2,3-二芳基取代-3,4-二氢-2H-1,3-苯并噁嗪的合成和生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环化合物是有机化合物中最庞大的一类,约占65%以上,而且在自然界分布也十分广泛。杂环化合物的结构干变万化,具有特殊的性质和重要用途,其中3,4-二氢-2H-1,3-苯并噁嗪就是一类非常重要的杂环化合物,具有广泛的杀菌,抗肿瘤和抗癌等生物活性。本文主要研究了2,3-二取代-3,4-二氢-2H-1,3-苯并噁嗪化合物的合成方法,找到了一条有效的合成途径,并合成了16个新的2,3-二取代-3,4-二氢-2H-1,3-苯并噁嗪化合物和4个3-取代-3,4-二氢-2H-1,3-苯并噁嗪化合物,对所合成的二氢苯并噁嗪31a-31t的结构用IR,1HNMR和13C NMR进行了表征,部分化合物的结构用质谱进行了表征。初步研究了所合成化合物的杀虫和杀菌活性。
     以水杨醛和取代苯胺为原料,高产率地合成了水杨醛缩取代苯胺席夫碱29a-29f,然后用硼氢化钠还原得到2-((取代苯基氨基)甲基)苯酚,最后2-((取代苯基氨基)甲基)苯酚与芳醛在催化剂的作用下反应得到2,3-二取代-3,4-二氢-2H-1,3-苯并噁嗪和3-取代-3,4-二氢-2H-1,3-苯并噁嗪。考察了不同催化剂对反应的影响,结果表明SnCl4的催化效果优于对甲苯磺酸和硫酸。提出了二氢苯并噁嗪31生成的可能反应机理,根据反应机理解释了SnCl4的催化效果比对甲苯磺酸和硫酸的效果好的原因。
     重点考察了在SnCl4催化作用下,反应物物质的量的比、SnCl4的用量、反应温度和环己烷/三氯甲烷溶剂配比对反应产率的影响,得到了较优反应条件:反应物物质的量的比为1.3:1, SnCl4的用量为20 mol%,反应溶剂为三氯甲烷/环己烷(V/V=1:7)的混合溶剂,反应温度为85℃,在此条件下反应产率高达94.7%。并且发现与氮原子相连的苯环对位上的取代基为甲基和甲氧基时的化合物(31b、31c、31o、31q)的产率均高于取代基为氯时的化合物(31l、31m)的产率。
     对所合成的16种新的2,3-二取代-3,4-二氢-2H-1,3-苯并噁嗪和4种3-取代-3,4-二氢-2H-1,3-苯并噁嗪进行了生物活性测试。结果表明,二氢苯并噁嗪具有较好的杀虫(蚜虫、粘虫和棉红蜘蛛)和优良的杀菌活性(6种菌),杀菌活性高于杀虫活性。对于杀虫活性来说,杀蚜虫的活性最高,化合物31s的杀蚜虫活性高达80.00%(剂量:500mg/L),并在大多数情况下,2-位有取代基的二氢苯并噁嗪的杀蚜虫活性大于2-位无取代基的二氢苯并噁嗪的活性。对于杀菌活性来说,目标化合物对稻纹枯病菌的活性最高,其中化合物31b对稻纹枯病菌的防效率高达100%(剂量:500mg/L),31e、31h、31o和31r防效率均达80%;其次是对油菜菌核病菌的活性,化合物31n对该菌的抑制率为78.5%(剂量:25mg/L),化合物311的活性为74.8%。与杀蚜虫活性类似,在大多数情况下2-位有取代基的二氢苯并噁嗪对稻纹枯病菌的防效活性比2-位无取代基的二氢苯并噁嗪的活性高。
Heterocyclic compounds that account for about 65% organic compounds occur in a wide range of natural distribution. Heterocyclic compounds vary in structures and nature, and always find important uses.3,4-dihydro-2H-1,3-benzoxazine is a very important kind of heterocyclic compound and always exhibits a broad biological activity, such as bactericidal, anti-tumor and anti-cancer activity. This paper mainly studied the synthesis method of 2,3-disubstituted-3,4-dihydro-2H-1,3-benzoxazines and an efficient synthesis route was found. By this route,16 novel 2,3-disubstituted-3,4-dihydro-2H-1,3-benzoxazines and 4 3-disubstituted-3,4-dihydro-2H-1,3-benzoxazines were prepared, and their structures were characterized by IR,1HNMR, 13CNMR and part of the compounds characterized by MS. It was also investigated their insecticidal and fungicidal activity.
     The first imtermediate Schiff Bases 29a-29f were synthesized in good yields by reaction of salicylaldehyde with substituted aniline. Then, reduction of these Schiff Bases by sodium borohydride in methanol afforded 2-((substituted-phenyl-amino)-methyl)-phenol 30a-30f. The target compound 3,4-dihydro-2H-1,3-benzoxazines (31a-31t) were prepared by reactions of 2-((amino-substituted phenyl)methyl) phenols with substituted benzaldehydes in the presence of catalyst. It was studied the effects of catalysts on the reaction, and the results showed that SnCl4 was better than p-toluenesulfonic acid (TsOH) and sulfuric acid. A plausibal mechanism of the formation of 31a-31t was proposed, and by which the better effect of SnCl4 than TsOH and sulfuric acid was explained.
     The studies focued on the catalysis reaction conditions by SnCl4. It was investigated the effects of the molar ratio of reactants (m-nitrobenzaldehyde and 2-((amino-p-tolyl)methyl)phenol), the amount of SnCl4, reaction temperature and solvent (the value ratio of cyclohexane and chloroform) on the yields, and an optimized condition was obtained:the molar ratio of reactants being 1:3, the amount of SnCl4 being 20 mol%, the value ratio of cyclohexane and chloroform being 1:7, reaction temperature being 85℃. Under this optimized condition, the yields of the reactions were up to 94.7%. And moreover, the yields of the compounds with the substituents on the phenyl group connected with the nitrogen atom being methyl and methoxy group (31b、31c、31o、31q) were higher than those of compounds with chloride (31l、31m).
     It was tested the biological activity of 16 novel 2,3-disubstituted-3,4-dihydro-2H-1,3-benzoxazines and 3-disubstituted-3,4-dihydro-2H-1,3-benzoxazines. The results showed that the dihydrobenzoxazines exhibited relative good insecticidal activity and exellent fungicidal activity. In the case of insecticidal activity, the tested compounds exhibited the higest activity against Aphis fabae as shown by the activity of compound 31s being 80%at dosage of 500mg/L. In most cases, the activity of 2,3-disubstituted 3,4-dihydrobenzoxazines were higher than 3-substituted 3,4-dihydrobenzoxazines. For fungicidal activity, the tested compounds exhibited the higest activity against Rhizoctonia solani. The activity of compound 31b was up to 100%at dosage of 500mg/L, and the coresponding activity of 31e、31h、31o、31r was up to 80%. The tested compounds exhibited the second higest activity against Sclerotonia sclerotiorum, and the activity of 31n、311 was up to 78.5%at dosage of 25mg/L and 74.8%, respectively. In most cases of the fungicidal activity against Rhizoctonia solani,2,3-disubstituted 3,4-dihydrobenzoxazines showed higher activity than 3-substituted 3,4-dihydrobenzoxazines.
引文
[1]花文廷.杂环化学[M].北京:北京大学出版社,1991,1-5.
    [2]Holly F W, Cope A C. Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine[J]. J. Am. Chem. Soc.,1944,66(11):1875-1879.
    [3]Urbanski T. New Derivatives of Nitroparaffins and their Antitubercular and Antirickettsial Properties[J]. Nature,1951,168:562-563.
    [4]Urbanski T, Radzikowski C Z, Ledochowski Z, et al. Biological Activity of Benzoxazine-1,3 Derivatives, particularly against Experimental Sarcoma[J]. Nature,1956,178:1351-1352.
    [5]Kuehne M E, Konopka E A. Dihydro-1,3-oxazines as Antitumor Agents[J]. J. Med. Chem.,1962,5(2): 257-280.
    [6]Kuehne M E, Konopka E A, Lambert B F. Steroidal Dihydro-1,3-oxazines as Antitumor Agents[J]. J. Med. Chem.,1962,5(2):281-296.
    [7]Chylinska J B, Urbanski T, Mordarski M. Dihydro-1,3-oxazine Derivatives and their Antitumor Activity[J]. J. Med. Chem.,1963,6(5):484-487.
    [8]Mireya M, Enrique R C, Manuel A C, et al. Synthesis of some benzoxazines and the study of their possible antibacterial activity[J]. Revista Colombiana de Ciencias Quimico-Farmaceuticas,1980,3(4):63-73.
    [9]Bouaziz Z, Riondel J, Mey A, et al. Synthesis of some naphthoxazine carbolactone derivatives with in vitro cytotoxic and antifungal activities[J]. European Journal of Medicinal Chemistry,1991,26(4):469-472.
    [10]Hitotsuyanagi Y, Ichihara Y, Takeya K, et al. Synthesis of 4-Oxa-2-azapodophyllotoxin, a novel analog of the antitumor lignan podophyllotoxin[J]. Tetrahedron Letters,1994,35(50):9401-9402.
    [11]Wang Sheng, Li Yuyan, You Qidong, et al. Novel hexacyclic camptothecin derivatives. Part 1:Synthesis and cytotoxicity of camptothecins with an A-ring fused 1,3-oxazine ring[J]. Bioorganic & Medicinal Chemistry Letters,2008,18(14):4095-4097.
    [12]Sabie R, Fillion H, Pinatel H, et al. Synthesis and Proton NMR Stereochemical Study of 7,8,9-substituted-7,8-dihydro-4H,9H-furo[2',3',4':4,4a,5]naphth[2,1-e][1,3]oxazin-4-ones[J]. Journal of Heterocyclic Chemistry,1990,27(7):1893-1897.
    [13]Burke W J, Hammer C R, Weatherbee C. Bis-m-oxazines from Hydroquinone[J]. J. Org. Chem.,1961, 26(11):4403-4407.
    [14]Fields D L, Miller J B, Reynolds D D. Mannich-Type Condensation of Hydroquinone, Formaldehyde, and Primary Amines[J]. J. Org. Chem.,1962,27 (8):2749-2753.
    [15](a) Yoh-ichi Matsushita, Takanao Matsui, Synthesis of aminomethylated calix[4]resorcinarenes [J]. Tetrahedron Letters,1993,34(46):7433-7436.
    (b)Arnecke R, Boehmer V, Paulus E F, et al. Regioselective Formation of Dissymmetric Resorcarene Derivatives with C4-Symmetry[J]. J. Am. Chem. Soc.,1995,117(11):3286-3287. (c) Arnecke R, Bohmer V, Friebe S, et al. Regio-and diastereoselective condensation of resorcarenes with primary amines and formaldehyde[J]. Tetrahedron Letters,1995,36(35):6221-6224.
    [16](a) Reynolds G A, Vanallan J A, Tinker J F. Cyclization of Certain Heterocyclic Azides[J]. J. Org. Chem., 1959,24(9):1205-1209.
    (b)Alvarez M, Granados R, Mauleon D, et al. Structure-activity relationships among di-and tetramine disulfides related to benextramine[J]. J. Med. Chem.,1987,30 (7):1186-1193.
    (c)Moloney G P, Craik D J, Iskander M N. Qualitative analysis of the stability of the oxazine ring of various benzoxazine and pyridooxazine derivatives with proton nuclear magnetic resonance spectroscopy[J]. Journal of Pharmaceutical Sciences,1992,81(7):692-697.
    (d)Rivera A, Gallo G I, Gayon M E, et al. 1,3-bis(2'-Hydroxybenzyl) imidazolidines as Novel Precursors of 3,3'-Ethylene-bis(3,4-dihydro-2H-1,3-benzoxazine)[J]. Synthetic Communications,1994,24(14):2081-2089.
    [17](a) Campi E M, Jackson W R, McCubbin Q J, et al. Allylic rearrangements during the rhodium-catalysed reactions of 2-allyloxybenzylamines and 2-(N-allyl-N-benzylamino) benzylamin[J]. J. Chem. Soc., Chem. Commun.,1994,24,2763-2763.
    (b)Campi E M, Jackson W R, McCubbin Q J, et al. The Stereochemistry of Organometallic Compounds. XLIII. Rhodium-Catalysed Reactions of 2-(Alkenyloxy)benzylamines and 2-(N-Allyl-N-benzylamino)benzylamine[J]. Australian Journal of Chemistry,1996,49(2):219-230.
    (c)Bergmann D J, Campi E M, Jackson W R, et al. Synthesis of Medium and Large Cyclic Amines in Rhodium-Catalysed Reactions of Aminoalkenes with H2/CO[J]. Australian Journal of Chemistry,2000,53(10): 835-844.
    (d)Bergmann D J, Campi E M, Jackson W R, et al. A direct route to medium and large cyclic amines from aminoalkenes[J]. Tetrahedron Letters,1999,40(30):5597-5600.
    [18]Vilkas M, Makani S, Mafroud, A. E. K. C. R. Acad. Sci., Ser.2 1988,307,1851; Chem. Abstr.1989,111, 7311w.
    [19]Colin J L, Loubinoux B. Nouvelle voie d'acces aux dihydro-3,4-2H-benzoxazines-1,3[J]. Tetrahedron Letters,1982,23(41):4245-4246.
    [20]Aversa M C, Giannetto P, Caristi C, et al. Behaviour of an N-(o-hydroxybenzyl)-β-amino-acid in the presence of dehydrating agents. Synthesis of a 3,4-dihydro-2H-1,3-benzoxazine [J]. J. Chem. Soc., Chem. Commun.1982,469-470.
    [21]Schreiber H. German Patent,2 255 504,1973. [22] Schreiber H. German Patent,2 323 936,1973.
    [23]Ishida H. High Char Yield Benzoxazines[P], US Patent,5973144,1999.
    [24]纪风龙,顾宜,谢美丽等.苯并嗜嗪树脂烧蚀性能的初步研究[J].宇航材料工艺,2002,(1):25-29.
    [25]Dettloff M L, White J E, Null M J. High char yield benzoxazine compositions[P]. US Patent 6482946,2002.
    [26]顾宜.苯并嗯嗪树脂——一类新型热固性树脂[J].热固性树脂,2002,17(2):31.
    [27]Agag T, Tsuchiya H, Takeichi T. Novel organic-inorganic hybrids prepared from polybenzoxazine and titania using sol-gel process[J]. Polymer,2004,45(23):7903-7910.
    [28]Takeichi T, Zeidam R, Agag T. Polybenzoxazine/clay hybrid nanocomposites:influence of preparation method on the curing behavior and properties of polybenzoxazines[J]. Polymer,2002,43(1):45-53.
    [29]Ishida H. Polybenzoxazine nanocomposites of clay and method for making same[P]. US Patent,6 323 270 B1,2001.
    [30]余鼎声,史子兴,王一中.聚苯并恶嗪/粘土纳米复合材料及其制备方法[P].中国专利,公开号:CN1295095,1999.
    [31]Burke W J.3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Substituted Phenols with N,N-Dimethylol-amines[J]. J. Am. Chem. Soc.,1949,71(2):609-612.
    [32]Burke W J, Kolbezen M J, Stephens C W. Condensation of Naphthols with Formaldehyde and Primary Amines[J]. J. Am. Chem. Soc.,1952,74(14):3601-3605.
    [33]Burke W J, Glennie E L M, Weatherbee C. Condensation of Halophenols with Formaldehyde and Primary Amines[J]. J. Org. Chem.,1964,29(4):909-912.
    [34]Schreiber H. German Patent,2255504,1973.
    [35]Burke W J, Bishop J L, Glennie E L M, et al. A New Aminoalkylation Reaction. Condensation of Phenols with Dihydro-1,3-aroxazines[J]. J. Org. Chem.,1965,30:3423.
    [36]Riess G, Schwob J M, Guth G, et al. Advances in Polymer Synthesis[M], B M Culbertson, J E McGrath, Editors, Plenum:New York,1985.
    [37]Page P C B, Heaney H, McGrath M J, et al. Retro-Mannich reactions of 3-alkyl-3,4-dihydro-2H-1,3-benz[e]oxazines and the synthesis of axially chiral resorcinarenes [J]. Tetrahedron Letters,2003,44(14): 2965-2970.
    [38]Cimarelli C, Palmieri G, Volpini E. Ready N-alkylation of enantiopure aminophenols:synthesis of tertiary aminophenols[J]. Tetrahedron,2001,57(28):6089-6096.
    [39]Ning X, Ishida H. Phenolic materials via ring-opening polymerization:Synthesis and characterization of bisphenol-A based benzoxazines and their polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1994,32(6):1121-1129.
    [40].Ishida H,Allen D J. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines[J]. Journal of Polymer Science Part B:Polymer Physics,1996,34(6):1019-1030.
    [41]Low H Y, Ishida H. Mechanistic study on the thermal decomposition of polybenzoxazines:Effects of aliphatic amines[J]. Journal of Polymer Science B:Polymer Physics,1998,36:1935-1946.
    [42]Ishida H, Sanders D P. Improved thermal and mechanical properties of polybenzoxazines based on alkyl-substituted aromatic amines[J]. Journal of Polymer Science Part B:Polymer Physics,2000,38(24): 3289-3301.
    [43]Ishida H, Sanders D. Activated arylamine-based polybenzoxazines[P]. US Patent,6 160 079,2000.
    [44]Low H Y, Ishida H. An investigation of the thermal and thermo-oxidative degradation of polybenzoxazines with a reactive functional group[J]. Journal of Polymer Science Part B:Polymer Physics,1999,37(7):647-659.
    [45]Brunovska Z, Ishida H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines[J]. Journal of Applied Polymer Science,1999,73(14):2937-2949.
    [46]Kim H J, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer,1999,40(23):6565-6573.
    [47].Brunovska Z, Lyon R, Ishida H. Thermal Properties of Phthalonitrile Functional Polybenzoxazines[J]. Thermochimica acta,2000,357-358:195-203.
    [48]Agag T, Takeichi T.Novel Benzoxazine Monomers Containing p-Phenly Propargyl Ether:Polymerization of Monomers and Properties of Polybenzoxazines[J]. Macromolecules,2001,34:7257-7263.
    [49]Hemvichian K, Ishida H. Thermal Decomposition Processes in Aromatic Amine-Based Polybenzoxazines Investigated by TGA and GC-MS[J]. Polymer,2002,43:4391-4401.
    [50]Hemvichian K, Laobuthee A, Chirachanchai S, et al. Thermal Decomposition Processes in Polybenzoxazine Model Dimers Investigated by TGA-FTIR and GC-MS[J]. Polymer Degradation and Stability,2002,76(1):1-15.
    [51]Macko J A, Ishida H. Behavior of a bisphenol-A-based polybenzoxazine exposed to ultraviolet radiation[J]. Journal of Polymer Science Part B:Polymer Physics,2000,38(20):2687-2701.
    [52]Macko J A, Ishida H. Structural effects of phenols on the photooxidative degradation of polybenzoxazines[J]. Polymer,2001,42(1):227-240.
    [53]Macko J A, Ishida H. Structural Effects of Amines on the Photooxidative of Polybenzoxazines[J]. Polymer, 2001,42:6371-6383.
    [54]Wirasate S, Dhumrongvaraporn S, Allen D J, et al. Molecular Origin of Unusual Physical and Mechanical Properties in Novel Phenolic Materials Based on Benzoxazine Chemistry[J]. Appl. Polym. Sci.,1998,70(7): 1299-1306.
    [55]Ishida H, Low H Y. A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin[J], Macromolecules,1997,30:1099-1106.
    [56]刘欣,顾宜.苯并嗯嗪热固化过程中体积变化的研究[J].高分子学报,2000,(5):612-619.
    [57]Liu X, Gu Y. Study on the volumetric expansion of benzoxazine curing with different catalysts[J], Journal of Applied Polymer Science,2002,84(6):1107-1112.
    [58]Ishida H, Low H Y. Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites[J]. J.Appl.Polym. Sci.,1998,69(13):2559-2567.
    [59]Ishida H. Composite densification with benzoxazines [P]. WO9216470,1992.
    [60]Kim H J, Bmnovska Z, Ishida H. Dynamic mechanical analysis on highly thermally stable polybenzoxazines with an acetylene functional group[J].J Appl.Polym.Sci.,1999,73:857-862.
    [61]刘献伟,贾德民.双苯并嗯嗪树脂的合成与固化性能研究[J]_中国胶粘剂,2008,17(8):9-11.
    [62]邹志量,王洛礼,胡伟等.苯并嗯嗪的无溶剂法合成及表征[J].辽宁化工,2006,35(9):510-513.
    [63]顾宜,裴顶峰,谢美丽等.粒状多苯并嗯嗪中间体及制备方法[P].中国专利,公开号CN1139104A.
    [64]RAN Q C, TIAN Q, GU Y. Synthesis of 3-Phenyl-6-formyl-3,4-dihydro-2H-1,3-benzoxazine [J]. Chinese Chemical Letters,2006,17(10):1305-1308.
    [65]胡跃飞,许学农,李锐等.1-(α-氨基苄基)-2-萘酚的缩醛(酮)化合物及其制法与用途[P].中国专利,公开号CN1425656A.
    [66]Neuvonen K, Pihlaja K. Studies on the benzoxazine series. Part 3-Preparation and 13C NMR structural Study of y Effects of Some N-substituted 3,4-dihydro-2H-1,3-benzoxazines[J]. Magnetic Resonance in Chemistry, 1990,28(3):239-245.
    [67]Neuvonen K, Pihlaja K. Studies on the benzoxazine series. Part 1. Preparation and 1H and 13C nuclear magnetic resonance structural study of some substituted 3,4-dihydro-2H-1,3-benzoxazines[J]. J. Chem. Soc., Perkin Trans,2,1988:461-467.
    [68]Herzig Y, Lerman L, Goldenberg W, et al. Hydroxy-1-aminoindans and Derivatives:Preparation, Stability, and Reactivity[J]. Journal of Organic Chemistry,2006,71(11):4130-4140.
    [69]孙晓红,陶燕,刘源发等.烷基取代三唑硫酮席夫碱的合成和生物活性研究[J].有机化学,2008,28(1):155-159.
    [70]张明,卢俊瑞,陈丽然等.邻羟基苯基芳基取代席夫碱的合成、表征及抑菌活性研究[J].天津理工大学学报,2009,25(1):1-4.
    [71]邢其毅,裴伟伟,徐瑞秋等.基础有机化学(第三版)[M].北京:高等教育出版社,2005,511-512.
    [72](a)郑旭东.对甲苯磺酸催化合成丙酸丁酯[J].河南师范大学学报(自然科学版),2007,35(1):206-207.
    (b)陆敏,文艺.对甲苯磺酸催化合成乙酸异丁酯[J].山西化工,2007,27(4):3-5.
    [73](a) Daignault R A, Eliel E L.2-Cyclohexyloxyethanol[J]. Org. Synth.,1973, Collect. Vol. V,303-305.
    (b)Caserio F F, Roberts J D. Small-ring Compounds. XXI.3-Methylenecyclobutanone and Related Compounds[J]. J. Am. Chem. Soc.,1958,80,5837-5840.
    [74]曾庆乐.氯化高锡催化合成乙酸丁酯的研究[J].化学通报,2000,8(1):45-47.
    [75](a) Andersen N H, Hong-Sun Uh. Methods for Interconverting Aldehydes and Acetals[J]. Synthetic Communications,1973,3(2):125-128.
    (b)Erickson J L E, Collins Jr F E. A Novel Synthesis of Dihydrojasmone[J]. J. Org. Chem.,1965,30(4):
    1050-1052.
    [76]Corma A, Garcia H. Lewis Acids:From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis[J]. Chem. Rev.,2003,103(11):4307-4366.
    [77]范云芳,马永祥.路易斯酸促进烯丙基锡化合物与醛、亚胺加成反应的进展[J].化学试剂,2000,22(1):23-26.
    [78]姜恒,李海英,韩晓祥等.SnCl4催化丙酮与过氧化氢反应制取大环过氧化物[J].高等学校化学学报,1999,20(3):464-466.
    [79]Liu A, Ou X, Huang M, et al. Synthesis and insecticidal activities of novel oxime ether pyrethroids [J]. Pest Manage Sci,2005,61 (2):166-170.
    [80]Uttamchandani J, Mehrotra S K, Bhandari A M, et al. Titanium(IV) Complexes with Schiff Bases[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,1978,8(5&6):439-452.
    [81]Gooden E W. Organic semiconductors:Effect of substituents and metal ions on electrical conductivity of Schiff bases[J]. Australian Journal of Chemistry,1965,18(5):637-650.
    [82]West B O.959. Complexes of tervalent cobalt with N-substituted salicylideneimines[J], J. Chem. Soc.,1960, 4944.4947.
    [83]Senier A, Shepheard F G. CCXIV.-Studies in phototropy and thermotropy. Part I. Arylidene-and naphthylidene-amines[J]. J. Chem. Soc., Trans.,1909,95,1943-1955.
    [84]Romano V, Badalamenti R, Pizzino T, et al. Trimethylplatinum(Ⅳ) complexes with O—N bidentate ligands[J]. Journal of Organometallic Chemistry,1972,42(1):199-204.
    [85]Conner M, West B. Metal complexes of hydrogenated Schiff bases[J]. Australian journal of chemistry,1967, 20(10):2077-2085.
    [86]Davion Y, Guillaumet G, L6ger J-M, et al. Synthesis of 5-(4-Aryl)-2-phenyl-5,6-dihydrobenzo[b] [1,5]oxazocin-4-ones[J]. Heterocycles,2003,60(8):1793-1804.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.