1050铝合金形变和再结晶过程中的织构演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于深冲制品的铝合金板材不仅要求具有高强度,低厚度,而且要求有较低的制耳率和优良的深冲变形性能。多晶材料在塑性加工及热处理过程中产生的织构使板材产生力学性能各向异性,从而直接影响材料的制耳率和深冲性能。由于织构的存在带有普遍性,研究形变织构和再结晶织构及其所造成的材料的各向异性,对于材料的使用以及提高材料的性能有着极为重要的意义。
     本论文以1050铝合金板为实验材料,从理论分析和实验研究两方面入手,重点研究了1050铝合金板在热轧、冷轧及退火条件下显微组织和织构的演变规律;并研究了采用激光毛化辊轧制条件下1050铝合金的表面形貌、织构及性能的演变特征;结合实验结果,进一步研究了不同工艺参数对1050铝合金板材组织及织构的影响机理。
     不同轧制工艺实验结果表明:1050铝合金热轧织构以Rotated Cube-{001}<110>织构为主。随热轧变形量的增加,旋转立方织构组分减少,轧制织构组分增加。冷轧后,其织构表现出典型的“铜式”冷轧织构特征,即Cu-{112}<111>, S-{123}<634>和Bs-{110}<112>织构组分。随着冷轧变形量的增加,这些织构组分的取向密度不断增强。研究发现冷轧初始织构及冷轧道次压下量影响冷轧织构的组成。减小道次压下量有利于降低最终成品板材形变织构的强度。显微组织观察表明,在热轧样品中可观察到沿轧向伸长的变形组织,变形组织内部一些区域有亚晶粒产生;冷轧样品中纤维状组织内部形成许多位错胞,胞壁上有大量位错聚集,胞内位错密度较低,随着冷轧变形量的增加,变形组织内位错胞数量增多,尺寸减小。
     不同退火工艺的研究结果表明:冷轧变形量、退火温度是影响板材再结晶程度的重要因素。冷轧变形量越大,板材形变储能就越高,再结晶驱动力越大,相同温度退火后再结晶程度越高,晶粒越细小,再结晶织构组分越多。退火温度对再结晶织构有显著影响。对热轧97%、冷轧90%样品退火后,随着退火温度的升高,形变织构逐渐减弱,立方织构增强。360℃×120min退火后,再结晶基本完成,立方织构取向密度达最大,但仍有少量冷轧织构存在。退火后的力学性能随再结晶程度的变化而发生改变。回复阶段时抗拉强度由于位错密度的下降略有降低,再结晶开始后急剧下降,同时延伸率迅速增加。至完全再结晶后,两者的变化速度又开始降低。
     采用织构多晶体连续介质力学(CMTP)塑性理论分析了制耳与织构间的相互关系,根据不同织构的制耳倾向指数预估制耳率的大小及类型,并结合深冲实验结果,建立了深冲制耳率与织构的定量关系。结果表明:再结晶温度以下退火,样品以轧制织构为主,此时易出现45°制耳倾向,且制耳率较高。再结晶开始后立方织构和R织构逐渐增加,轧制织构与再结晶织构共存,此时易形成0°/90°和45°方向制耳,其制耳沿0°、45°、90°方向均匀分布,制耳率仅为2.5%~4%,具有较低的各向异性。完全再结晶后,退火温度继续升高,样品中形成强立方织构,易形成0°/90°制耳倾向,制耳率又开始上升。
     研究了激光毛化工艺对1050铝合金织构及性能的影响规律。系统分析了毛化加工参数及冷轧压下量对1050铝合金性能的影响机理。结果表明:采用激光毛化辊冷轧后,样品的冷轧织构主要包括S、Bs和Cu织构组分。再结晶退火后形成了以旋转立方取向、立方取向及随机取向为特征的再结晶织构;力学性能及深冲性能测试表明,毛化后板材的抗拉强度与普通板材接近,塑性略高于普通板材。毛化板材在不同退火温度的制耳率均低于普通板材。在360℃退火时制耳率<3%。具有最低的各向异性。
Aluminum alloy sheets used in deep-drawing products need have high strength, thin sheet, little earing and excellent formability. The textures in polycrystalline material developed during thermomechanical plastic processing and heat treatment lead to the generation of anisotropy, which result to the formation of ears. Therefore, it is very important to take better account of the influence of deformation textures and recrystallization textures on anisotropy for improving performance of the sheets.
     In this work, the evolution of texture and microstructure in 1050 aluminum alloy sheets occurring during hot rolling, cold rolling and annealing have been studied. In addition, laser-textured process has been examined. This work involves both experimental and theoretical approach. Effects of several technological parameters on the microstructures and textures of 1050 aluminium alloy sheets are then discussed to some extent.
     The research results of different rolling process showed that the hot rolling textures were composed of the {001}<110> rotated cube component, as the reduction increasing, the intensity of {001}<110>rotation cubeis decreased and the rolling texture component increased. The cold rolling textures were typical Cu-type ones, i.e. consisting of mainly three texture components as Cu- {112}<111>, S- {123}<634> and Bs- {110}<112>. The orientation densities of the main texture components increased as the increasing of the cold rolling reduction. Iinitial texture before cold rolling and cold rolling reduction in pass can effect the composition of rolling texture. Results showed that increasing the number of passes in cold rolling can decrease the intensities of deformation texture. The results of OM showed that some deformed structures were formed; these structures were elongated along the rolling direction and contained some subgrains in some fields. After cold rolling, there are lots of dislocation cell formed in the fiber structures, cell-walls were composed of high density dislocation tangles around cell, and dislocation density was low within cell. As the increasing of cold rolling reduction, the number of dislocation cell increase and the size reduced.
     The research results of different annealing process showed that cold rolling reduction and annealing temperature were the important factors affecting the degree of recrystallization. The larger cold rolling reduction leads to the higher deformation stored energy which accordingly increased the driving force of recrystallization. Therefore, the degree of recrystallization is higher and the size of recrystallization grain is smaller after annealing at same temperature. Annealing temperature had great effect on recrystalization textures. For 97% hot rolled and 90% cold rolled sample, the intensity of cube texture was increased and the deformation texture decreased as the annealing temperature increased, recrystallization was finished on the whole after annealed at 400℃for 120min, and the orientation density of cube texture reached its maximum; but some cold rolling textures still retained. Mechanical property after annealing changed as the degree of recrystallization. The tensile strength decreased slightly at recovery stage, but reduced sharply at recrystallization stage and the elongation change reverse with tensile strength.
     The relationship between earing and texture is analysed based on the CMTP method (Continuum Mechanics of Textured Polycrystals). The Quantitative relationship of earing rate and texture are investigated with experimental and theoretical analysis which is the base for forcast the ears of the sheet. The results show that, the recrystallization texture mainly consisted ofβ-fiber texture at low annealing temperatures which tend to leads 45°ears. After recrystallization begin, the recrystallization cube and R texture increase, the rolling texture and recrystallization texture coexist in the specimen which is apt to leads 0°/90°and 45°ears, the earing rate is low. After complete recrystallization, the high intensity of cube texture is developed, which leads to high 0°/90°ears and the earing rate is increased again.
     The influence of laser-textured process on the texture and performance of 1050 aluminum alloy is investigated and analyzed systematically. Experimental results show that the sheets deformed with laser-textured roll developed the typical rolling textures, which consist of Bs, Cu and S components. After annealing, the specimen shows a substantially different recrystallization texture compared with conventional sheet, which comprising only a weak cube-orientation and rotated-cube orientation as well as a much higher fraction of randomly orientation. The results of mechanical property show that the tensile strength of the textured sheet is approach to that of conventional sheet, but the plastic is slightly higher. The deep drawing test result show that the earing rate of the textured sheets after annealed at different temperature is all lower than the conventional sheets. After annealed at 360℃, the earing rate is less than 3%, which get the lowest anisotropy.
引文
[1]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社, 2006: 74-76.
    [2]杨映芬.我国高精铝板带产品的生产现状及发展趋势[J].上海有色金属, 1998, 19(4): 178-182.
    [3]屈平,向群.我国铝板带市场发展综述[J].铝加工, 2006, 166: 18-20.
    [4]张君尧.铝合金材料的新进展[J].轻合金加工技术, 1998, 26 (7): 1-6.
    [5]王祝堂,易敏.中国铝加工材生产与市场一览[J].轻合金加工技术, 2004, 32: 1-3.
    [6]马邦娟.我国铝板带箔材市场分析及发展对策[J].世界有色金属, 1998, 5: 1-4.
    [7]刘静安.铝及铝加工行业发展新动态与技术创新、产品开发新趋向[J].四川有色金属, 2000, 4: 1-7.
    [8]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社, 2004. 5-8.
    [9]周家錝.冷轧轧辊毛化技术[J].钢铁钒钛, 1996, 17(3): 2-9.
    [10]杨明江,彭林华,李正阳. YAG激光毛化技术进展[J].应用激光, 2002, 22(3): 323-326.
    [11] LIN Z G. The Study of Laser Microprecision Treatment to Raise EHD Lubrication Effect[C]. Proc 5th Inter Cong on Trib. Helsinki, 1989: 397-403.
    [12] YANG M J. Developing Technology of YAG Laser Textured Roll and its Application[C]. Proceedings of the Second APEC SME Technology Conference, China, 1998: 27-31.
    [13] LI Z Y, YANG M J, LIU W J, et al. Investigation on Crater Morphology by High Repetitive Rate YAG Laser-induced Discharge Texturing[J]. Surface and Coatings Technology, 2006, 200 (10): 4493-4499.
    [14] YAMADA Y, SAISU M. Development of Image Clarity Steel Sheet Laser Mirror[C]. 31th Mechanical Working and Steel Processing Conference Proceedings, Pittsburgh, 1990: 21-24.
    [15]任露泉,王再宙,韩志武.激光处理非光滑凹坑表面耐磨试验的均匀设计研究[J].材料科学与工程, 2002, 20 (2): 214-216.
    [16]林子光.激光毛化与摩擦学设计[J].机械设计, 2004, 4:24-27.
    [17]颜永根.冷轧辊表面毛化技术现状与进展[J].宝钢技术, 1995, 12: 45-50.
    [18] GEIGER M, ROTH S , BECKER. Influence of Laser-produced Microstructure on the Tribology Behaviorof Ceramics[J]. Surface & Coating Technology, 1998, 100-101: 17-22.
    [19]杨滔. YAG激光毛化轧辊技术在铝加工行业中的应用[J].甘肃科技, 2003, 19(9): 42-43.
    [20]毛卫民.晶体材料的晶体学织构与各向异性[M].北京:科学出版社, 2002, 8: 2-4; 28-37; 61-62.
    [21] WASSERMANN G. Texturen Metallischer Werkstoffe[M]. Berlin: Springer-Verlag, 1939: 1-10.
    [22] ENGLER O, CRUMBACH M, LI S. Alloy-Dependent Rolling Texture Simulation of Aluminium Alloys with a Grain-interaction Model[J]. Acta Materialia, 2005, 53: 2241-2257.
    [23] ASBECK H O, MECKING H. Influence of Friction and Geometry of Deformation on Texture[J]. Materials Science and Engineering, 1978, 34: 111-119.
    [24] QIN J N, ZHANG D, ZHANG G D, et al. Effect of Temperature on Texture Formation of 6061 Aluminum Sheet in Equal-channel Angular Pressing[J], Materials Science and Engineering A, 2005, 408: 79-84.
    [25]毛卫民,余永宁,曾燕屏.深冲钢板在线检测技术的探讨[J].北京科技大学学报, 1996, 18: 136-140.
    [26]毛卫民.板材织构定量分析方法[J].物理测试, 1992, 3: 44-49.
    [27]张清敏,徐濮.扫描电子显微镜和X射线微区分析[M].天津:南开大学出版社, 1988, 12-13.
    [28] CHEN N, MAO W , YU Y, et al. A Method of Quantitative Fiber Texture Analysis[C]. Proc. 11th. Inter. Conf. Textures of Materials. Beijing: International academic Publishers, 1996: 81-83.
    [29]刘国勋.金属学原理[M].北京:冶金工业出版社,1980:21-25.
    [30] KAO P W. Texture and Earing Behaviour of Cold-rolled Aluminium Alloy 3004 [J]. Material Science and Engineering, 1985, 4: 147-157.
    [31] HIRSCH J, LüCKE K. Mechanism of Deformation and Development ofRolling Textures in Polycrystalline FCC Metals Description of Rolling Texture Development in Homogenous Cu Zn alloys[J]. Acta Materialia, 1988, 36: 2863-2882.
    [32] HUHA M Y, CHOA Y S, ENGLERB O. Effect of Lubrication on the Evolution of Microstructure and Texture during Rolling and Recrystallization of Cu[J]. Materials Science and Engineering A, 1998, 247: 152-164.
    [33] SUK B K, BOK K M, HYOUNG W K, et al. Effect of Asymmetric Rolling on the Texture and Mechanical Properties of AA6111-Aluminum Sheet[J]. Metallurgical and Materials Transactions A, 2005, 36A: 3141-3149.
    [34]李尧.异步轧制对3004铝合金变形织构及制耳率的影响[J].中国有色金属学报, 1997, 7(2): 114-117.
    [35] ASBECK H O, MECKING H. Influence of Friction and Geometry of Deformation on Texture Inhomogeneities during Rolling [J]. Materials and Science Engineering, 1978, 34: 111-119.
    [36] LIU W C, MAN C S, MORRIS J G. Lattice Rotation of the Cube Orientation to theβFiber during Cold Rolling of AA 5052 Aluminum Alloy[J]. Scripta Materialla, 2001, 45: 807-814.
    [37]张辉,钟华萍,彭大暑.工业纯铝多道次热轧工艺的实验模拟[J].轻合金加工技术, 1999, 27 (10): 20-22.
    [38]吕爱强,蒋奇武,王福,等.异步轧制对高纯铝箔冷轧织构的影响[J].金属学报, 2002, 38(9): 974-978.
    [39]蒋红辉,张新民,闫伟永,等.不同润滑条件下高纯铝的冷轧织构及组织[J].有色矿冶, 2003, 19(2): 36-39.
    [40] LIU W C, MORRIS J G. Effect of Initial Texture on the Recrystallization Texture of Cold Rolled AA 5182 Aluminum Alloy[J]. Materials Science and Engineering A, 2005, 402: 215-217.
    [41] ANANTHAN V S, LEFFERS T, HASSEN N. Cell and Band Structures in Cold Rolled Polycrystalline Cu[J]. Materials Science and Technology, 1991, 7(12): 1069-1075.
    [42] LIU Q, HUANG X, HANSEN N. Microstructural and Strength of Commercial Purity Aluminium (AA 1200) Cold-rolled to large Strains[J]. Acta Materialia, 2002, 50: 3789-3802.
    [43] BOESLAU J, RAABE D. Development of Microtextures in Cold Rolled Iron- Oligocrystals [J]. Materials Science Forum, 1994, 157-162: 501-506.
    [44] LIU Q, HANSEN N. Geometrically Necessary Boundaries and Incidental Dislocation Boundaries Formed during Cold Deformation[J]. Scripta Matcrialia, 1995, 32: 1289-1295.
    [45] LIU Q, HANSEN N. Effect of Grain Orientation on the Development of Microsruture and Microtexure of Grains during Plastic Deformation[C]. Proceedings of the eleventh International Conference on Textures of Materials, International Academic Publishers, Beijing, 1996: 1357-1363.
    [46] WERT J A, LIU Q, HANSEN N. Dislocation Boundary Formation in a Cold-rolled Cube-oriented Al Single Crystal[J]. Acta Materialia, 1997, 45: 2565-2576.
    [47] LIU Q, HANSEN N. Microstructural Study of Deformation in Grain Boundary Region during Plastic Deformation of Polycrystalline Aluminum[J]. Material Science and Engineering A, 1997, A234: 672-675.
    [48] HUYGHES D A, LIU Q, CCHRZAN D, et al. Scaling of Microstructural Parameters: Misorientations of Deformation Induced Boundaries [J]. Acta Materialia, 1997, 45: 105-112.
    [49] LIU Q, WERT J A, HANSEN N. Location-dependent Lattice Rotation and Shear Strain in Rolled Aluminium Single Crystals of Cube and Goss Orientations [J]. Acta Materialia, 2000, 48: 4267-4279.
    [50]黄晓旭,蔡大勇,姚枚,等.冷轧多晶铜与多晶铝形变显微组织演变的研究[J].材料科学与工艺,2000, 18: 1-5.
    [51] WU G L, GODFRAY A, LIU W, et al. Macroscopic Subdivision of Columnar Grain Aluminium with {001} Orientations Following low Strain Deformation [J]. Scripta Materialia, 2001, 45: 1117-1122.
    [52] CIZEK P, PARKER B A, Wynne B J. Dense Dislocation Walls and Deformation Banding in Commercial Purity Aluminum[J]. Scripta Metallurgical Material, 1995, 32: 319-323.
    [53] HANSEN N. Cold Deformation Microstructures[J]. Materials Science and Technology, 1990, 6: 1039-1047.
    [54] KUHLMANN-Wilsdorf D. Deformation Bands (DBs) and the LEDS Hypothesis [J]. Acta Materialia. 1999, 47:1697-1712.
    [55] KULKAMI S S, STARKE E A, Kuhlmann-wilsdorf D. Some Observations on Deformation Banding and Correlated Microstructures of two Aluminium Alloy Compressed at Different Temperatures and Strain Rates[J]. Acta Materialia, 1998, 46: 5283-5301.
    [56] LEE A B, CHAN K C. A Criterion for the Prediction of Shear Band Angle in F.C.C. Metals[J]. Acta Metallurgical Material, 1991, 39: 411-417.
    [57] LIU Q, MAURICE C, DRIVER J, et al. Heterogeneous Microstructures and Microtextures in Cube-oriented Al Crystal after Channel Die Compression[J]. Metallurgical and Material Transations A, 1998, 29: 2333-2343.
    [58] LIU Q, HANSEN N. Macroscopic and Microscopic Subdivision of a Cold-rolled Aluminium Single Crystal of Cubic Oriention[J]. Porc, R. Soc. Lond. A, 1998, 454: 2555-2591.
    [59] WERT J A, LIU Q, HANSEN N. Dislocation Boundary and Active Slip Systems[J]. Acta Materialia, 1995, 43: 4153-4163.
    [60] GODFREY A, JENSEN D J, HANSEN N. Slip Patter Microstructure and Local Crystallography in an Aluminium Single Crystal of Cu Oirention {112}<111>[J]. Acta Materialia, 1998, 46: 835-848.
    [61] WAGNER P, ENGLER O, LUCKE K. Formation of Cu-type Shear Bands and Their Influence on Deformation and Texture of Colled f.c.c. {112}<111> Single Crystals[J]. Acta Materialia, 1995, 43: 3799-3812.
    [62]胡卓超,赵骧,左良,等.电场退火对3104铝合金板显微组织与再结晶织构的影响[J].中国有色金属学报, 2004, 14: 1366-1371.
    [63] HIRSCH J, NES E, LüCKE K. Rolling and Recrystallization Textures in Directionally Solidified Aluminum[J]. Acta Materialia, 1987, 35: 427-438.
    [64] BUNGE H J. Texture Analysis in Materials Science[M]. Butterworth, London, 1982:1-41.
    [65] MERCHANT H D, MORRIS. Annealing Response of 3000 and 5000 Series Aluminum Alloy[J]. Metallurgical Transactions A, 1990, 21A: 2643-2654.
    [66] LIU Q, JENSEN J D, HENSEN N. Effect of Grain Orientation on Deformation Structure in Cold-rolled Polycrystalline Aluminum[J]. Acta Materialia, 1998, 46: 5819-5838.
    [67]陈礼清.无间隙原子钢再结晶织构的模拟与试验研究[D].沈阳:东北大学, 1990:35-38.
    [68] DILLAMORE I L, KATOH H. Comparison of the Observed and Predicted Deformation Textures in Cubic Metals[J], Metallurgical Science, 1974, 8: 21-27.
    [69] DILLAMORE I L, KATOH H. Mechanisms of Recrystallization in Cubic Metals with Particular Reference to their Orientation-dependence[J]. Metallurgical Science, 1974, 8: 73-83.
    [70] INOKUTI Y, DOHERTY R D. Transmission Kossel Study of the Structure of Compressed Iron and its Recrystallization Behavior[J]. Acta Metallurgica, 1978, 26: 61-80.
    [71] LUECKE K. Formation of Recrystallization Textures in Metals and Alloys[C]. Proceedings of the Seventh International Conference on Textures of Materials, Netherlands, 1984:195-210.
    [72] NES E, HIRSCH J, LüECKE K. On the Origin of the Cube Recrystallization Texture in Directionally Solidified Aluminum [C]. Proceedings of the Seventh International Conference on Textures of Materials, Netherlands, 1984: 663-668.
    [73] HIRSCH J, LACKE K. Application of Quantitative Texture Analysis for Investigating Continuous Discontinuous Recrystallization Processes of Al-001Fe[J]. Acta Metallurgica, 1985, 33: 1927-1938.
    [74] HUTCHINSION W B. The Role of Prior Grain Boundaries in Recrystallizaiton Texture Development in Iron[C]. Proceedings of the Seventh International Conference on Textures of Materials, Santa Fe, 1987, 603-609.
    [75] FERRAN L G, DOHERTY R D, CAHN R W. The Kossel Line Determination of the Orientation of New Grains Formed by Recrystallizaiton of Aluminum[J]. Acta Metallurgica, 1971, 19 (10): 1019-1028.
    [76]毛卫民.含钦冷轧铝板的再结晶机制[J].科学通报, 1992, 37 (2): 176-178.
    [77] INOKUIT Y, MAEDA C, SHIMANAKA H. Transmission Kossel Study of Origin of Goss Texture in Grain Oriented Silicon Steel[J], TransporationIowa State University, 1983, 23: 440-447.
    [78] KAMIJO T. Study of the Inverse Roland Mechanism for the Nucleation of a Cube Recrystallization Texture[J]. Japanese Institute of Metals, 1967, 31(6): 741-746.
    [79]王轶农.电场作用下金属再结晶织构的研究[D].沈阳:东北大学,1999: 66-68.
    [80] HELLER W F, VAN D J H, WOLFF G, et al. Recrystallization Behavior of Left Brace 110 Right Brace 112 Direction Aluminum Single Crystals after Rolling and Plane-Strain Deformation[J]. Metallurgical Science, 1981, 15(8): 333-341.
    [81] LUCKE K, CANAD T. Orientation Dependence of Grain Boundary Motion and the Formation of Recrystallization Textures[J]. Metallrugical Quarterly. 1974, 13(7): 261-274.
    [82] SCHIMIDT U, LUCKE K. Recrystallization Textures of Silver, Cu and alpha -Brasses with Different Zinc-contents as a Function of the Rooling Temperature[J]. Textures of Crystalline Solids, 1979, 3(2): 85-112.
    [83] LIU W C, MORRIS J G. Evolution of Recrystallization and Recrystallization Texture in Continuous-cast AA 3015 Aluminum Alloy[J]. Metallurgical and Materials Transactions, 2004, 36A: 2005-2829.
    [84]毛卫民.晶界快速迁移的原子模型团[J].中国科学, 1991, 3A: 311-315.
    [85] NES E, SOLBERG J K. Growth of Cube Grain during Recrystallization in Aluminum[J]. Material Science and Technology, 1996, 2(1): 19-21.
    [86] BUNGE H J. Zur Darstellung Allgemeiner Texturen[J]. Z. Metalkde, 1965, 65: 872-876.
    [87] ROE R J. Description of Crystallite Orientation in Polycrystalline Materials. III. General Solution of Pole Figure Inversion[J]. Journal of Applied Physics, 1965, 36: 2024-2027.
    [88] IMHOF J. An Appreciative Determination of the Orientation Distribution Function [C]. Proc ICOTOMS, 1978, 149-153.
    [89] RUER D, BARO R. A New Method for the Determination of the Texture of Materials of Cubic Structure from Incomplete Reflection Pole Figures[J]. Advances in X-Ray Analysis, 1977, 20: 187-191.
    [90] LIANG Z D, XU J Z, WANG F. Determination of ODF of PolycrystallineMaterials from Incomplete Pole Figures[C]. Proceedings of the Sixth International Conference on Textures of Materials, Tokyo, 1981: 1259-1265.
    [91] BUNGE H J, ESLING C. Determination of the Odd Part of the Texture Function by Anomalous Scattering[J]. Journal of Applied Crystallography, 1981, 14: 253-257.
    [92] POSPIECH J, LüKE K, JURA J. Reproduction of the True ODF from Pole Figures and Single Orientation Measurements by Application of Gauss-type Scattering Models [C]. Proceedings of the Sixth International Conference on Textures of Materials, Tokyo, 1981: 1390-1401.
    [93] WANG F. Application of the Maximum Entropy Method to the Inverse Pole Figure Determination of Cubic Materials[J], Journal of Applied Crystallography, 1991, 24: 26-30.
    [94] WANG F, XU J Z, LIANG Z D. Determination of the Complete ODF of Cubic System Materials by the Maximum Entropy Method[J]. Textures Microstructure, 1992, 19: 55-58.
    [95] WANG Y D, XU J Z,LIANG Z D. The Modified Maximum Entropy Method (MMEM) in QTA from Lower Symmetry Polycrystalline Aggregates[J]. Textures Microstructure, 1995, 103:26-27.
    [96] WANG Y D, XU J Z, ZUO L, et al. Some Applications of the Modified Maximum Entropy Method in Quantitative Texture Analysis[C]. Proceedings of the Eleventh International Conference on Textures of Materials, Xi'an, China, 1996: 1064-1069.
    [97]王沿东,徐家祯.具有重叠衍射峰低对称晶系材料的定量织构分析[J].金属学报, 1995, 31: 550-554.
    [98] WANG Y D, LIU Y D, XU J Z, et al. A New Algorithm of Quantitative Analysis Adapted to Thin Films [J]. Journal of Applied Physics, 1996, 79: 376-381.
    [99]王沿东,咚伟平,何长树,等.含磷深冲钢板的低分辨织构分析与弹性模量预估[J],金属学报, 1999, 35(6): 627-630.
    [100]李雪,杨平,王海峰,等.铝合金中制耳与织构关系的衍射分析[J].中国体视学与图像分析, 2006, 4: 246-251.
    [101]李赛毅,张新明.深冲用板材的制耳现象及其控制途径[J].铝加工,1996, 19: 36-38.
    [102] WIFSON D, BUTLER R. Earing of Rolled Aluminum Sheets[J]. Japanese Institute of Metals, 1961, 2: 473-483.
    [103] HUTCHINSON W, OSCARSSON A. Control of Microstructure and Earing Behavior in Aluminum Alloy AA3004 Hot Bands[J]. Materials Science and Technology, 1989, 5(11): 1118-1127.
    [104] ZHAO Z A, MAO W B, ROTERS F C, et al. A Texture Optimization Study for Minimum Earing in Aluminum by Use of a Texture Component Crystal Plasticity Finite Element Method[J]. Acta Materialia, 2004, 52: 1003-1012.
    [105]杨惠民.纯铝板材织构与深冲制耳的研究[J].轻合金加工技术,1984, 6: 28-34.
    [106]汪凌云,黄光杰,骆少明.降低深冲用8011H18合金材料制耳率的研究[J].重庆大学学报, 1994, 17(6): 98-100.
    [107] ES-Said O S, MORRIS J G. Deformation and Annealing Textures Produced in Strip Cast 3004 Aluminium Alloy[C]. Proceedings of the Conference on Aluminum Technology, London, 1986: 333-338.
    [108] ZAIDI M A, SHEPPARD T. Control of Earing Quality in AA5052 Aluminum Alloys[J]. Material Science and Technology, 1985, 1(8): 593-599.
    [109]梁忠华,李念奎,邱纪微. 3004合金罐体板材部分退火+轻度轧制工艺的探讨[J].轻金属, 1995, 9: 53-57.
    [110] OLAF E, STEFAN K. Simulation of Earing Profiles from Texture Data by Means of a Visco-plastic Self-consistent Polycrystal Plasticity Approach[J]. Materials Science and Engineering A, 2004, 373: 350-362.
    [111] JIAN G H, TAKASHI I A, KEISUKE I. Analysis on Earing Behavior of Textured Pure Aluminum and A5083 Alloy Sheets[J]. Journal of Materials Processing Technology, 1998, 83: 200-208.
    [112] CHENG X M. Earing Behavior and Crystallographic Texture of Aluminum Alloys during Cold Rolling[J]. Journal of Materials Engineering and Performance, 2001, 10(4): 399-404.
    [113]李尧.异步轧制对3004铝合金变形织构及制耳率的影响[J].中国有色金属学报, 1997, 7(2): 113-117.
    [114] HUTCHINSON W B,著,张振禄,译. 3004合金热轧带材显微组织和制耳的控制[J].轻合金加工技术, 1991, 19(8): 25-33.
    [115] DONS A L, NES E. Nucleation of Cube Texture in Aluminum[J]. Material Science and Technology, 1986, 2(1): 8-18.
    [116] SAMAJDAR I, DOHERTY R D. Role of S Orientations in the Preferred Nucleation of Cube Grains in Recrystallization of FCC Metals[J]. Scripta Metals, 1995, 32: 845-850.
    [117] ZHAO Z, MAO W, ROTERS F, et al. A Texture Optimization Study for Minimum Earing in Aluminum by Use of a Texture Component Crystal Plasticitynite Element Method[J]. Acta Materialia, 2004, 52:1003-1012.
    [118] MAO W M. Rolling Texture Development in Aluminum[J]. Journal of Materials Science & Technology, China, 1991, 7: 101-112.
    [119]梁志德,徐家祯,王福.织构材料的三维取向分析术ODF分析[M].沈阳:东北工学院出版社, 1986: 108-110.
    [120] REN B, MORRIS J G. Microstructure and Texture Evolution of Al during Hot and Cold Rolling[J]. Metallurgical and Materials Transactions A, 1995, 26: 31-40.
    [121] DAALAND O, NES E. Origin of Cube Texture During Hot Rolling of Commercial Al-Mn-Mg Alloys[J]. Acta Materialia, 1996, 44(4): 1389-1411.
    [122] HJE1N J, ?RSUND R,NES E. On the Origin of Recrystallization Textures in Aluminum[J]. Acta Metallurgical and Material, 1991, 39 (7): 1377-1384.
    [123] BECKER R, BUTLER J F, J R, et al. Analysis of an Aluminum Single Crystal with Unstable Initial Orientation (001)[110] in Channel Die Compression[J]. Metallurgical Transactions A, 1991, 22A: 45-51.
    [124] LEE C S, DUGGAN B J. A Simple Theory for the Development of Inhomogeneous Rolling Textures[J]. Metallurgical Transaction A, 1991, 22A: 2637-2643.
    [125] ASBECK H O, Mecking H. Influence of Friction and Geometry of Deformation on Texture [J]. Material Science and Engineering, 1978, 34: 111-116.
    [126] TRUSZKOWSKI W, KROL J, MAJOR B. Inhomogeneity of Rolling Texture in fcc Metals[J]. Metallurgical Transaction, 1980, 11A: 749-758.
    [127] KNEYNSBERG H P, VERBRAAK C A, BOUWHUIJS M J. The Influenceof Inhomogeneous Rolling on the Capacity of Aluminum Anode Foil Material[J]. Materials Science and Engineering, 1985, 72: 171-176.
    [128] MAO W, SUN Z. Inhomogeneity of Rolling Texture in Fe-28Al-2Cr Alloy[J]. Scr. Met. Mat, 1993, 29: 217-220.
    [129] HJELN J, ?RSUND R, NES E. On the Origin of Recrystallization Textures in Aluminum[J]. Acta Metallurgica and Material, 1991, 39(7): 1377-1404.
    [130] VATNE H E, DAALAND O. On the Formation of Cube Texture in Aluminum[J]. Material Science Forum, 1994, 157-162: 1087-1094.
    [131]哈宽富.金属力学性质的微观理论[M].北京:科学出版社, 1983: 457-458.
    [132] DUGGAN B J, LEE C S. Deformation Banding Origin Size and Recrystallization in FCC Intermediate to High Metals[J]. Scripta Metallurgy and Material, 1992, 27: 150-155.
    [133] MONTHEILLET F, GILORMINI P, JONAS J. Relation Between Axial Stresses and Texture Development during to Rsion Testing[J]. Acta Metallurgica, 1985, 33(4): 705-717.
    [134] LEQUEU P H, GILORMINI P, MONTHEILLET F, et al. Yield Surfaces for Polycrystals[J]. Acta Metallurgica, 1987, 35(5): 1159-1174.
    [135] TOTH L S, JONAS J J. Analytic Prediction of Texture and Length Changes during Free and Torsion[J]. Textures and Microstructures, 1989, 10(2): 195-209.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.