.23 times, respectively.
     (5) The reciprocity effect of SA-preharvest-treatment and storage temperatures on antioxidant character in 'Cara cara' navel orange during harvest and storage period
     'Cara cara' navel orange which was potted in greenhouse was sprayed by 2.0 mmol/L SA at preharvest, storing at low temperature(6℃) and room temperature(20℃). The effect of SA and storage temperature on antioxidant components and capability was tested. The results showed: SA-preharvest-treatment significantly increased activities of SOD, GR, DHAR and contents of AsA, lycopene,β-carotene, total phenolics and flavonoids in fruit at harvest stage. At the same time, it also significantly increased antioxidant capability. However, there was no remarkable effect of SA on activities of AsA-POD and CAT, as well as contents of DHAsA, GSH and GSSG. SA-preharvest-treatment and low temperature significantly increased the contents of antioxidant components(AsA, GSH, lycopene,β-carotene, total phenolics and flavonoids) and FRAP value in the fruit during storage. It was suggested that SA-preharvest-treatment combining with lower storage temperature could maintain the higher nutrition and health protection value. On the other hand, SA-preharvest-treatment also significantly increased activities of antioxidant enzymes in fruit during storage, whereas there was some restraint effect at lower storage temperature. During the whole storage, storage temperature and SA had no interaction on CAT, AsA-POD, DHAsA and GSSG. However, they had significant interaction on other components at some storage stage.
引文
1.曹建康,毕阳,李永才,赵劫.水杨酸处理对苹果梨采后黑斑病及贮藏品质的影响.甘肃农业大学学报,2001,36(4):438-442
    2.曹志丹.沙棘国内外研究状况的评述.中国油脂,1993,(3):3-8
    3.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学,2002
    4.陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004,24(2):329-336
    5.陈双建,王利军,刘庆昌,李绍华.贮前外源水杨酸处理对桃果冷贮性的影响.中国农学通报,2006,22(2):219-224
    6.陈业高主编.植物化学成分.北京:化学工业出版社,2004,240-241
    7.成坚,曾庆孝,何宇峰.番茄红素的稳定性研究.钟恺农业技术学院学报,2001,14(2):14-19
    8.程水源,王燕,李俊凯,顾曼如,束怀瑞.银杏叶黄酮类化合物合成代谢规律的研究.林业科学,2002,38(5):60-63
    9.程云凯.谷胱甘肽的解毒作用与毒性代谢物.生物化学与生物物理进展,1994,21(5):395-399
    10.邓秀新.国内外柑橘产业发展趋势与柑橘优势区域规划.广西园艺,2004,15(4):6-10
    11.冯晨静,关军锋,杨建民,张元慧,赵树堂,王玉涛.草莓果实成熟期花青苷、酚类物质和类黄酮含量的变化.果树学报,2003,20(3):199-201
    12.高锦明主编.植物化学.北京:科学出版社,2003,191-193
    13.高蓝,李浩明.类胡萝卜素与癌症的化学预防.中草药,1998,29(5):346-348
    14.关军锋,束怀瑞,黄天栋.苹果果实衰老与膜脂过氧化作用的关系.河北农业大学学报,1991,14(1):50-54
    15.关军锋.采后雪花梨衰老与过氧化作用.河北农业大学学报,1994,17(2):6-9
    16.郭长江,韦京豫,杨继军,李云峰,徐静,蒋与刚.66种蔬菜、水果抗氧化活性的比较研究.营养学报,2003,25(2):203-207
    17.韩涛,李丽萍.外源水杨酸对冷藏桃果实的生理效应(简报).植物生理学通讯,2001,37(3):203-206
    18.韩涛,李丽萍.水杨酸对短期贮藏苹果的生理效应(简报).植物生理学通讯,1997,33(5):347-348
    19.何亚丽,刘友良,陈权,卞爱华.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系.植物生理与分子生物学报,2002,28(2):89-95
    20.侯建设,席玛芳,余挺.白菜采后衰老生理的研究.园艺学报,2003,30(3):335-337
    21.侯智霞,张玉星,田志喜.水杨酸对新红星苹果果实乙烯合成酶的影响.果树学报,2002,19(2):83-86
    22.及华,张海新,关军锋,李丽梅,冯云霄.温度和包装对冬枣果实贮藏品质的影响.贮运保鲜,2005,26(8):153-156
    23.江玲,周燮,管晓春.水杨酸对莴苣初生根侧根原基的形成和根内激素含量的影响.植物生理学通讯,2000,36(5):401-403
    24.鞠志国,原永兵,刘成连,戴洪义.苹果果皮中酚类物质合成规律的研究.莱阳农学院学报,1992,9(3):222-225
    25.康国章,段中岗,王正询,孙谷畴.水杨酸提高香蕉幼苗抗冷性初探.植物生理学通讯,2003,39(2):122-124
    26.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    27.李红卫,冯双庆,赵玉梅.冬枣果皮色泽与酚类物质含量相关性的研究.北京农学院学报,2004,19(4):63-66
    28.李建文.蔬菜中次生代谢物质硫代葡萄糖苷及类黄酮化合物的研究.[硕士学位论文].保定:河北农业大学图书馆,2003
    29.李娟.氮硫硒影响叶用芥菜品质及抗氧化能力的生理机制研究.[博士学位论文].杭州:浙江大学图书馆,2005
    30.李丽萍,韩涛.水杨酸对大久保桃贮藏期品质的影响.果树科学,2000a,17(2):97-100
    31.李丽萍,韩涛.水杨酸对柿果贮藏期品质的影响.北京农学院学报,2000b,15(1):49-54
    32.梁五生,梁厚果.水杨酸对陈化马铃薯切片乙烯产生的促进作用(英).植物生理学报,1998,24(1):11-16
    33.林亲录,施兆鹏.类黄酮与酚酸等天然抗氧化剂的结构与其抗氧化力的关系.2001,22(6):85-91
    34.林植芳,李双顺,林桂珠,郭俊彦.衰老叶片和叶绿体中H_2O_2的积累与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    35.刘玲,李疆,覃伟铭.水杨酸对库尔勒香梨POD、PPO、PAL活性及其对果实品质的影响.新疆农业科学,2005,42(2):98-101
    36.刘新,孟繁霞,张蜀秋,娄成后.Ca~(2+)参与水杨酸诱导蚕豆气孔运动时的信号转导.植物生理与分子生物学学报,2003,29(1):59-64
    37.刘永忠,何国富,黎强,吉继雍.国庆1号温州蜜柑转化酶和糖分积累特性研究.华中农业大学学报,2005,24(2):213-216
    38.罗安才,杨晓红,邓英毅,李纯凡,向可术,李道高.柑橘果实发育过程中有 机酸含量及相关代谢酶活性的变化.中国农业科学,2003,36(8):941-944
    39.乜兰春,孙建设,辛蓓,吕新琼.苹果果实酶促褐变底物及多酚氧化物活性的研究.园艺学报,2004,31(4):502-504
    40.荣瑞芬,佟世生,冯双庆.水杨酸对采后芒果和番茄保鲜效果的初步研究.食品科学,2001,22(3):79-81
    41.时丽冉,杜军华.水杨酸对盐害下玉米幼苗质膜稳定性及K~+/Na~+比的影响.青海师范大学学报(自然科学版),2001,(1):50-52
    42.史杏明.库尔勒香梨贮藏期间PPO活性与总酚含量变化的研究.干旱地区研究,1989,4:47-50
    43.苏新国,郑永华,汪峰,张兰,冯磊.贮藏温度对菜用大豆采后生理和品质变化的影响.南京农业大学学报,2003,26(1):114-116
    44.陶俊,张上隆,徐建国,刘春荣.柑橘果实主要类胡萝卜素成分及含量分析.中国农业科学,2003,36(10):1202-1208
    45.田志喜,张玉星,于艳军,许建锋.水杨酸对鸭梨果实PG、PME和呼吸速率的影响.果树学报,2002,19(6):381-384
    46.王爱国,罗广华.植物的超氧化物自由基与羟胺的定量关系.植物生理学通讯,1990,26(6):5-7
    47.王宝山.生物自由基与植物伤害.植物生理学通讯,1998,24(2):12-16
    48.王贵元.红肉脐橙果实着色和糖积累规律的研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    49.王强,韩雅珊,戴蕴青,癀田才之.反相高效液相色谱法同时测定番茄中5种类胡萝卜素.色谱,1997,15(2):133-134
    50.王业勤,李勤生.天然类胡萝卜素.武汉,中国医药科技出版社,1996
    51.卫永乐,扈惠灵,陶磅,任杰,冷平.磨盘柿叶片、果实及萼片中酚类物质的动态变化初报.中国农学通报,2006,22(6):227-229
    52.吴楚,王政权.冰冻条件下外源SA对水曲柳幼苗叶片内抗氧化酶的影响.林业科学,2002,38(5):55-59
    53.吴锦程,黄晓尊.水杨酸对枇杷冷藏效果的影响.云南农业大学学报,2005,20(6):813-818
    54.徐娟,邓秀新.红肉脐橙果肉中主要色素的定性及色素含量的变化.园艺学报,2002,29(3):203-208
    55.原永兵,刘成连,鞠志国,李兆亮,曹宗巽.水杨酸对苹果叶片中过氧化氢水平的调节及其机制.园艺学报,1997,24(3):220-224
    56.曾凯芳,姜微波,李新明.外源水杨酸对“紫花”芒果贮藏品质的影响.食品与发酵工业,2004,134-137
    57.曾祥国.不同种类和产区柑橘糖酸含量及组成研究.[硕士学位论文].武汉:华 中农业大学图书馆,2005
    58.张红艳,鲍江峰,彭抒昂.脐橙果实贮藏过程中主要有机物质含量的变化.亚热带植物科学,2003,32(4):1-3
    59.张玉,陈昆松,张上隆,王建华.猕猴桃果实采后成熟过程中糖代谢及其调节.植物生理与分子生物学学报,2004,30(3):317-320
    60.张玉星.水杨酸在苹果、梨果实成熟衰老的效应分析.[博士学位论文].泰安:山东农业大学图书馆,1998
    61.赵文恩,张劲强,乔宪生,俞宏,韩雅珊.高效液相色谱法测定苹果果皮的类胡萝卜素.果树学报,2001,18(2):95-97
    62.赵智中,张上隆,徐昌杰,陈昆松,刘拴桃.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,2001,28(2):112-118
    63.郑荣梁,黄中洋.自由基医学与农学基础.高等教育出版社,2001
    64.郑云朗.谷胱甘肽的生物学功能.生物学通报,1995,30(5):22-24
    65. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot, 2002, 53:2039-2055
    66. Alscher, R G, Donahue, J L, Cramer, C L. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol Plant, 1997, 100:224-233
    67. Amako K, Chen G X, Asada K. Separate assay specific for ascorbate peroxidase and guaicol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol, 1994, 35:497-504
    68. Anagnostopoulou M A, Kefalas P, Kokkalou E, Assimopoulou A N, Papageorgiou V P. Analysis of antioxidant compounds in sweet orange peel by HPLC-diode array detection-electrospray ionization mass spectrometry. Biomed Chromatogr, 2005, 19:138-148
    69. Anguelova T, Warthesen J. Lycopene stability in tomato powders. J Food Sci, 2000, 65:67-70
    70. Azevedo-Meleiro C H, Rodriguez-Amaya D B. Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. Journal of Food Composition and Analysis, 2004, 17:385-396
    71. Baghurst K. CSIRO Health Sciences &Nutrition. The Health Benefits of Citrus Fruits. Horticultural Australia Ltd, 2003.
    72. Ballard-Barbash R. Designing surveillance systems to address emerging issues in diet and health. J Nutr, 2001, 131:437s-439s
    73. Bartleyg E, Scolnik P A. Plant carotenoids: Pigments for photoprotection, visual attraction and human health. Plant Cell, 1995, 7:1027-1038
    74. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J Chromatogr A, 1997, 758: 99-107
    
    75. Beltran G, Aguilera M P, del Rio C, Sanvhez S, Martinez L. Influence of fruit ripening process on the antioxidant content of Hojiblanca virgin olive oils. Food Chem, 2005, 89: 207-215
    
    76. Bendich A, Langseth L. Health-effects of vitamin-c supplementation- a review. J Am Coll Nutr. 1995, 14: 398-398
    
    77. Bertram J S, Pung A, Churley M, Kappock T J, Wilkins L R, Cooney R V. Diverse carotenoids protect against chemically induced neoplastic transformation. Life Sci, 1991,12: 671-678
    
    78. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    
    79. Bramley P. Regulation of caratenoid formation during tomato fruit ripening and development. J Exp Bot, 2002, 53: 2107-2113
    
    80. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev, 1998, 56: 317-333
    
    81. Brenda W S. Flavonoid biosynthesis: A colorfulmodel for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485-493
    
    82. Brennan T, Frenkel C. Involvement of hydrogen peroxide in the reulation of senescence in pear. Plant Physiol, 1977, 59: 411-416
    
    83. Bretenbach J, Sandmann G. (zata)-Carotene cis isomers as products and sudstrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta, 2005, 220: 785-793
    
    84. Chan Z L, Tian S P. Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit. Postharvest Biol Technol, 2006, 39: 314-320
    
    85. Chance B, Maehly AC. Assay of catalases and peroxidases. Meht Enzymol, 1955, 2: 764-775
    
    86. Chen Z W, Hu Y Z, Wu H H, Jiang H D. Synthesis and biological evaluation of flavonoids as vasorelaxant agents. Bioorg Med Chem Lett, 2004, 14: 3949-3952
    
    87. Chen Z, Klessig D F. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. P Natl Acad Sci USA, 1991, 88: 8179-8183
    
    88. Chen Z, Ricigliano J W, Klessig D F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. P Natl Acad Sci USA, 1993b, 90: 9533-9537
    
    89. Chen Z, Silva H, Klessing D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 1993a, 262: 1883-1886
    
    90. Chen J Y, Wen P F, Kong W F, Pan Q H, Zhan J C, Li J M, Wan S B, Huang W D. Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol, 2006, 40: 64-72
    
    91. Chinnici F, Bendini A, Gaiani A, Ripon C. Radical scavenging activities of peels and pulps from cv. golden delicious apples as related to their phenolic composition. J Agric Food Chem, 2004, 52: 4684-4689
    
    92. Cholbi M R, Paya M, Alcaraz M J. Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Cell Mol Life S, 1991, 47: 195-199
    
    93. Connor A M, Luby J J, Hancock J F, Berkheimer S, Hanson E J. Changes in Fruit Antioxidant Activity among Blueberry Cultivars during Cold-Temperature Storage. J Agric Food Chem, 2002, 50: 893 -898.
    
    94. Cordenunsi B R, Genovese M I, do Nascimento J R O, Hassimotto N M A, dos Santos R J, Lajolo F M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem, 2005, 91: 113-121
    
    95. Daveym W, Montagum V, Inze D. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric, 2000, 80: 825- 860
    
    96. Ding C K, Wang C Y, Gross K C, Smith D L. Jasmonate and salicylate induce the expression of pathogenesis-related protein genes and increase resistance to chilling injury in tomato fruit. Planta, 2002, 214: 895-901
    
    97. Dipierro S, Leonardis S D. The ascorbate system and lipid peroxidation in stored potato (Solanum buterosum) tubers. J Exp Bot, 1997, 48: 779-783.
    
    98. Dragsted L O, Strube M, Larsen J C. Cancer-protective factors in fruits and vegetables: biochemical and biological background. Pharmacol Toxicol, 1993, 72: 116-135
    
    99. Du Z Y, Bramlage W J. Superoxide dismutase activities in senescing apple fruit (Malus domestica Borkh.). J Food Sci, 1994, 59: 581-584
    
    100.Dueck T A, van Dijk C J, Grashoff C, Groenwold J, Schapendonk A H C M, Tonneijck A E G. Response of potato to discontinuous exposures of atmospheric ethylene: results of a long-term experiment in open-top chambers and crop growth modeling. Atmosph Enviro, 2003, 37: 1645-1654
    
    101.Eberhardt M V, Lee C Y, Liu R H. Antioxidant activity of fruit apples. Nature, 2000, 405: 903-904
    102.Echeverria E, Gonzalez P C, Brune A. Characterization of proton and sugar transport at the tonoplast of sweet lime (Citrus limmetioides) juice cells. Physiol Plant, 1997, 101:291-300.
    103.Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammonium chloride: A simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616-620
    104.Erickson L C. The general physiology of citrus. In: Reuter W, Batchelor L D, Webber H J eds. The Citrus Industry. Vol.2. Berkeley: Unvi. Calif, 1968, 86-126
    105.Fan X, Mattheis J P, Fellman J K, Patterson M E. Effect of Methyl Jasmonate on Ethylene and Volatile Production by Summerred Apples Depends on Fruit Developmental Stage. J Agric Food Chem, 1997, 45: 208 -211
    106.Forman M R, Yao S X, Graubard B I. The effect of dietary intake of fruits and vegetables on the odds ratio of lung cancer among Yunnan tin miners: Int J Epidemiol, 1992,21:437-441
    107.Gaur, A., Chenulu, W. Chemical control of postharvest diseases of Citrus reticulata and Solanum tuberosum. Indian Phytopathology, 1982, 35: 628-632
    108.Gaziano J M, Manson J E, Branch L G. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann Epidemiol, 1995, 5: 255-260
    109.Gaziano J M. Diet and heart disease: the role of fat, alcohol and antioxidants. Cardiol Clin, 1996, 14:69-83
    110.Giannopolitis C N, Ries S K. Superoxide dismutase. I . Occurence in higher plants. Plant Physiol, 1977, 59: 309-314
    111.Grayer R J, Harborne J B. A sunrey of antifungal compounds from higher plants, 1982-1993. Phytochemistry, 1994,37: 19-42
    112.Guo C J, Yang J J, Wei J Y, Li Y F, Xu J, Jiang Y G. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res, 2003,23: 1719-1726
    113.Halliwell B. Ascorbic acid and the illuminated chloroplast. In: Seib P A, Tolbert B M (Ed), Ascorbic Acid: Chemistry, Metabolism and Uses; Advances in Chemistry Series 200; American Chemical Socoety: Washington, DC, 1982, 263-274
    114.Halliwell B. Vitamin C: antioxidant or pro-oxidant in vivo. Free Rad Res, 1996, 25: 439-454
    115.Harbome J B, Grayer R J. Flavonoids and insects. In The Flavonoids, Advances in Reseach since 1986. Ed. Harborne J B. Chapman and Hall, London, 1994, 589-618
    116.Harborne J B. Methods in plant biochemistry. In: Plant Phenolics. Academic Press, London, 1989
    117.Harborne J B. Plant secondary metabolism. In M.J. Crawley, Plant Ecology, Oxford: Blackwelln Science 1997, 132-155
    118.Harborne J B. Role of phenolic secondary metabolites in plants and their degradation in nature. In: Cadisch G, Giller K E (eds) Driven by Nature: Plant Litter Quality and Decomposition, CAB International, Wallingford, UK, 1997, 67-74
    119.Hertog M G, Feskens E J, Hollman P C, Katan M B, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet, 1993, 342: 1007-1011
    120.Ho C T. Antioxidant properties of plant flavonoids. In: Food Factors for Cancer Prevention, 1997, 593-597.
    121.Hollman P C H, Hertog M G L, Katan M B. Analysis and health effects of flavonoids. Food Chem, 1996, 57: 43-46
    122.Howard L R, Clark J R, Brownmiller C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J Agric Food Chem, 2003, 83: 1238-1247
    123.Huang C S, Shih M K, Chuang C H, Hu M L. Lycopene inhibits cell migration and invasion and upregulates Nm23-Hl in a highly invasive hepatocarcinoma, SK- Hep-1 cells. J Nutr, 2005, 135: 2119-2123
    124.Janda T, Szalai G, Tari I, Paldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 1999, 208: 175-180
    125.Jimenez A, Creissen G, Kular B, Firmin, J Robinson S, Verhoeyen M, Mullineaux P. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 2002, 214: 751-758
    126. Johnson P. Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. CBP Part C, 2002, 133: 493-505
    127.130. Jones C G, Hartley S E. A protein competition model of phenolic allocation. Oikos, 1999, 86: 27-44
    128.Joshipura K J, Ascherio A, Manson J E, Stampfer M J, Rimm E B, Speizer F E, Hennekens C H, Spiegelman D, Willett W C. Fruit and vegetable intake in relation to risk of ischemic stroke. J Am MedAssoc, 1999, 282: 1233-1239
    129.Ju Z G, Bramlage W J. Developmental changes of cuticular constituents and their association with ethylene during fruit ripening in 'Delicious' apples. Postharvest Biol Technol, 2001, 21: 257-263
    13 O.Kim D O, Jeong S W, Lee C Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem, 2003, 81: 321-32
    131.Klessing D F, Malamy J. Salicylic acid: the singal in plant. Plant Mol Boil, 1994, 24: 1439-1458.
    132.Knowles H J, Raval R R, Harris A L, Ratcliffe P J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res, 2003, 63: 1764-1768
    133.Komatsu A, Moricguchi T, Koyama K. Analysis of sucrose synthase genes in citrus suggests different role and phylogenetic relationships. J Exp Bot, 2002, 53: 61-67
    134.Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol, 2002, 5: 325-331
    135.Kvaratskhelia M, George S J, Thorneley R N F. Salicylic acid is a reducing substrate and not an effective inhibitor of ascorbate peroxidase. Am Soc Biochem Mol Biol, 1997,272:998-1001
    136.Leslie C A, Romani R J. Inhibition of Ethylene Biosynthesis related P69 Preteinase in tomato during citrus exocortis viroid infection and in response to chemical treatments. Physiol Mol Plant P, 1989, 34: 323-334.
    137.Leslie C A, Romani R J. Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep, 1986, 5: 144-146.
    138.Li N, Parsons B L, Liu D R, Mattoo A K. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol, 1992, 18:477-487
    139.Lopez-Carrillo L, Torres-Lopez J, Galvan-Portillo M, Munoz L, Lopez-Cervantes M. Helicobacter pylori-CagA seropositivity and nitrite and ascorbic acid food intake as predictors for Gastric Cancer. Eur J Cancer, 2004, 40: 1752-1759
    140.Lopez-G6mez R, Campbell A, Dong J G, S F Yang, Gomez-Lim M A. Ethylene biosynthesis in banana fruit: isolation of a genomic clone to ACC oxidase and expression studies. Plant Sci, 1997, 123: 123-131
    141.Malamy J. Salicylic acid: a likely endogenous singal in the resistance response of tobacco toviral infection. Science, 1990, 250: 1002
    142.Malhorta B, Onyilagha J C, Bohm B A. Inhibition of tomato ringspot virus by flavonoids. Phytochemistry, 1996,43: 1271-1276
    143.Mallick N, Mohn F H. Reactive oxygen species: response of algal cells. J plant physiol, 2000, 157: 183-193
    144.Manoj K, Srivastava U, Dwivedi N. Delayed ripening of banana fruit by salicylic acid. Plant Sci, 2000, 158: 87-96
    145.Markus F, Daood H G, Kapitany J. Changes in the carotenoid and antioxidant content of spice red pepper(paprika) as a function of ripening and some technological factors. J Agric Food Chem, 1979,47: 100-107
    146.Martinez-Tome M, Jimenez A M, Ruggieri S, Frega N, Strabbioli R, Murcia M A. Antioxidant properties of mediterranean spices compared with common food additives. J Food Protect, 2001, 64: 1412-1419
    147.Mattoo A K, Modi V V. Ethylene and the ripening of mangoes. Plant Physiol, 1969, 44:308-310
    148.Miki W. Biological function and activities of animal carotenoids. Pure Appl Chem, 1991,63: 141-146
    149.Miller N J, Rice-Evans C A. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem, 1997, 60: 331-337
    150.Moise A R, Kuksa V, Imanishi Y, Palczewski K. Identification of all-trans-retiniol: all-trans-13,14-dihydroretinol saturase. JBiol Chem, 2004, 279: 30-42
    151 .Mullineaux P M, Creissen G P. Glutathione reductase: Regulation and role in oxidative stress. In: Oxidative Stress and The Molecular Biology of Antioxidant Defenses. New York: Cold Spring Harbor Laboratory Press, 1997, 667-712
    152.Murata K, Kimura A. Overproduction of glutathione and its derivatives by genetically engineered microbial cells. Biotechnol Adv, 1990, 8: 59-96
    153.Nagarathna K C, Shetty S A, Shetty H S. Phenylalanine ammonia lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance. J Exp Bot, 1993, 44: 1291-1296
    154.Neri S, Signorelli S S, Torrisi B, Pulvirenti D, Mauceri B, Abate G, Ignaccolo L, Bordonaro F, Cilio D, Calvagno S, Leotta C. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: A single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin Ther, 2005, 27: 1764-1773
    155.Nishino C, Enoki N, Tawata S, Mori A, Kobayashi K, Fukushima M. Antibacterial activity of flavonoids against Staphylococcus epidermidis, a skin bacterium. Agric Biol Chem, 1987, 51: 139-143
    156.Niziolek M, Korytowski W, Girotti A W. Nitric oxide-induced resistance to lethal photooxidative damage in a breast tumor cell line. Free Radical Bio Med, 2006, 40: 1323-1331
    157.Noctor G, Foyer C H. Ascorbate and glutathione: Keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279
    158.Novruzov E N, Shamsizade L A, Mamedov S S. Morphological and biochemical variations in seabuckthorn (Hippophae rahamnoides L.) growing in Azerbaijani Proceedings of International Workshop on Seabuckthorn. New Delhi, 2001, 72-77
    159.Pal D K, Selvaraj Y. Biochemistry of papaya (Carica papaya L.) fruit ripening: changes in RNA, DNA, protein and enzymes of mitochondrial, carbohydrate, respiratory and phosphate metabolism. Hort Sci, 1987, 62: 117-124
    160.Pandey D K, Shekelle R, Selwyn B J, Tangney C, Stamler J. Dietary vitamin C and beta-cartene and risk of death in middle-aged men: the western electric study. Am J Epidemiol, 1995, 142: 1269-1278
    161.Patterson B D, MacRae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem, 1984, 139: 487-492
    162.Peraz A G, Sanz C, Olias J. Lipoxygenase and hydroperoxidelyase activities in ripening strawberry fruits. J Agric Food Chem, 1999, 47: 249-253
    163.Picton S, Barton S L, Bouzayen M. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Planta, 1993, 3:469-481
    164.Pogson B J, Niyogi K K, Bjorkman O, Dellapenna D. Altered xanthophylls composition adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. P Natl Acad Sci USA, 1998, 95: 13324-13329
    165.Poole P R, Mcleod L C. Development of resistance to picking wound entry Botrytis cinerea storage rots in kiwifruit. NZ J Crop Hort Sci, 1994, 22: 387-392
    166.Pupin A M, Dennis M J, Toledo M C F. HPLC analysis of carotenoids in orange juice. Food Chem, 1999, 64: 269-275
    167.Ram V, Vir D. Efficacy of fungicide XXXVI. Relative evaluation of various postharvest chemical treatments against spoilage of banana fruits caused by Culvularia lunata. India Phytopathology, 1986, 39: 594-595
    168.Rao M V , Paliyath G, Ormrod D P, Murr D P, Watkins C B. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol, 1997, 115:137-149
    169.Raskin I. Role of salicylic acid in plant. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 439-463
    170.Rice-Evans C A, Miller N J, Paganga G. Antioxidant properties of phenolic compound. Trends Plant Sci, 1997, 2: 152-159
    171.Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxidant-dependent formation of hydroxyl radicals: Detectionof hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem, 1981, 118: 328-330
    172.Robak J, Gryglewski R J. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol, 1988, 37: 837-841
    173.Rodrigo M J, Marcos J F, Alferez F, Mallent M D, Zacarias L. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot, 2003, 54: 727-738
    174.Rodrigues A, Sandstrom A, Ca T, Steinsland H, Jensen H, Aaby P. Protection from cholera by adding lime juice to food-results from community and laboratory studies in Guinea-Bissau, West Africa. Trap Med Inl Health, 2000, 5: 418-422
    175.Rogiers S Y, Kumar M G N, Knowles N R. Maturation and ripening of fruit of Amelanchier alnifolia Nutt. are accompanied by increasing oxidative stress. Ann Bot, 1998,81:203-211
    176.Romani R J, Hess B M, Leslie C A. Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. J Plant Growth Regul, 1989, 8: 63-69
    177.Rosenberg I H. Keys to a longer, healthier, more vital life. Nutr Rev, 1994, 52:50-52.
    
    178.Saniewski M, Czapski J. Stimulatory effect of methyl jasmonate on the ethylene production in tomato fruits. Cell Mol Life S, 1985, 41: 256-257
    179.Scalbert A, Morand C, Manach C, Remesy C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother, 2002, 56: 276-282
    180.Seddon J M, Ajani U A, Sperduto R D, Hiller R, Blair N, Burton T C, Farber M D, Gragoudas E S, Haller J, Miller D T. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. J Am Med Assoc, 1994,272: 1413-1420
    181.Setiawanl B, Sulaeman A, Giraud D W, Driskell J A. Carotenoid content of selected Indonesian fruits. Journal of Food Composition and Analysis, 2001, 14: 169-176
    182.Sgherri C L M, Loggini B, Puliga S, Navari-Izzo F. Antioxidant system in Sporobolus stapfianus: changes in response to dessiccation and rehydration. Phytochemistry, 1994, 35: 561-565
    183.Shigeoka S, Nakano Y, Kitaoka S. Metabolism of hydrogen peroxide in Euglena gracillis z by L-ascorbic acid peroxidase. Biochem J, 1980, 186: 377-380
    184. Shim I S, Momose Y, Yamamoto A. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. J Plant Growth Regul, 2003, 39:285-292.
    185.Sidahmed O A, Khalil M I. Performance of grapefruit under the ecological conditions of central Sudan. Physicochemical evaluation of fruits. Ann Arid Zone 1997, 36: 53-60
    186.Sinclair W B. The biochemistry and physiology of lemon and citrus fruits. Oskland: Univ. Calif., 1984, 114-141
    187.Singleton V L, Slinkard K. Total phenol analysis: automation and comparison with manual methods. Am J Enol Viticult, 1977,28: 49-55
    188.Smith I K, Vierheller T L, Thome C A. Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis(2-nitrobenzoic acid). Anal Biochem, 1988, 175: 408-413
    189.Svendsen L, Rattan S I S, Clark B F C. Testing garlic for possible anti-ageing effects on long-term growth characteristics, morphology and macromolecular synthesis of human fibroblasts in culture. J Ethnopharm, 1994,43: 125-133.
    190.Theeshan B, Amitabye L L, Alan C, Aruoma O L. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of mauritian vegetables. J Sci Food Agr, 2004, 84: 1553-1561
    191.Toor R K, Savage G P. Changes in major antioxidant components of tomatoes during post-harvest storage. Food Chem, 2006, 99: 724-727
    192.Traystman R J, Kirsch J R, Koehler R C. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 1991, 71: 1185-1195
    193.Twaroski T P, O'Brien M L, Robertson L W. Effects of selected polychlorinated biphenyl (PCB) congeners on hepatic glutathione, glutathione-related enzymes, and selenium status: implications for oxidative stress. Biochem Pharmacol, 2001, 62: 273-281
    194.Ullegaddi R, Powers H J, Gariballa S E. Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: a randomized controlled trial. Parenter Enter, 2006, 30: 108-114
    195.van den Berg H, Faulks R, Granando H F, Hirschberg J, Olmedilla B, Sandmann G, Southon S, Stahl W. The potential role of carotenoid levels in foods and the likely systemic effects. J Sci Food Agri, 2000, 80: 880-912
    196.van der Sluis A A, Dekker M, de Jager A, Jongen W M F. activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. JAgric Food Chem, 2001,49: 3606 -3613
    197.van't Veer P, Jansen M C, Klerk M. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr, 2000, 3: 103-107
    198.Verrax J, Cadrobbi J, Marques C, Taper H, Habraken Y, Piette J, Calderon PB. Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis, 2004, 9: 223-233
    
    199.Vinson J A. Oxidative stress in cataracts. Pathophsiology, 2006, 13: 151-162
    200.Wang H, Cao G H, Prior R L. Total Antioxidant Capacity of Fruits. J Agric Food Chem, 1996, 44: 701-705
    201.Wang L J, Chen S J, Kong W F, Li S H, Archbold D D. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol Technol, 2006, 41: 244-251
    202.Wang S Y, Jiao H J. Changes in oxygen-scavenging systems and membrne lipid peroxidation during maturation and ripening in blackberry. J Agric Food Chem, 2001, 49: 1612-1619
    203. Wang S Y, Lin H S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem, 2000,48: 140-146
    204.Wang S Y, Stretch A W. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem, 2001, 49: 969-974
    205.Welch R M. Agronomic problems related to provitamin A carotenoid-rich plants. Eur J Clin Nutr, 1997, 51: S34-S38
    206.Wheeler G L, Jonesm A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393: 365-369
    207.Wu G Y, Fang Y Z, Yang S, Lupton J R, Turner N D. Glutathione metabolism and its implications for health. J Nutr, 2004, 134: 489-492
    208.Yamaki Y T. Orgnic acid in the juice of citrus fruits. J Japan Soc Hort Sci, 1989, 58: 587-594
    209.Yamaki Y T. Variation in acidity and acid content in rind among citrus fruits and their relationship to fruit juice acidity. J Japan Soc Hort Sci, 1988, 57: 568-577
    210.Yao H J, Tian S P. Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Boil Technol, 2005, 35: 253-262
    211.Zhang J X, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol, 1994, 35: 785-791
    212.Ziegler R G. Vegetables, fruits, and carotenoids and the risk of cancer. Am J Clin Nutr, 1991,53:251S-259S
    213.Zieslin N, Ben-Zaken R. Peroxidases, phenylalanine ammonia-lyase and lignification in peduncles of rose flowers. Plant physiol Biochem, 1991,29: 147-151
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.