儿童呼吸道、中枢神经系统和腹泻病相关病毒感染的病原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒是引起儿童急性呼吸道感染和中枢神经系统感染的最主要的病原体。尽管目前应用了多种检测技术,临床上多数上述感染病例依然病原体不明。与以往传统方法不同,高通量测序技术可以无需预知病原体的基因组信息而无偏倚地检测临床标本中近乎所有的核酸背景,因而既可以用于病毒病原体的检测也有助于一些新的以往未知的病毒病原体的发现。本研究即旨在应用高通量测序技术对健康儿童和病原不明疑似急性病毒性呼吸道感染患儿的呼吸道标本,以及常见脑炎相关病毒筛查阴性的疑似急性病毒性中枢神经系统感染患儿的脑脊液标本进行分析,借助生物信息学方法了解上述各标本中病毒群体的组成以及差异,为后续进一步的探索疾病相关病毒病原体和新的未知病毒病原体提供前期研究基础;同时探索建立一种有效的病毒检测方法。
     共选择229份多种呼吸道病毒(包括部分常见的与近年新发现的呼吸道病毒)筛查均为阴性的疑似急性病毒性呼吸道感染患儿的鼻咽吸出物标本、97份健康儿童的鼻咽拭子标本、以及109份常见脑炎相关病毒筛查均为阴性的疑似病毒性中枢神经系统感染患儿的脑脊液标本。上述标本首先按照每2-3份原始标本混合成1份混合标本的方式进行预混,然后经0.45/0.22μm滤膜过滤和DNase/RNase处理,提取纯化核酸,进而借助于序列非依赖性的随机扩增技术对纯化的核酸进行随机扩增,并对扩增产物进行Barcode标记,等量混合扩增产物构建测序文库。进而完成454高通量测序,测序结果经生物信息学分析,确定标本中所有病毒同源序列。
     急性呼吸道感染患儿与健康儿童呼吸道标本的测序分别获得2,642,142个和668,403个序列。在去除冗余序列、低质量序列和屏蔽重复序列后,经BLASTn和BLASTx比对,两组儿童的标本分别获得9,178个和1,205个含完整Barcode序列的非冗余病毒同源序列。急性呼吸道感染患儿标本的检出序列与来自于23个病毒科的58种不同的病毒显示出不同程度的同源性,其中涵盖了脊椎动物和非脊椎动物病毒、植物病毒和真核微生物病毒样序列。最常检出的病毒科包括Anelloviridae、Parvoviridae、Coronaviridae、Paramyxoviridae、Polyomaviridae和Orthomyxoviridae等。健康儿童标本的检出序列则与分属于22个病毒科的39种病毒序列同源,涵盖了脊椎动物和非脊椎动物病毒、植物病毒、真核微生物病毒和古细菌病毒。与急性呼吸道感染患儿不同,健康儿童标本的检出序列主要与来自于Anelloviridae、Polyomaviridae、Caliciviridae、Herpesviridae、Virgaviridae和Circoviridae等病毒科的病毒成员同源。在两组人群的检出序列中,部分检出序列与数据库中的病毒序列之间呈现出较低的Identity值,表明在所检出的序列中可能含有一些来自于以往未知的病毒病原体的序列。
     脑脊液标本测序共获得962,920个序列,平均读长312bp。在经过同上述相同的生物信息学分析后,共获得1,061条含完整Barcode序列的非冗余病毒同源序列。这些非冗余序列的BLAST比对分析显示他们与来自于25个病毒科的54种不同的病毒的序列具有相似性。Anelloviridae和Parvoviridae病毒科是序列比对分析中最常检出的病毒科。这些检出的病毒样序列涵盖了脊椎动物和非脊椎动物病毒、植物病毒、真核微生物病毒和古细菌病毒同源序列。除检出了部分人和脊椎动物病毒样的序列,还同时检出多种虫媒病毒同源序列,如Brevidensovirus、Chloriridovirus和Densovirus等病毒的同源序列。与呼吸道标本的测序结果相同,部分序列与数据库中已知的病毒序列之间仅显示出较低的同源性。
     通过应用病毒宏基因组学研究方法,我们获得了儿童呼吸道标本和脑脊液标本中病毒群体的结构和组成情况,研究结果显示不同的临床标本以及不同的健康状态下病毒群体的组成存在一定的差异,本研究中所获得的序列信息同时也将为后续进一步研究和探索疾病相关病毒提供了前期研究基础。
     人副肠孤病毒(human parechovirus, HPeV)是一种目前尚未被临床工作者所熟知和了解,但在婴幼儿腹泻群体中并非鲜见的病原微生物,近些年有关其流行特征及与临床疾病的相关性颇受关注。作为常规监测的一部分,本研究的目的旨在了解近期HPeV在5岁以下急性腹泻住院患儿人群中的流行情况,结合我们以往的监测结果了解该病原体在本研究地区不同时期的流行特征的变化规律,以更全面的了解该病原体在本研究地区腹泻儿童群体中的流行情况。
     应用基于HPeV5'UTR保守区的实时RT-PCR筛检一整年期间内收集的289份急性腹泻住院患儿的粪便标本。阳性标本再经巢式PCR扩增VP3/VP1连接区,回收目的扩增产物并测序,系统进化分析确定基因型别。所有临床标本同时进行轮状病毒、杯状病毒、星状病毒和腺病毒的酶免分析,以确定HPeV阳性标本的合并感染情况。结合临床资料和基因分型结果,了解每种基因型别的流行特征,以及统计分析HPeV的感染与临床表征之间的相关性。
     HPeV的全年检出率为25.3%(73/289),其中95.9%(70/73)的感染病例发生在2岁以下的儿童,无性别差异,HPeV的检出主要集中在7月-9月和11月,其中在8月份和11月份呈现两个高峰流行季节,而4月-5月则呈较低的流行。73例阳性标本中56例确定了基因型别,分别为HPeV1-4型。其中HPeV1为最主要的检出型别,流行主要集中在7月-9月之间,多数感染病例小于18月龄,无性别差异。与此同时,本研究首次在国内检出2例较为罕见的HPeV2型。HPeV3型的检出率为2.1%(6/289),感染患儿的平均年龄为9月龄。HPeV4型感染患儿的平均年龄12月龄,此外,核酸序列的比对显示该基因型别具有其他基因型别所不具有的独特的GAT (nt241-243)三核苷酸插入。64.4%(47/73)的HPeV感染患儿伴有合并感染,合并感染见于所检出的四种基因型别。其中85.1%(40/47)的合并感染属于双重感染,轮状病毒(29/47,61.7%)为最主要的合并感染病原体。在上述四种常见腹泻病毒筛查均为阴性的患儿群体中,HPeV的检出率为22.2%(26/117)。除了腹泻症状外,呕吐(42.3%,11/26)和呼吸道症状(11.5%,3/26)是HPeV单独感染患儿最为常见的临床表现。
     HPeV的检出率与以往我们关于该地区的监测结果接近,但是流行的季节性与以往有所不同,此外,各基因型别也呈现出与过往不同的流行特征,表现为HPeV1的流行较往年提前了3个月,而在本研究中HPeV3型倾向于感染更加年幼的儿童,HPeV4型则更多的检出于年长的儿童。本研究首次在国内检出了较为罕见的HPeV2型感染病例,并在HPeV4的核苷酸序列中检出了该基因型别特有的GAT三核苷酸插入现象。合并感染的结果与以往的监测结果类似,本研究的数据再次证实HPeV的感染与临床表征之间并没有显著的相关性。
Viruses are considered to be one of the main causes of children's acute respiratory tract infections (ARI) and central nervous system (CNS) infections. Although a variety of detection technologies have been applied, most of the infections remain unknown. Unlike the conventional methods, ultra high-throughput pyrosequencing can unbiasedly detect all the nucleic acids in a clinical specimen. Thus, it can be used simultaneously for pathogen detection and new pathogen discovery. This study aimed at applying the high-throughput pyrosequencing to characterize the viral communities in respiratory samples collected from ARI children of unknown etiology and healthy children, and the cerebrospinal fluid (CSF) samples collected from children with unexplained acute CNS infections. So as to present a preliminary chart of the viromes in healthy and diseased populations, guiding the discovery of unexpected disease-associated viruses, and to establish an effective virus detection and surveillance platform.
     One hundred and five pooled nasopharyngeal aspirates (NPA) collected from229ARI children with suspected viral infections of unknown etiology,20pooled pharyngeal swabs collected from97healthy children and40pooled CSF samples collected from109children with suspected viral CNS infections but tested negative in the common viruses screening were enrolled in the present study for separate pyrosequencings. DNase&RNase treatments in combination with filtration were used to remove the non-viral nucleic acids in each pooled sample. Then the remaining filtrations were subjected to nucleic acids extraction and purification. A sequence-independent amplification (SIA) and multiple barcode primers were applied to amplify and label the nucleic acid products of the each pooled sample. Balanced mixture of each SIA amplicons was then subjected to454pyrosequencing, output data were retrieved and then analyzed by a pipeline of bioinformatic analysis to characterize the virus-like reads.
     Virus enrichment followed by pyrosequencing resulted in2,642,142and668,403reads from the ARI and healthy children's samples, respectively. After a pipeline of bioinformatic analysis,9,178(of2,642,142) and1,205(of668,403) non-redundant reads were finally showed to be of viral origin. The virome of the ARI children's NPA samples contained virus-like reads relating to58distinct viruses which belong to23viral families. Most of the reads were homologous to the viruses of the families Anelloviridae, Parvoviridae, Coronaviridae, Paramyxoviridae, Polyomaviridae and Orthomyxoviridae. Vertebrate, invertebrate, plant and eukaryotic micro-organism virus homologous reads were found in the virome. For the samples of healthy children, the best blast hits of the virus-like reads could be classified into39distinct viruses, which covered vertebrate, invertebrate, plant, eukaryotic microorganism and archea viruses, belonging to22viral families. Unlike the ARI children's samples, the most frequently identified virus-like reads were related to the families Anelloviridae, Polyomaviridae, Caliciviridae, Herpesviridae, Virgaviridae and Circovirida. Except some reads showed a significant similarity to the known viruses, part of the virus-like reads identified in both viromes displaying a low identity to the known sequences in the databases, suggesting the existence of some putatively novel viruse-like reads in the viromes.
     A total of962,920reads with an average length of312bp were obtained from the sequencing of CSF samples. Bioinformatic analysis identified1,061non-redundant reads displaying a potential viral origin. Blast analysis matched the non-redundant reads to54distinct viruses which represented25taxonomic families. Anelloviridae and Parvoviridae were the most frequently identified families in the homologous blast analysis of the virus-like reads. Vertebrate and invertebrate, plant, eukaryotic micro-organism and archea viruse-like reads were identified in the virome. Beside some human and vertebrate viruses homologous reads, a few reads related to the arboviruses, such as Brevidensovirus, Chloriridovirus and Densovirus, were also characterized. As the results of the respiratory samples, some of the virus-like reads only displayed a limited similarity to the known viral sequences in the databases.
     Utilizing a viral metagenomics strategy, we gave a preliminary chart of the virome in the respiratory and CSF samples, and varied viral communities were revealed in different type of clinical samples and health conditions. The results provide a further advance in the understanding of the viral constituency in the respiratory and CSF samples and the potential role of some viruses in diseases.
     Human parechoviruses (HPeVs), as a distinct entity and not rare pathogens among the diarrheal children, are still not well known to the clinicians. Epidemiological and clinical characteristics of HPeVs have been becoming the active research areas over recent years. As part of the routine survilliance, the current study was conducted to learn the latest prevalence of HPeVs in the hospitalized children with acute gastroenteritis in Lanzhou, China, and on this basis to learn the temporal changes in the HPeV prevalence when compared to our previous results. It was expected that this study would provide a more extensive and comprehensive understanding of HPeV in children with acute gastroenteritis in the region under investigation.
     A real-time RT-PCR targeting the highly conserved5'UTR of the HPeV genome was applied to screen the HPeV in fecal samples which had been collected from289hospitalized children with acute gastroenteritis. Then the positive samples were subjected to a nested PCR for genotyping. Amplicons of the predicted size were recovered and sequenced, the obtained sequences of the HPeV-positive products were then phylogenetic analyzed to infer the genotypes. Enzyme immunoassay detections of the four common diarrheal viruses, i.e. rotavirus, astrovirus, calicivirus and adenovirus, were also conducted to screen for co-infections. The clinical data for the children were retrieved to learn the epidemical characteristics of the identified individual genotypes and to assess the association of the HPeV with acute gastroenteritis.
     Of the289specimens,73(25.3%,73/289) were HPeV-positive. Nearly all the infections (70/73,95.9%) occurred in the first two years of life, and a larger proportion were between7to12months. The prevalence of HPeV was gender neutral. HPeV was more prevalent during July-September and November, with two peak periods in "August and November" and a minimum in "April through May". A total of56of73(76.7%) positive samples were successfully genotyped, HPeV genotypes1to4were identified. HPeV1was the most prevalent genotype, which was primarily identified from specimens collected during July-September (31/42,73.8%) with a peak in August. Most of the HPeV1positive children (37/42,88.1%) were younger than18months. It is noteworthy that HPeV2, a rarely reported genotype, was detected unexpectedly in this study. As far as we know, this is the first report of HPeV2prevalence in China to date. HPeV3was found in2.1%(6/289) fecal samples with an average age of9months. Infections of HPeV4were only seen in boys, the average age of the positive cases was12months. Within the nucleotide sequences an unexpected trinucleotide (GAT, nt241-243) insertion was found in all of the HPeV4sequences but not in the other genotypes. Co-infections were seen in64.4%(47/73) HPeV-infected subjects, and85.1%(40/47) of them were identified as dual infection. Rotavirus (29/47,61.7%) was the most frequently co-detected pathogen. Among the subpopulation not infected with any of the four common diarrheal viruses, HPeV showed a22.2%(26/117) positive rate. Co-infection was seen in each of the identified genotypes HPeV1to4. In addition to diarrhea, vomiting (42.3%,11/26) and respiratory symptoms (11.5%,3/26) were the other common symptoms presented in the children with HPeV-infection alone.
     A comparable positive rate was revealed, while a temporal change of the seasonal distribution was noted when compared to our previous results. Changes in HPeV genotypes patterns, a three-month forward prevalence of HPeV1, a younger susceptible age to HPeV1than HPeV1, and a tendency of older children to be infected with HPeV4contrary to our previous report, were also revealed. HPeV2, a rarely reported genotype, was identified for the first time in China. In addition, an exclusive trinucleotide (GAT) insertion in the HPeV4nucleotide sequences was identified. The profile of the co-infections with other enteric related viruses were similar to our previous findings. Lack of direct association of HPeVs with acute gastroenteritis was confirmed in the current study.
引文
[1]ORGANIZATION W H. World Health Statistics 2010 [M]. World Health Organization,2010.
    [2]VAN DEN HOOGEN B G, DE JONG J C, GROEN J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease [J]. Nature Medicine,2001,7(6):719-24.
    [3]VAN DER HOEK L, PYRC K, JEBBINK M F, et al. Identification of a new human coronavirus [J]. Nature Medicine,2004,10(4):368-73.
    [4]WOO P C, LAU S K, CHU C M, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia [J]. Journal of Virology,2005,79(2):884-95.
    [5]ALLANDER T, TAMMI M T, ERIKSSON M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(36):12891-6.
    [6]ALLANDER T, ANDREASSON K, GUPTA S, et al. Identification of a third human polyomavirus [J]. Journal of Virology,2007,81(8):4130-6.
    [7]GAYNOR A M, NISSEN M D, WHILEY D M, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections [J]. PLoS Pathogens, 2007,3(5):e64.
    [8]LEE W M, KIESNER C, PAPPAS T, et al. A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants [J]. PLoS One,2007,2(10):e966.
    [9]PALMENBERG A C, SPIRO D, KUZMICKAS R, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution [J]. Science,2009, 324(5923):55-9.
    [10]DROSTEN C, GUNTHER S, PREISER W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome [J]. The New England Journal of Medicine,2003,348(20):1967-76.
    [11]KSIAZEK T G, ERDMAN D, GOLDSMITH C S, et al. A novel coronavirus associated with severe acute respiratory syndrome [J]. The New England Journal of Medicine,2003,348(20):1953-66.
    [12]CENTERS FOR DISEASE C, PREVENTION. Isolation of avian influenza A(H5N1) viruses from humans--Hong Kong, May-December 1997 [J]. MMWR Morbidity and Mortality Weekly Report,1997,46(50):1204-7.
    [13]CENTERS FOR DISEASE C, PREVENTION. Swine influenza A (H1N1) infection in two children--Southern California, March-April 2009 [J]. MMWR Morbidity and Mortality Weekly Report,2009,58(15):400-2.
    [14]YANG J, YANG F, REN L, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach [J]. Journal of Clinical Microbiology, 2011,49(10):3463-9.
    [15]WILLNER D, FURLAN M. Deciphering the role of phage in the cystic fibrosis airway [J]. Virulence,2010,1(4):309-13.
    [16]ZHOU Y, LIN P, LI Q, et al. Analysis of the microbiota of sputum samples from patients with lower respiratory tract infections [J]. Acta Biochimica et Biophysica Sinica, 2010,42(10):754-61.
    [17]BOGAERT D, KEIJSER B, HUSE S, et al. Variability and diversity of nasopharyngeal microbiota in children:a metagenomic analysis [J]. PLoS One,2011, 6(2):e17035.
    [18]GRENINGER A L, CHEN E C, SITTLER T, et al. A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America [J]. PLoS One,2010,5(10):e13381.
    [19]LYSHOLM F, WETTERBOM A, LINDAU C, et al. Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing [J]. PLoS One,2012,7(2):e30875.
    [20]WILLNER D, FURLAN M, HAYNES M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals [J]. PLoS One,2009,4(10):e7370.
    [21]ZHANG W D, EVANS D H. Detection and identification of human influenza viruses by the polymerase chain reaction [J]. Journal of Virological Methods,1991,33(1-2):165-89.
    [22]DRUCE J, TRAN T, KELLY H, et al. Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia,2002-2003 [J]. Journal of Medical Virology,2005,75(1):122-9.
    [23]FREYMUTH F, EUGENE G, VABRET A, et al. Detection of respiratory syncytial virus by reverse transcription-PCR and hybridization with a DNA enzyme immunoassay [J]. Journal of Clinical Microbiology,1995,33(12):3352-5.
    [24]VABRET A, GOUARIN S, JOANNES M, et al. Development of a PCR-and hybridization-based assay (PCR Adenovirus Consensus) for the detection and the species identification of adenoviruses in respiratory specimens [J]. Journal of Clinical Virology, 2004,31(2):116-22.
    [25]VUORINEN T, VAINIONPAA R, HYYPIA T. Five years'experience of reverse-transcriptase polymerase chain reaction in daily diagnosis of enterovirus and rhinovirus infections [J]. Clinical Infectious Diseases,2003,37(3):452-5.
    [26]BOIVIN G, ABED Y, PELLETIER G, et al. Virological features and clinical manifestations associated with human metapneumovirus:a new paramyxovirus responsible for acute respiratory-tract infections in all age groups [J]. The Journal of Infectious Diseases,2002,186(9):1330-4.
    [27]MOES E, VIJGEN L, KEYAERTS E, et al. A novel pancoronavirus RT-PCR assay:frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium [J]. BMC Infectious Diseases,2005,5(6).
    [28]KUYPERS J, CAMPBELL A P, GUTHRIE K A, et al. WU and KI polyomaviruses in respiratory samples from allogeneic hematopoietic cell transplant recipients [J]. Emerging Infectious Diseases,2012,18(10):1580-8.
    [29]RAO S, GARCEA R L, ROBINSON C C, et al. WU and KI polyomavirus infections in pediatric hematology/oncology patients with acute respiratory tract illness [J]. Journal of Clinical Virology,2011,52(1):28-32.
    [30]SMITS S L, VAN LEEUWEN M, SCHAPENDONK C M, et al. Picobirnaviruses in the human respiratory tract [J]. Emerging Infectious Diseases,2012,18(9):1539-40.
    [31]COSTA C, TERLIZZI M E, SOLIDORO P, et al. Detection of parvovirus B19 in the lower respiratory tract [J]. Journal of Clinical Virology,2009,46(2):150-3.
    [32]GARCIA-GARCIA M L, CALVO C, POZO F, et al. Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection [J]. The Pediatric Infectious Disease Journal,2008,27(4):358-60.
    [33]FRY A M, LU X, CHITTAGANPITCH M, et al. Human bocavirus:a novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand [J]. The Journal of Infectious Diseases,2007,195(7):1038-45.
    [34]MARTIN E T, FAIRCHOK M P, KUYPERS J, et al. Frequent and prolonged shedding of bocavirus in young children attending day care [J]. The Journal of Infectious Diseases,2010,201(11):1625-32.
    [35]HAN T H, CHUNG J Y, HWANG E S. Human bocavirus 2 in children, South Korea [J]. Emerging Infectious Diseases,2009,15(10):1698-700.
    [36]SONG J R, JIN Y, XIE Z P, et al. Novel human bocavirus in children with acute respiratory tract infection [J]. Emerging Infectious Diseases,2010,16(2):324-7.
    [37]ARBUCKLE J H, MEDVECZKY P G. The molecular biology of human herpesvirus-6 latency and telomere integration [J]. Microbes and Infection/Institut Pasteur,2011,13(8-9):731-41.
    [38]LI L, VICTORIA J, KAPOOR A, et al. A novel picornavirus associated with gastroenteritis [J]. Journal of Virology,2009,83(22):12002-6.
    [39]SHAN T, WANG C, CUI L, et al. Picornavirus salivirus/klassevirus in children with diarrhea, China [J]. Emerging Infectious Diseases,2010,16(8):1303-5.
    [40]NG T F, MARINE R, WANG C, et al. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage [J]. Journal of Virology,2012, 86(22):12161-75.
    [41]BERNARDIN F, OPERSKALSKI E, BUSCH M, et al. Transfusion transmission of highly prevalent commensal human viruses [J]. Transfusion,2010,50(11):2474-83.
    [42]LA SCOLA B, MARRIE T J, AUFFRAY J P, et al. Mimivirus in pneumonia patients [J]. Emerging Infectious Diseases,2005,11(3):449-52.
    [43]COSTA C, BERGALLO M, ASTEGIANO S, et al. Detection of Mimivirus in bronchoalveolar lavage of ventilated and nonventilated patients [J]. Intervirology,2012, 55(4):303-5.
    [44]DARE R K, CHITTAGANPITCH M, ERDMAN D D. Screening pneumonia patients for mimivirus [J]. Emerging Infectious Diseases,2008,14(3):465-7.
    [45]VANSPAUWEN M J, FRANSSEN F M, RAOULT D, et al. Infections with mimivirus in patients with chronic obstructive pulmonary disease [J]. Respiratory Medicine,2012,106(12):1690-4.
    [46]KIM M S, PARK E J, ROH S W, et al. Diversity and abundance of single-stranded DNA viruses in human feces [J]. Applied and Environmental Microbiology,2011,77(22): 8062-70.
    [47]VICTORIA J G, KAPOOR A, LI L, et al. Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis [J]. Journal of Virology,2009, 83(9):4642-51.
    [48]WOMMACK K E, BHAVSAR J, RAVEL J. Metagenomics:read length matters [J]. Applied and Environmental Microbiology,2008,74(5):1453-63.
    [1]STAHL J P, MAILLES A, DACHEUX L, et al. Epidemiology of viral encephalitis in 2011 [J]. Medecine et Maladies Infectieuses,2011,41(9):453-64.
    [2]WILSON M R, TYLER K L. Issues and updates in emerging neurologic viral infections [J]. Seminars in Neurology,2011,31(3):245-53.
    [3]MCGAVERN D B, K.ANG S S. Illuminating viral infections in the nervous system [J]. Nature Reviews Immunology,2011,11(5):318-29.
    [4]WANG D, URISMAN A, LIU Y T, et al. Viral discovery and sequence recovery using DNA microarrays [J]. PLoS Biology,2003,1(2):E2.
    [5]GRUBAUGH N D, PETZ L N, MELANSON V R, et al. Evaluation of a field-portable DNA microarray platform and nucleic acid amplification strategies for the detection of arboviruses, arthropods, and bloodmeals [J]. The American Journal of Tropical Medicine and Hygiene,2013,88(2):245-53.
    [6]BRUNSTEIN J D, CLINE C L, MCKINNEY S, et al. Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections [J]. Journal of Clinical Microbiology,2008,46(1):97-102.
    [7]KAHLAU P, MALECKI M, SCHILDGEN V, et al. Utility of two novel multiplexing assays for the detection of gastrointestinal pathogens-a first experience [J]. SpringerPlus,2013,2(1):106.
    [8]YOZWIAK N L, SKEWES-COX P, STENGLEIN M D, et al. Virus identification in unknown tropical febrile illness cases using deep sequencing [J]. PLoS Neglected Tropical Diseases,2012,6(2):e1485.
    [9]MCMULLAN L K, FRACE M, SAMMONS S A, et al. Using next generation sequencing to identify yellow fever virus in Uganda [J]. Virology,2012,422(1):1-5.
    [10]LIU L, LI Y, LI S, et al. Comparison of next-generation sequencing systems [J]. Journal of Biomedicine & Biotechnology,2012,2012:251364.
    [11]ARBUCKLE J H, MEDVECZKY M M, LUKA J, et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(12):5563-8.
    [12]KING A M Q, LEFKOWITZ E, ADAMS M J, et al. Virus Taxonomy:Ninth Report of the International Committee on Taxonomy of Viruses [M]. Elsevier Science, 2011.
    [13]SAUVAGE V, AR GOUILH M, CHEVAL J, et al. A member of a new Picornaviridae genus is shed in pig feces [J]. Journal of Virology,2012,86(18):10036-46.
    [14]RENAUD C, KUYPERS J, FICKEN E, et al. Introduction of a novel parechovirus RT-PCR clinical test in a regional medical center [J]. Journal of Clinical Virology,2011, 51(1):50-3.
    [15]VERBOON-MACIOLEK M A, GROENENDAAL F, HAHN C D, et al. Human parechovirus causes encephalitis with white matter injury in neonates [J]. Annals of Neurology,2008,64(3):266-73.
    [16]LEGAY V, CHOMEL J J, FERNANDEZ E, et al. Encephalomyelitis due to human parechovirus type 1 [J]. Journal of Clinical Virology,2002,25(2):193-5.
    [17]LEVORSON R E, JANTAUSCH B A, WIEDERMANN B L, et al. Human parechovirus-3 infection:emerging pathogen in neonatal sepsis [J]. Pediatric Infectious Disease Journal,2009,28(6):545-7.
    [18]WOLTHERS K C, BENSCHOP K S M, SCHINKEL J, et al. Human Parechoviruses as an Important Viral Cause of Sepsislike Illness and Meningitis in Young Children [J]. Clinical Infectious Diseases,2008,47(3):358-63.
    [19]WALTERS B, PENARANDA S, NIX W A, et al. Detection of human parechovirus (HPeV)-3 in spinal fluid specimens from pediatric patients in the Chicago area [J]. Journal of Clinical Virology,2011,52(3):187-91.
    [20]HARVALA H, MCLEISH N, KONDRACKA J, et al. Comparison of human parechovirus and enterovirus detection frequencies in cerebrospinal fluid samples collected over a 5-year period in edinburgh:HPeV type 3 identified as the most common picornavirus type [J]. Journal of Medical Virology,2011,83(5):889-96.
    [21]SCHILLER J T, DAY P M, KINES R C. Current understanding of the mechanism of HPV infection [J]. Gynecologic oncology,2010,118(1 Suppl):S12-7.
    [22]BODAGHI S, WOOD L V, ROBY G, et al. Could human papillomaviruses be spread through blood? [J]. Journal of Clinical Microbiology,2005,43(11):5428-34.
    [23]CHEN A C, KELEHER A, KEDDA M A, et al. Human papillomavirus DNA detected in peripheral blood samples from healthy Australian male blood donors [J]. Journal of Medical Virology,2009,81(10):1792-6.
    [24]PAO C C, LIN S S, LIN C Y, et al. Identification of human papillomavirus DNA sequences in peripheral blood mononuclear cells [J]. American Journal of Clinical Pathology,1991,95(4):540-6.
    [25]MAGGI F, FORNAI C, VATTERONI M L, et al. Low prevalence of TT virus in the cerebrospinal fluid of viremic patients with central nervous system disorders [J]. Journal of Medical Virology,2001,65(2):418-22.
    [26]POLLICINO T, RAFFA G, SQUADRITO G, et al. TT virus has a ubiquitous diffusion in human body tissues:analyses of paired serum and tissue samples [J]. Journal of Viral Hepatitis,2003,10(2):95-102.
    [27]SHIRAMIZU B, YU Q, HU N, et al. Investigation of TT virus in the etiology of pediatric acute lymphoblastic leukemia [J]. Pediatric Hematology and Oncology,2002, 19(8):543-51.
    [28]MITUI M T, TABIB S M, MATSUMOTO T, et al. Detection of human bocavirus in the cerebrospinal fluid of children with encephalitis [J]. Clinical Infectious Diseases, 2012,54(7):964-7.
    [29]TISCHER B K, OSTERRIEDER N. Herpesviruses--a zoonotic threat? [J]. Veterinary Microbiology,2010,140(3-4):266-70.
    [30]MARTIN W J, ZENG L C, AHMED K, et al. Cytomegalovirus-related sequence in an atypical cytopathic virus repeatedly isolated from a patient with chronic fatigue syndrome [J]. The American Journal of Pathology,1994,145(2):440-51.
    [31]MARTIN W J. Stealth adaptation of an African green monkey simian cytomegalovirus [J]. Experimental and Molecular Pathology,1999,66(1):3-7.
    [32]MARTIN W J, AHMED K N, ZENG L C, et al. African green monkey origin of the atypical cytopathic 'stealth virus' isolated from a patient with chronic fatigue syndrome [J]. Clinical and Diagnostic Virology,1995,4(1):93-103.
    [33]HUANG E S, KILPATRICK B, LAKEMAN A, et al. Genetic analysis of a cytomegalovirus-like agent isolated from human brain [J]. Journal of Virology,1978, 26(3):718-23.
    [34]BAYLIS S A, SHAH N, JENKINS A, et al. Simian cytomegalovirus and contamination of oral poliovirus vaccines [J]. Biologicals,2003,31(1):63-73.
    [35]SIERRA-HONIGMANN A M, KRAUSE P R. Live oral poliovirus vaccines and simian cytomegalovirus [J]. Biologicals,2002,30(3):167-74.
    [36]MILLER F, AFONSO P V, GESSAIN A, et al. Blood-brain barrier and retroviral infections [J]. Virulence,2012,3(2):222-9.
    [37]ROBINSON M J, ERLWEIN O W, KAYE S, et al. Mouse DNA contamination in human tissue tested for XMRV [J]. Retrovirology,2010,7:108.
    [38]OAKES B, TAI A K, CINGOZ O, et al. Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences [J]. Retrovirology, 2010,7:109.
    [39]KNOX K, CARRIGAN D, SIMMONS G, et al. No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected [J]. Science, 2011,333(6038):94-7.
    [40]SATO E, FURUTA R A, MIYAZAWA T. An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR kit is amplified using standard primers for XMRV [J]. Retrovirology,2010,7:110.
    [41]LOH J, ZHAO G, PRESTI R M, et al. Detection of novel sequences related to african Swine Fever virus in human serum and sewage [J]. Journal of Virology,2009, 83(24):13019-25.
    [42]VICTORIA J G, KAPOOR A, LI L, et al. Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis [J]. Journal of Virology,2009, 83(9):4642-51.
    [43]LI L, KAPOOR A, SLIKAS B, et al. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces [J]. Journal of Virology,2010,84(4):1674-82.
    [44]WILLNER D, FURLAN M, HAYNES M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals [J]. PLoS One,2009,4(10):e7370.
    [45]PADILLA-RODRIGUEZ M, ROSARIO K, BREITBART M. Novel cyclovirus discovered in the Florida woods cockroach Eurycotis floridana (Walker) [J]. Archives of Virology,2013.
    [46]ROSARIO K, MARINOV M, STAINTON D, et al. Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata:Anisoptera) [J]. Journal of General Virology,2011,92(Pt 6):1302-8.
    [47]ROSARIO K, DUFFY S, BREITBART M. Diverse circovirus-like genome architectures revealed by environmental metagenomics [J]. Journal of General Virology, 2009,90(Pt 10):2418-24.
    [48]LI L, SHAN T, SOJI O B, et al. Possible cross-species transmission of circoviruses and cycloviruses among farm animals [J]. Journal of General Virology,2011, 92(Pt 4):768-72.
    [49]NG T F, WILLNER D L, LIM Y W, et al. Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes [J]. PLoS One,2011,6(6):e20579.
    [50]LIU H, FU Y, LI B, et al. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes [J]. BMC Evolutionary Biology, 2011,11:276.
    [51]BELYI V A, LEVINE A J, SKALKA A M. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes:the parvoviridae and circoviridae are more than 40 to 50 million years old [J]. Journal of Virology,2010,84(23):12458-62.
    [52]KATZOURAKIS A, GIFFORD R J. Endogenous viral elements in animal genomes [J]. PLoS Genetics,2010,6(11):e1001191.
    [1]HARVALA H, WOLTHERS K C, SIMMONDS P. Parechoviruses in children: understanding a new infection [J]. Current Opinion in Infectious Diseases,2010,23(3): 224-30.
    [2]KING A M Q, F. BROWN, P. CHRISTIAN, T. HOVI, T. HYYPIA", N. J. KNOWLES, S. M. LEMON, P. D. MINOR, A. C. PALMENBERG, T. SKERN, AND G. STANWAY. Picornaviridae [M]//M. H. V. VAN REGENMORTEL C M F, D. H. L. BISHOP, C. H. CALISHER, E. B. CARSTEN, M. K. ESTES, S. M. LEMON, J. MANILOFF, M. A. MAYO, D. J. MCGEOCH, C. R. PRINGLE, AND R. B. WICKNER. Virus taxonomy Seventh Report of the International Committee for the Taxonomy of Viruses. N.Y.; Academic Press, New York.1999:996.
    [3]TAURIAINEN S, MARTISKAINEN M, OIKARINEN S, et al. Human parechovirus 1 infections in young children--no association with type 1 diabetes [J]. Journal of Medical Virology,2007,79(4):457-62.
    [4]JOKI-KORPELA P, HYYPIA T. Diagnosis and epidemiology of echovirus 22 infections [J]. Clinical Infectious Diseases,1998,27(1):129-36.
    [5]ITO M, YAMASHITA T, TSUZUKI H, et al. Isolation and identification of a novel human parechovirus Virus isolation [J]. Journal of General Virology,2004,391-8.
    [6]VAN DER SANDEN S, DE BRUIN E, VENNEMA H, et al. Prevalence of human parechovirus in the Netherlands in 2000 to 2007 [J]. Journal of Clinical Microbiology, 2008,46(9):2884-9.
    [7]BENSCHOP K S, SCHINKEL J, MINNAAR R P, et al. Human parechovirus infections in Dutch children and the association between serotype and disease severity [J]. Clinical Infectious Diseases,2006,42(2):204-10.
    [8]LANDRY M L. The molecular diagnosis of parechovirus infection:has the time come? [J]. Clinical Infectious Diseases,2010,50(3):362-3.
    [9]HARVALA H, MCLEISH N, KONDRACKA J, et al. Comparison of human parechovirus and enterovirus detection frequencies in cerebrospinal fluid samples collected over a 5-year period in edinburgh:HPeV type 3 identified as the most common picornavirus type [J]. Journal of Medical Virology,2011,83(5):889-96.
    [10]BENSCHOP K, THOMAS X, SERPENTI C, et al. High prevalence of human Parechovirus (HPeV) genotypes in the Amsterdam region and identification of specific HPeV variants by direct genotyping of stool samples [J]. Journal of Clinical Microbiology,2008,46(12):3965-70.
    [11]BENSCHOP K, MINNAAR R, KOEN G, et al. Detection of human enterovirus and human parechovirus (HPeV) genotypes from clinical stool samples:polymerase chain reaction and direct molecular typing, culture characteristics, and serotyping [J]. Diagnostic Microbiology and Infectious Disease,2010,68(2):166-73.
    [12]SELVARANGAN R, NZABI M, SELVARAJU S B, et al. Human parechovirus 3 causing sepsis-like illness in children from midwestern United States [J]. Pediatric Infectious Disease Journal,2011,30(3):238-42.
    [13]YAMAMOTO M, ABE K, KUNIYORI K, et al. Epidemic of human parechovirus type 3 in Hiroshima city, Japan in 2008 [J]. Japanese Journal of Infectious Diseases, 2009,62(3):244-5.
    [14]HARVALA H, ROBERTSON I, CHIEOCHANSIN T, et al. Specific association of human parechovirus type 3 with sepsis and fever in young infants, as identified by direct typing of cerebrospinal fluid samples [J]. Journal of Infectious Diseases,2009,199(12): 1753-60.
    [15]SHARP J, HARRISON C J, PUCKETT K, et al. Characteristics of young infants in whom human parechovirus, enterovirus or neither were detected in cerebrospinal fluid during sepsis evaluations [J]. Pediatric Infectious Disease Journal,2013,32(3):213-6.
    [16]BOIVIN G, ABED Y, BOUCHER F D. Human parechovirus 3 and neonatal infections [J]. Emerging Infectious Diseases,2005,11(1):103-5.
    [17]LEVORSON R E, JANTAUSCH B A, WIEDERMANN B L, et al. Human parechovirus-3 infection:emerging pathogen in neonatal sepsis [J]. Pediatric Infectious Disease Journal,2009,28(6):545-7.
    [18]VERBOON-MACIOLEK M A, KREDIET T G, GERARDS L J, et al. Severe neonatal parechovirus infection and similarity with enterovirus infection [J]. Pediatric Infectious Disease Journal,2008,27(3):241-5.
    [19]PIRALLA A, FURIONE M, ROVIDA F, et al. Human parechovirus infections in patients admitted to hospital in Northern Italy,2008-2010 [J]. Journal of Medical Virology,2012,84(4):686-90.
    [20]EIS-HUBINGER A M, ECKERLE I, HELMER A, et al. Two cases of sepsis-like illness in infants caused by human parechovirus traced back to elder siblings with mild gastroenteritis and respiratory symptoms [J]. Journal of Clinical Microbiology,2013, 51(2):715-8.
    [21]REUTER G, UJ M, PANKOVICS P, et al. [Clinical significance and the first identification of human parechoviruses in Hungary] [J]. Orvosi Hetilap.,2011,152(25): 1007-12.
    [22]RENAUD C, KUYPERS J, FICKEN E, et al. Introduction of a novel parechovirus RT-PCR clinical test in a regional medical center [J]. Journal of Clinical Virology,2011, 51(1):50-3.
    [23]KATANO H, KANO M, NAKAMURA T, et al. A novel real-time PCR system for simultaneous detection of human viruses in clinical samples from patients with uncertain diagnoses [J]. Journal of Medical Virology,2011,83(2):322-30.
    [24]GUPTA S, FERNANDEZ D, SIDDIQUI A, et al. Extensive white matter abnormalities associated with neonatal Parechovirus (HPeV) infection [J]. European Journal of Paediatric Neurology,2010,14(6):531-4.
    [25]VAN ZWOL A L, LEQUIN M, AARTS-TESSELAAR C, et al. Fatal neonatal parechovirus encephalitis [J]. BMJ case reports,2009,2009.
    [26]VERBOON-MACIOLEK M A, GROENENDAAL F, HAHN C D, et al. Human parechovirus causes encephalitis with white matter injury in neonates [J]. Annals of Neurology,2008,64(3):266-73.
    [27]LEGAY V, CHOMEL J J, FERNANDEZ E, et al. Encephalomyelitis due to human parechovirus type 1 [J]. Journal of Clinical Virology,2002,25(2):193-5.
    [28]SEDMAK G, NIX W A, JENTZEN J, et al. Infant deaths associated with human parechovirus infection in Wisconsin [J]. Clinical Infectious Diseases,2010,50(3):357-61.
    [29]TAPIA G, CINEK O, WITSO E, et al. Longitudinal observation of parechovirus in stool samples from Norwegian infants [J]. Journal of Medical Virology,2008,80(10): 1835-42.
    [30]PAJKRT D, BENSCHOP K S, WESTERHUIS B, et al. Clinical characteristics of human parechoviruses 4-6 infections in young children [J]. Pediatric Infectious Disease Journal,2009,28(11):1008-10.
    [31]HARVALA H, ROBERTSON I, MCWILLIAM LEITCH E C, et al. Epidemiology and clinical associations of human parechovirus respiratory infections [J]. Journal of Clinical Microbiology,2008,46(10):3446-53.
    [32]ZHANG D L, JIN Y, LI D D, et al. Prevalence of human parechovirus in Chinese children hospitalized for acute gastroenteritis [J]. Clinical Microbiology and Infection, 2011,17(10):1563-9.
    [33]TAPIA G, CINEK O, RASMUSSEN T, et al. Longitudinal study of parechovirus infection in infancy and risk of repeated positivity for multiple islet autoantibodies:the MIDIA study [J]. Pediatric Diabetes,2011,12(1):58-62.
    [34]WOLTHERS K C, BENSCHOP K S, SCHINKEL J, et al. Human parechoviruses as an important viral cause of sepsislike illness and meningitis in young children [J]. Clinical Infectious Diseases,2008,47(3):358-63.
    [35]BAUMGARTE S, DE SOUZA LUNA L K, GRYWNA K, et al. Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis [J]. Journal of Clinical Microbiology, 2008,46(1):242-8.
    [36]LJUBIN-STERNAK S, JURETIC E, SANTAK M, et al. Clinical and molecular characterization of a parechovirus type 1 outbreak in neonates in Croatia [J]. Journal of Medical Virology,2011,83(1):137-41.
    [37]PHAM N T, TAKANASHI S, TRAN D N, et al. Human parechovirus infection in children hospitalized with acute gastroenteritis in Sri Lanka [J]. Journal of Clinical Microbiology,2011,49(1):364-6.
    [38]PHAM N T, TRINH Q D, KHAMRIN P, et al. Diversity of human parechoviruses isolated from stool samples collected from Thai children with acute gastroenteritis [J]. Journal of Clinical Microbiology,2010,48(1):115-9.
    [39]MIRAND A, ARCHIMBAUD C, CHAMBON M, et al. Diagnosis of human parechovirus infections of the central nervous system with a commercial real-time reverse transcription-polymerase chain reaction kit and direct genotyping of cerebrospinal fluid specimens [J]. Diagnostic Microbiology and Infectious Disease,2012,74(1):78-80.
    [40]KOLEHMAINEN P, OIKARINEN S, KOSKINIEMI M, et al. Human parechoviruses are frequently detected in stool of healthy Finnish children [J]. Journal of Clinical Virology,2012,54(2):156-61.
    [41]GHAZI F, ATAEI Z, DABIRMANESH B. Molecular detection of human parechovirus type 1 in stool samples from children with diarrhea [J]. International Journal of Infectious Diseases,2012,16(9):e673-6.
    [42]ZHONG H, LIN Y, SU L, et al. Prevalence of human parechoviruses in central nervous system infections in children:A retrospective study in Shanghai, China [J]. Journal of Medical Virology,2013,85(2):320-6.
    [43]KHAMRIN P, OKAME M, THONGPRACHUM A, et al. A single-tube multiplex PCR for rapid detection in feces of 10 viruses causing diarrhea [J]. Journal of Virological Methods,2011,173(2):390-3.
    [44]PHAM N T, TRINH Q D, CHAN-IT W, et al. A novel RT-multiplex PCR for detection of Aichi virus, human parechovirus, enteroviruses, and human bocavirus among infants and children with acute gastroenteritis [J]. Journal of Virological Methods,2010, 169(1):193-7.
    [45]NOORDHOEK G T, WEEL J F, POELSTRA E, et al. Clinical validation of a new real-time PCR assay for detection of enteroviruses and parechoviruses, and implications for diagnostic procedures [J]. Journal of Clinical Virology,2008,41(2):75-80.
    [46]JOKELA P, JOKI-KORPELA P, MAARONEN M, et al. Detection of human picornaviruses by multiplex reverse transcription-PCR and liquid hybridization [J]. Journal of Clinical Microbiology,2005,43(3):1239-45.
    [47]BENNETT S, HARVALA H, WITTEVELDT J, et al. Rapid simultaneous detection of enterovirus and parechovirus RNAs in clinical samples by one-step real-time reverse transcription-PCR assay [J]. Journal of Clinical Microbiology,2011,49(7):2620- 4.
    [48]WATANABE K, OIE M, HIGUCHI M, et al. Isolation and characterization of novel human parechovirus from clinical samples [J]. Emerging Infectious Diseases,2007, 13(6):889-95.
    [49]LI L, VICTORIA J, KAPOOR A, et al. Genomic characterization of novel human parechovirus type [J]. Emerging Infectious Diseases,2009,15(2):288-91.
    [50]CHIEOCHANSIN T, VICHIWATTANA P, KORKONG S, et al. Molecular epidemiology, genome characterization, and recombination event of human parechovirus [J]. Virology,2011,421(2):159-66.
    [51]ZHONG H, LIN Y, SUN J, et al. Prevalence and genotypes of human parechovirus in stool samples from hospitalized children in Shanghai, China,2008 and 2009 [J]. Journal of Medical Virology,2011,83(8):1428-34.
    [52]HAN T H, KIM C H, PARK S H, et al. Detection of human parechoviruses in children with gastroenteritis in South Korea [J]. Archives of Virology,2011,156(8): 1471-5.
    [53]BOROS A, UJ M, PANKOVICS P, et al. Detection and characterization of human parechoviruses in archived cell cultures, in Hungary [J]. Journal of Clinical Virology, 2010,47(4):379-81.
    [54]SHAN T L, GUO W, CUI L, et al. The first detection of human parechovirus infections in China [J]. Journal of Clinical Virology,2009,45(4):371-2.
    [55]PHAM N T, CHAN-IT W, KHAMRIN P, et al. Detection of human parechovirus in stool samples collected from children with acute gastroenteritis in Japan during 2007-2008 [J]. Journal of Medical Virology,2011,83(2):331-6.
    [56]SHAN T L, WANG C M, CUI L, et al. Human parechovirus infections in monkeys with diarrhea, China [J]. Emerging Infectious Diseases,2010,16(7):1168-9.
    [57]ABED Y, BOIVIN G. Human parechovirus types 1,2 and 3 infections in Canada [J]. Emerging Infectious Diseases,2006,12(6):969-75.
    [58]WILLIAMS C H, PANAYIOTOU M, GIRLING G D, et al. Evolution and conservation in human parechovirus genomes [J]. Journal of General Virology,2009, 90(Pt 7):1702-12.
    [59]BENSCHOP K S, DE VRIES M, MINNAAR R P, et al. Comprehensive full-length sequence analyses of human parechoviruses:diversity and recombination [J]. Journal of General Virology,2010,91(Pt 1):145-54.
    [60]CALVERT J, CHIEOCHANSIN T, BENSCHOP K S, et al. Recombination dynamics of human parechoviruses:investigation of type-specific differences in frequency and epidemiological correlates [J]. Journal of General Virology,2010,91 (Pt 5): 1229-38.
    [61]ITO M, YAMASHITA T, TSUZUKI H, et al. Detection of human parechoviruses from clinical stool samples in Aichi, Japan [J]. Journal of Clinical Microbiology,2010, 48(8):2683-8.
    [1]ITO M, YAMASHITA T, TSUZUKI H, et al. Isolation and identification of a novel human parechovirus Virus isolation [J]. Journal of General Virology,2004,391-8.
    [2]BOIVIN G, ABED Y, BOUCHER F D. Human parechovirus 3 and neonatal infections [J]. Emerging Infectious Diseases,2005,11(1):103-5.
    [3]PHAM N T, TAKANASHI S, TRAN D N, et al. Human parechovirus infection in children hospitalized with acute gastroenteritis in Sri Lanka [J]. Journal of Clinical Microbiology,2011,49(1):364-6.
    [4]SELVARANGAN R, NZABI M, SELVARAJU S B, et al. Human parechovirus 3 causing sepsis-like illness in children from midwestern United States [J]. Pediatric Infectious Disease Journal,2011,30(3):238-42.
    [5]PINEIRO L, VICENTE D, MONTES M, et al. Human parechoviruses in infants with systemic infection [J]. Journal of Medical Virology,2010,82(10):1790-6.
    [6]LEVORSON R E, JANTAUSCH B A, WIEDERMANN B L, et al. Human parechovirus-3 infection:emerging pathogen in neonatal sepsis [J]. Pediatric Infectious Disease Journal,2009,28(6):545-7.
    [7]SEDMAK G, NIX W A, JENTZEN J, et al. Infant deaths associated with human parechovirus infection in Wisconsin [J]. Clinical Infectious Diseases,2010,50(3):357-61.
    [8]HARVALA H, MCLEISH N, KONDRACKA J, et al. Comparison of human parechovirus and enterovirus detection frequencies in cerebrospinal fluid samples collected over a 5-year period in edinburgh:HPeV type 3 identified as the most common picornavirus type [J]. Journal of Medical Virology,2011,83(5):889-96.
    [9]HARVALA H, WOLTHERS K C, SIMMONDS P. Parechoviruses in children: understanding a new infection [J]. Current Opinion in Infectious Diseases,2010,23(3): 224-30.
    [10]ABED Y, BOIVIN G. Molecular characterization of a Canadian human parechovirus (HPeV)-3 isolate and its relationship to other HPeVs [J]. Journal of Medical Virology,2005,77(4):566-70.
    [11]WATANABE K, OIE M, HIGUCHI M, et al. Isolation and characterization of novel human parechovirus from clinical samples [J]. Emerging Infectious Diseases,2007, 13(6):889-95.
    [12]ABED Y, BOIVIN G. Human parechovirus types 1,2 and 3 infections in Canada [J]. Emerging Infectious Diseases,2006,12(6):969-75.
    [13]PALMENBERG A C. Proteolytic processing of picornaviral poly protein [J]. Annual Review of Microbiolog,1990,44(603-23).
    [14]STANWAY G, KALKKINEN N, ROIVAINEN M, et al. Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group [J]. Journal of Virology,1994,68(12):8232-8.
    [15]GHAZI F, HUGHES P J, HYYPIA T, et al. Molecular analysis of human parechovirus type 2 (formerly echovirus 23) [J]. Journal of General Virology,1998, 1(2641-50).
    [16]JOKI-KORPELA P, ROIVAINEN M, LANKINEN H, et al. Antigenic properties of human parechovirus 1 [J]. Journal of General Virology,2000,81(Pt 7):1709-18.
    [17]WILLIAMS C H, PANAYIOTOU M, GIRLING G D, et al. Evolution and conservation in human parechovirus genomes [J]. Journal of General Virology,2009, 90(Pt 7):1702-12.
    [18]PHAM N T, TRINH Q D, KHAMRIN P, et al. Diversity of human parechoviruses isolated from stool samples collected from Thai children with acute gastroenteritis [J]. Journal of Clinical Microbiology,2010,48(1):115-9.
    [19]SAMUILOVA O, KROGERUS C, POYRY T, et al. Specific interaction between human parechovirus nonstructural 2A protein and viral RNA [J]. The Journal of Biological Chemistry,2004,279(36):37822-31.
    [20]AL-SUNAIDI M, WILLIAMS C H, HUGHES P J, et al. Analysis of a new human parechovirus allows the definition of parechovirus types and the identification of RNA structural domains [J]. Journal of Virology,2007,81(2):1013-21.
    [21]HARVALA H, SIMMONDS P. Human parechoviruses:biology, epidemiology and clinical significance [J]. Journal of Clinical Virology,2009,45(1):1-9.
    [22]BENSCHOP K S, DE VRIES M, MINNAAR R P, et al. Comprehensive full-length sequence analyses of human parechoviruses:diversity and recombination [J]. Journal of General Virology,2010,91(Pt 1):145-54.
    [23]ZHANG D L, JIN Y, LI D D, et al. Prevalence of human parechovirus in Chinese children hospitalized for acute gastroenteritis [J]. Clinical Microbiology and Infection, 2011,17(10):1563-9.
    [24]ITO M, YAMASHITA T, TSUZUKI H, et al. Detection of human parechoviruses from clinical stool samples in Aichi, Japan [J]. Journal of Clinical Microbiology,2010, 48(8):2683-8.
    [25]YAMAMOTO M, ABE K, KUNIYORI K, et al. Epidemic of human parechovirus type 3 in Hiroshima city, Japan in 2008 [J]. Japanese Journal of Infectious Diseases, 2009,62(3):244-5.
    [26]DE SOUZA LUNA L K, BAUMGARTE S, GRYWNA K, et al. Identification of a contemporary human parechovirus type 1 by VIDISCA and characterisation of its full genome [J]. Virology Journal,2008,5(26).
    [27]BENSCHOP K, THOMAS X, SERPENTI C, et al. High prevalence of human Parechovirus (HPeV) genotypes in the Amsterdam region and identification of specific HPeV variants by direct genotyping of stool samples [J]. Journal of Clinical Microbiology,2008,46(12):3965-70.
    [28]TAPIA G, CINEK O, WITSO E, et al. Longitudinal observation of parechovirus in stool samples from Norwegian infants [J]. Journal of Medical Virology,2008,80(10): 1835-42.
    [29]SHAN T L, WANG C M, CUI L, et al. Human parechovirus infections in monkeys with diarrhea, China [J]. Emerging Infectious Diseases,2010,16(7):1168-9.
    [30]BENSCHOP K S, SCHINKEL J, MINNAAR R P, et al. Human parechovirus infections in Dutch children and the association between serotype and disease severity [J]. Clinical Infectious Diseases,2006,42(2):204-10.
    [31]WOLTHERS K C, BENSCHOP K S, SCHINKEL J, et al. Human parechoviruses as an important viral cause of sepsislike illness and meningitis in young children [J]. Clinical Infectious Diseases,2008,47(3):358-63.
    [32]VAN DER S ANDEN S, DE BRUIN E, VENNEMA H, et al. Prevalence of human parechovirus in the Netherlands in 2000 to 2007 [J]. Journal of Clinical Microbiology, 2008,46(9):2884-9.
    [33]HARVALA H, ROBERTSON I, CHIEOCHANSIN T, et al. Specific association of human parechovirus type 3 with sepsis and fever in young infants, as identified by direct typing of cerebrospinal fluid samples [J]. Journal of Infectious Diseases,2009,199(12): 1753-60.
    [34]RENAUD C, KUYPERS J, FICKEN E, et al. Introduction of a novel parechovirus RT-PCR clinical test in a regional medical center [J]. Journal of Clinical Virology,2011, 51(1):50-3.
    [35]BENSCHOP K, MINNAAR R, KOEN G, et al. Detection of human enterovirus and human parechovirus (HPeV) genotypes from clinical stool samples:polymerase chain reaction and direct molecular typing, culture characteristics, and serotyping [J]. Diagnostic Microbiology and Infectious Disease,2010,68(2):166-73.
    [36]VERBOON-MACIOLEK M A, GROENENDAAL F, HAHN C D, et al. Human parechovirus causes encephalitis with white matter injury in neonates [J]. Annals of Neurology,2008,64(3):266-73.
    [37]SAINATO R, FLANAGAN R, MAHLEN S, et al. Severe human parechovirus sepsis beyond the neonatal period [J]. Journal of Clinical Virology,2011,51(1):73-4.
    [38]VERBOON-MACIOLEK M A, KREDIET T G, GERARDS L J, et al. Severe neonatal parechovirus infection and similarity with enterovirus infection [J]. Pediatric Infectious Disease Journal,2008,27(3):241-5.
    [39]TAURIAINEN S, OIKARINEN S, TAIMEN K, et al. Temporal relationship between human parecho virus 1 infection and otitis media in young children [J]. Journal of Infectious Diseases,2008,198(1):35-40.
    [40]CALVERT J, CHIEOCHANSIN T, BENSCHOP K S, et al. Recombination dynamics of human parechoviruses:investigation of type-specific differences in frequency and epidemiological correlates [J]. Journal of General Virology,2010,91(Pt 5): 1229-38.
    [41]DE VRIES M, PYRC K, BERKHOUT R, et al. Human parechovirus type 1,3, 4,5, and 6 detection in picornavirus cultures [J]. Journal of Clinical Microbiology,2008, 46(2):759-62.
    [42]NOORDHOEK G T, WEEL J F L, POELSTRA E, et al. Clinical validation of a new real-time PCR assay for detection of enteroviruses and parechoviruses, and implications for diagnostic procedures [J]. Journal of Clinical Virology,2008,1-7.
    [43]OBERSTE M S, MAHER K, PALLANSCH M A. Specific detection of echoviruses 22 and 23 in cell culture supernatants by RT-PCR [J]. Journal of Medical Virology,1999,58(2):178-81.
    [44]JOKI-KORPELA P, HYYPIA T. Diagnosis and epidemiology of echovirus 22 infections [J]. Clinical Infectious Diseases,1998,27(1):129-36.
    [45]SHAN T L, GUO W, CUI L, et al. The first detection of human parechovirus infections in China [J]. Journal of Clinical Virology,2009,45(4):371-2.
    [46]BENSCHOP K, MOLENKAMP R, HAM A V D, et al. Rapid detection of human parechoviruses in clinical samples by real-time PCR [J]. Journal of Clinical Virology, 2008,41(69-74).
    [47]BOROS A, UJ M, PANKOVICS P, et al. Detection and characterization of human parechoviruses in archived cell cultures, in Hungary [J]. Journal of Clinical Virology, 2010,47(4):379-81.
    [48]KATANO H, KANO M, NAKAMURA T, et al. A novel real-time PCR system for simultaneous detection of human viruses in clinical samples from patients with uncertain diagnoses [J]. Journal of Medical Virology,2011,83(2):322-30.
    [49]HARVALA H, ROBERTSON I, MCWILLIAM LEITCH E C, et al. Epidemiology and clinical associations of human parechovirus respiratory infections [J]. Journal of Clinical Microbiology,2008,46(10):3446-53.
    [50]NIX W A, MAHER K, JOHANSSON E S, et al. Detection of all known parechoviruses by real-time PCR [J]. Journal of Clinical Microbiology,2008,46(8): 2519-24.
    [51]BAUMGARTE S, DE SOUZA LUNA L K, GRYWNA K, et al. Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis [J]. Journal of Clinical Microbiology, 2008,46(1):242-8.
    [52]BENSCHOP K S, WILLIAMS C H, WOLTHERS K C, et al. Widespread recombination within human parechoviruses:analysis of temporal dynamics and constraints [J]. Journal of General Virology,2008,89(Pt 4):1030-5.
    [53]PHAM N T, CHAN-IT W, KHAMRIN P, et al. Detection of human parechovirus in stool samples collected from children with acute gastroenteritis in Japan during 2007-2008 [J]. Journal of Medical Virology,2011,83(2):331-6.
    [54]NIX W A, MAHER K, PALLANSCH M A, et al. Parechovirus typing in clinical specimens by nested or semi-nested PCR coupled with sequencing [J]. Journal of Clinical Virology,2010,48(3):202-7.
    [55]OBERSTE M S, MICHELE S M, MAHER K, et al. Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75 [J]. Journal of General Virology,2004,85(Pt 11):3205-12.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.