节能静音型一体化焊接工程车研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着管道建设的高速发展,带动了管道施工设备的迅猛发展。在管道运输中,管道焊接质量的高低,直接关系着管道运输的高效率和安全性,它是管道施工中的一个重要环节。目前药芯焊丝半自动焊以焊接合格率和生产效率高等优势,在我国大、中型口径长距离输运管道建设中得到广泛应用,是目前我国长输管线建设中最常用的焊接方法。焊接工程车作为管道半自动焊接流水化作业不可缺少的工程机械,是提高管道施工效率,降低施工成本的重要施工机械,受到管道施工装备研究人员的重视,如何进一步提高焊接工程车的效率,节能减排,满足更加严格的国内外环境保护法律法规,已成为该领域亟待解决的问题之一。
     本文介绍了新型节能静音型焊接工程车的研制。该焊接工程车的设计与研制中,深入分析了现有焊接工程车的优缺点,结合油气管道焊接施工的实际需要,充分利用新技术、新工艺和新材料,使新型焊接工程车具有了节能、静音以及运输方便等特点。
     首先是研究分析了行走系统、随车起重系统、发电焊接系统,确定了发动机、发电焊接一体机、随车起重机、行走系统之间高效的动力传动方式,实现了焊接工程车的模块化设计,提高了设备运行的可靠性,并且达到了节能、降噪的效果。
     其次是对焊接工程车的结构进行了优化,缩减了焊接工程车的宽度,并采用多体系统动力学仿真软件RecurDyn (Recursive Dynamic)对焊接工程车不同工况稳定性等进行了静力学、动力学的数值模拟仿真,确定了焊接工程车的结构设计。
     三是结合焊接工程实际,应用发电焊接一体机进行了相关的焊接工艺试验,并结合焊接过程出现的问题,对发电焊接一体机进行了改造,使其满足了多工位管道焊接的要求。
     最后,通过工业性实验评价,对新研制的节能静音型一体化焊接工程车的节能静音效果、整机稳定性、可靠性等进行了验证。实验表明,节能静音型一体化焊接工程车达到了设计的要求,能耗减少40%,工作时噪音低于70dB,最大吊重、爬坡时,整机稳定性良好。
The high speed development of pipeline construction leads to the rapiddevelopment of pipeline construction equipment. In the pipeline transportation, thewelding quality of pipes is directly related to the pipeline efficiency and safety, so it isa important segment of the pipeline construction.
     At present flux-cored wire semi-automatic welding has advantages of highwelding qualified rate and production efficiency, so it has been the most commonwelding method used in the construction of long distance pipeline and widely appliedin the construction of big, medium-sized diameter transport pipelines in China.
     As indispensable engineering machinery in the assembly line of semi-automaticwelding of pipelines, mobile welding workshops are valued by researchers to furtherimprove the welding efficiency, energy conservation and emission reductions and tomeet more strict environmental protection laws and regulations in China and abroad,which has become one problem to be solved in the field.
     This paper introduces the development of a new type energy-saving and quietmobile welding workshop. After analysing the advantages and disadvantages of theexisting mobile welding workshops, combining with the actual needs of oil and gaspipe welding construction, new technology and new material are made full use of tomake new mobile welding workshop to have characteristics of energy saving, lownoise and convenient for transportation.
     Firstly, travelling system, accessory lifting system, power generation weldingsystems are studied and analyzed, and the high efficient power transmission methodof the engine, power generation and welding all-in-one machine, accessory crane, andtravelling system is determined, which realizes the modular design of mobile weldingworkshop and improves the reliability of the equipment operation with the results ofenergy saving and noise reduction.
     Secondly, the structure of the mobile welding workshop is optimized. The widthis reduced and the multibody system dynamics simulation software RecurDyn(Recursive Dynamic) is used to do the numerical simulation analysis of the mobilewelding workshop’s stability in the different operating modes. The structural design ofthe mobile welding workshop is confirmed.
     Thirdly, combining with the welding engineering facts, experiments of weldingtechnique are carried out by using the power generation and welding all-in-onemachine. According to the problems found in the tests, the power generation andwelding all-in-one machine is reformed to satisfy the requirements of multistage pipewelding.
     Finally, the energy saving and silenced effects, stability and reliability of thedeveloped energy saving and silenced integrated mobile welding workshop areverified through industrial experiment evaluation. Results of the experiments showthat the energy saving and silenced integrated mobile welding workshop can meet thedesign requirements. Energy consumption is reduced by40%, and the noise at work isbelow70dB. The stability is still good when it climbing with the largest crane heavy.
引文
[1]王仪康,杨柯,单以银,等.高压输气管线用钢[J].焊管,2002,25(1):1-10.
    [2]李鹤林.天然气输送钢管研究与应用中的几个热点问题[J].中国机械工程,2001,12(3):349-352.
    [3]李鹤林,冯耀荣,霍春勇,等.关于西气东输管线和钢管的若干问题[J].中国冶金,2002,(4):36-40.
    [4]王仪康.高压输气管线材料和相关问题[J].焊管,2000,23(3):84-89.
    [5] Mohipour M. High pressure pipelines-trends for the new millennium[C].//2000Internatinal Pipeline Conference Proceeding. Canada: Calgery,2000.
    [6] Dr-Ing hans-Georg Hillenbrand and Dr-Ing Christoph Kalwa. Production andservice behavior of high-strength large-diameter pipe[C].//InternationalConference on Application and Evaluation of High Grade Linepipes in HostileEnvironments. Japan: Pacifico Yokohama,2002.
    [7] Chaudhari V, Ritzmann H P, Wellnitz G, et al. German gas pipeline first to usenew generation linepipe[J]. Oil and Gas Journal,1995,93(1):40-47.
    [8] Janzen T S. Thealliance pipeline-a design shift in long distance gastransmission[C].//Proceeding of International Pipeline Conference, ASME.Canada: Calgery,1998.
    [9] http://www.cinn.cn/xw/rw/117909.shtml
    [10]黄开文.国外高级管线钢的研究与使用情况[J].焊管,2003,26(3):1-10.
    [11]潘家华.我国天然气管道工业的发展前景[J].油气储运,2006,25(8):1-3.
    [12]潘家华.全球能源管线钢的发展趋势[J].焊管,2008,31(1):9-11.
    [13]杨默然,王飞,岳静.“十二五”期间中国管道建设市场分析[J].中国石油和化工标准与质量,2011,(5):131-133.
    [14]霍春勇.涩宁兰.管线X70试验段卷板及焊管试验评价[C].//X70管线钢生产总结研讨会.中国:廊坊,2000.
    [15]李平全,王世宏,李鹤林,等.石油工业发展对低合金及微合金化石油管的要求与对策[J].中国冶金,2000,(2):34-38.
    [16]庄传晶,冯耀荣,霍春勇,等.国内X80级管线钢的发展及今后的研究方向[J].焊管,2005,28(2):10-14.
    [17]孔君华,郑磊,黄国建. X80管线钢和钢管在中国的研制与应用[C].//石油天然气管线工程技术发展、规范及焊接国际研讨会.中国:北京,2006.
    [18]黄福祥,隋永莉,王纪.西气东输冀宁支线X80钢工业应用工程中的自动焊技术[J].焊接技术,2007,36(3):58-59.
    [19] http://money.163.com/special/oilprice2011
    [20] http://www.yicai.com/epaper
    [21]尹长华,赵海鸿,张荣芬.长输管道安装材料的选择焊接[J].焊接,2005,(6):14-18.
    [22]隋永莉,孙冬梅.长输管线自动焊接技术[J].焊管,2000,23(2):1-3.
    [23]刘守龙,马佳,隋永莉,等.长输管道全位置自动焊接技术[J].焊接技术,2000,29(S1):47-48.
    [24]王彬.中国焊接生产机械化自动化技术发展回顾[J].焊接技术,2000,29(3):38-41.
    [25]王彬.中国焊接生产机械化自动化技术发展回顾与展望[J].电焊机,2000,30(2):1-6.
    [26]薛振奎,隋永莉.国内外油气管道焊接施工现状与展望[J].焊接技术,2001,30(1):22-23.
    [27]李九生,杜则裕.石油管线焊接工艺方案[J].焊接技术,2001,30(1):22-23.
    [28]刘明辉,艾云,左治武.药芯焊丝半自动焊在长输管道中的应用[J].石油化工设备,2005,34(2):63-64.
    [29] http://news.cnpc.com.cn/epaper/zgsyb/20111229/0100457006.htm
    [30]成大先.机械设计手册[M].北京:化工工业出版社,2002.
    [31]周祖威.工程力学[M].天津:天津大学出版社,1998.
    [32]雷天觉.液压工程手册[M].北京:机械工业出版社,1990.
    [33]垄计划,邓斌.小型挖掘机履带行走装置参数的合理确定[J].建筑机械化,2010,(1):44-47.
    [34]同济大学工程机械教研室.工程机械底盘的构造与设计[M].北京:中国建筑工业出版社,1980.
    [35]赵文生.履带式行走机构设计分析[J].湖北农机化,2010,(4):56-58.
    [36]周祖威.工程力学[M].天津:天津大学出版社,1998.
    [37]成大先.机械设计手册[M].北京:化工工业出版社,2002.
    [38]垄计划,邓斌.小型挖掘机履带行走装置参数的合理确定[J].建筑机械化,2010,(1):44-47.
    [39]周曼川,彭福人.路面冷铣刨机履带行走机构设计参数分析[J].工程机械,2005,(11):29-31.
    [40]迟水滨.履带式液压挖掘机两种车架的对比分析[J].工程机械,2001,(2):10-11.
    [41]张玉川.进口液压挖掘机国产化改造[M].成都:西南交通大学出版社,1999.。
    [42]同济大学工程机械教研室.工程机械底盘的构造与设计[M].北京:中国建筑工业出版社,1980.
    [43]赵瑜,闫宏伟.履带式行走机构设计分析和研究[J].新技术新工艺,2010,(5):50-53.
    [44]国家技术监督局. GB/T3375-1994焊接术语[S].1995.
    [45]国家标准化管理委员会. GB/T324-2008焊缝符号表示法[S].2008.
    [46]国家质量监督检验检疫总局. GB/T5185-2005焊接及相关工艺方法代号
    [S].2006.
    [47]国家质量监督检验检疫总局. GB/T19866-2005焊接工艺规程及评定的一般原则[S].2006.
    [48]国家质量监督检验检疫总局. GB/T19869.1-2005钢、镍及镍合金的焊接工艺评定试验[S].2006.
    [49]国家机械工业局、国家石油和化学工业局. JB4708-2000钢制压力容器焊接工艺评定[S].2000.
    [50]美国标准编制委员会. API1104-2008管线及相关设施焊接规范[S].2008.
    [51]国家技术监督局. GB/T5117-1995碳钢焊条[S].1996.
    [52]国家技术监督局. GB/T5118-1995低合金钢焊条[S].1996.
    [53]国家质量监督检验检疫总局. GB/T13814-2008镍及镍合金焊条[S].2008.
    [54]机械工业部. JB/T8423-96电焊条焊接工艺性能评定方法[S].1997.
    [55]国家质量监督检验检疫总局. JB/ZQ3680焊缝外观质量[S].2005.
    [56]国家技术监督局. GB2649-1989焊接接头机械性能试验取样方法[S].1990.
    [57]国家质量监督检验检疫总局. GB/T2650-2008焊接接头冲击试验方法[S].2008.
    [58]国家质量监督检验检疫总局. GB/T2651-2008焊接接头拉伸试验方法[S].2008.
    [59]国家质量监督检验检疫总局. GB/T2652-2008焊缝及熔敷金属拉伸试验方法[S].2008.
    [60]国家质量监督检验检疫总局. GB/T2653-2008焊接接头弯曲试验方法[S].2008.
    [61]国家质量监督检验检疫总局. GB/T2654-2008焊接接头硬度试验方法[S].2008.
    [62]国家标准化管理委员会. GB/T2656-1981焊缝金属和焊接接头的疲劳试验法[S].1982.
    [63]国家质量监督检验检疫总局. GB/T228-2002金属材料室温拉伸试验方法
    [S].2002.
    [64]国家质量监督检验检疫总局. GB/T229-2007金属材料夏比摆锤冲击试验方法[S].2008.
    [65]国家质量监督检验检疫总局. GB/T12604.2-2005无损检测术语射线照相检测[S].2006.
    [66]国家质量监督检验检疫总局. GB/T3323-2005金属熔化焊焊接接头射线照相[S].2006.
    [67]国家标准化管理委员会. GB/T12469-1990焊接质量保证钢熔化焊接头的要求和缺陷分级[S].1991.
    [68]国家技术监督局. GB/T14957-1994熔化焊用钢丝[S].1995.
    [69]国家质量监督检验检疫总局. GB/T l0045-2001碳钢药芯焊丝[S].2002.
    [70]国家标准化管理委员会. GB/T17493-2008低合金钢药芯焊丝[S].2009.
    [71]国家技术监督局. GB/T12605-1990钢管环缝熔化焊对接接头射线透照工艺和质量分级[S].1991.
    [72]焦晓娟,张湝渭,彭斌彬. RecurDyn多体系统优化仿真技术[M].北京:清华大学出版社,2010.
    [73]骆清国,司东亚,龚正波,等.基于RecurDyn的履带车辆动力学仿真[J].车辆与动力技术,2011,(4):26-28,50.
    [74]马吉胜.履带车辆路面激励响应仿真[J].系统仿真学报,2008,20(9):2494-2497.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.